

Urban Heat Island

- → city up to 10K warmer by clear nights
- → Of the order of 1K by day

Observed minimal temperatures near Paris (Ile de France: heat wave 2003)

From Oke, 1987

Characteristics of the Urban atmosphere

URBAN BOUNDARY LAYER

Boundary Layer above the city

URBAN HEAT ISLAND

Temperature difference between city and countryside

URBAN BREEZE / URBAN PLUME

Physical processes: where do the heat comes from?

CO₂ emissions

Global warming

Urban CO2 emissions

Urban warming (urban heat island)

Trees in cities

NO !! This is wrong

The physical processes

$$Q^* + Q_F = Q_H + Q_E + \Delta Q_S + \Delta Q_A$$

Anthrop. Sensible Net Latent Storage Net radiation heat heat heat heat heat flux flux flux flux advection

Physical processes: example

the 4th of July, 2004

- → Anticyclonic