On the use of SURFEX for ALADIN/ALARO
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area numerical weather prediction model running opera-
tionally in a number of countries of the AT ATOIN and
HIRIL.ANM consortia. The primary question addressed is the
ability of STTRFEX to be used as a new land surface scheme
and thus assessing its potential use in an operational config-
uration instead of the original ISBA (Interactions between
Scil, Biosphere, and Atmosphere) scheme. The results show
that the introduction of STUTRFEX cither shows improvement
for or has a neutral impact on the 2 m temperature, 2 m rel-
ative humidity and 10m wind. Howevwver, it seems that STUR-
FEX has a tendency to produce higher maximum tempera-
tures at high-elevation stations during winter daytime, which
degrades the 2 m temperature scores. In addition, surface ra-
diative and energy fluxes improve compared to observations
from the Cabauw tower. The results also show that promis-
ing improvements with a demonstrated positive impact on the
forecast performance are achieved by introducing the town
cnergy balance (TEB) scheme. Tt was found that the use of

ological Institute, Prague, Czech Republic

high-resolution run tends to cause rainfall to be locally con-
centrated, and the total accumulated precipitation obviously
decreases during the summer. One of the novel features de-
veloped in SURFEX is the awvailability of a more advanced
surface data assimilation using the extended Kalman filter.
The results over Belgium show that the forecast scores are
similar between the extended Kalman filter and the classical
optimal interpolation scheme. Finally, concerning the ver-
tical scores, the introduction of SURFEX either shows im-
provement for or has a neutral impact in the free atmosphere.

1 Introduction

Numerical weather prediction models need parameteriza-
tions of the surface processes to estimate the fluxes for phyvsi-
cal budgets such as sensible heat, latent heat, momentum and
radiation between the atmosphere and the surface features

Published by Copernicus Publications on behalf of the European Geosciences Union.

ALADIN partners from Austria, Belgium, Morocco, Poland, Portugal, Tunisia, and
Turkey participated to the SURFEX working week in Brussels 24-28 September 2012.
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EKF ASSIMILATION SCHEME offline versus inline
«dS g

Development of a SURFEX EKF for ALARO and comparison of the offline and coupled version

with the OI analysis.
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EKF ASSIMILATION SCHEME oscillations

2m Temperature, 2 July 2010, 12-->18UTC assimilation window

. " """."\/'\/\/ I
o H [
R ] |
")
\ . ) V
E oo
— g ]
L
5 |
v oo_ -
§ 3 +
I I | I | I | r
0 20 40 60 80 100 120

timestep

, ¢ spo be
19% March 2014 (5/22) belspo,




-50

- value (K/m3/m3)

—-100

EKF ASSIMILATION SCHEME
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oscillations

A Jacobian of 2m RH
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EKF ASSIMILATION SCHEME

- -

@ QOscillations are in the lowest model level and at the surface as soon as Ri > 0, with opposite

movements of the oscillations in the lowest level and at the surface.

@ Oscillations are found for the reference run and the perturbed one.

@ Oscillations are found for small and big perturbation sizes.

@ Oscillations are found for 300s and 60s time step of SURFEX.

@ Oscillations are found for implicit (worse) and explicit coupling for SURFEX.

@ Oscillations are also found when a run is initialized from ARPEGE analysis instead of the

EKF analysis.
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EKF ASSIMILATION SCHEME

Problem:
* Decoupling of the surface and the atmosphere during sunset

* C(Creates very small oscillations in the fluxes BUT big oscillations in
the Jacobian values

Solution:

@ Filter the oscillation

® Use forcing files from an earlier run so the atmosphere has more
time to adjust to the surface.

* Use Canopy
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EKF ASSIMILATION SCHEME oscillafions

2m evolution
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EKF ASSIMILATION SCHEME

-

¢ Combining SURFEX EKF with 3dVar atmospheric assimilation.

@ STAEKF scheme is introduced in the code but still to solve some final technical
difficulties due to the new derivative computation of the B matrix. Some surface
parameters are not initialized correctly.

@ Testing SODA within Cy38 but still some compilation issues to be solved.
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SURFEXV7.2 coupled fo aladin
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3. Evaluating the performance of SURFEXYV?7.2 within ALADIN cycle CY38T1

TZ2m scores against SYNOP : ALADIN oper 36t1 vs 38t1 ws 38t1+SURFEX
Period |anuary 2012, Run 00 UTC *
Morocco, from K. Essaouini!
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SURFEXV7.2 coupled o aladin
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3. Evaluating the performance of SURFEXV?7.2 within ALADIN cycle CY38T1

N

TZ2m scores against SYNOP : ALADIN oper 36t1 vs 38t1 ws 38t1+SURFEX
Period July 2012, Run 00 UTC *
Morocco, from K. Essaouini/
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SURFEXV7.2 cou\eol fo alaro using pTKE

3. Evaluating the performance of SURFEXV?7.2 within ALARO cycle CY38T1

-

@ To run ALARO (using the pTKE scheme) with SURFEX the issue of the exchange
coefficient should be solved.

@ The solution that was proposed for CY36T1 is now introduced in this new cycle
interfacing the average drag coefficient PCD calculated from SURFEX and to initialize
its value for the first time step.

@ This solution will be available for the next version of SURFEX V8.
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SURFEXV7.2 coupled 1o alaro using pTKE

3. Evaluating the performance of SURFEXV7.2 within ALARO cycle CY38T1

Evolution of scores with forecast range

Pericd: 20110807...20110807 Network: 12UTC
WIND_SPEED {RMSE)

Evolution of scores with forecast range

Pariod: 20110807...20110807 Network: 12UTC
TEMPERATURE (RMSE)
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SURFEXV7.2 cou\eol To alaro using TOUCANS

3. Evaluating the performance of SURFEXV7.2 within ALARO cycle CY38T1

. -

@ For TOUCANS the interface with SURFEX is done via the neutral drag coefficient
Cdn.

@ The PCDN is now extracted from SURFEX and given as input to the routine
ACTKEHMTLS.F90.

@ The new stability function are valid at the surface and in the boundary layer and the
drag coefficient for momentum PCD and heat PCH are calculated using TOUCANS
stability functions.

@ 46! SURFEX routines to be able to interface the neutral drag coefficient.
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SURFEXV7.2 coupled to alaro using TOUCANS
o

3. Evaluating the performance of SURFEXV?7.2 within ALARO cycle CY38T1
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SURFEXV7.2 cou\eol to alaro using TOUCANS
3. Evaluating the performance of SURFEXV7.2 within ALARO cycle CY38T1
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REGIONAL CLIMATE RUNS duynamical downscaling (alaro 0 + surtex]
r
1

Regional climate simulations using ALARO+SURFEX+TEB
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REGIONAL CLIMATE RUNS evaluafion with ERA=INT 2001—2010
Fo

mean minimum temperature [°C]
ERA-int [2001-2010]
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REGIONAL CLIMATE RUNS urban downscalin
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Urban climate simulations using SURFEX+TEB+SBL .
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REGIONAL CLIMATE RUNS urban downscalina

UHI_N, Center =1.35 °C UHI D, Center =0.32 °C
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@ Investigate deeply the oscillation problem, a scientific paper is in preparation
(PhD of Annelies).

@ A scientific paper about the coupling 3DVAR + EKF for ALARO is in preparation
(PhD of Annelies).

@ Introduce the STAEKF within SODA and test it with 3-DVAR for ALARO.
@ Continue the work of the interface between TOUCANS and SURFEX.

¢ Evaluate ECOCLIMAP for Belgium, a new project MASC (funded by the Belgian
Science Policy) will start in collaboration with the team of J-L. Roujean.
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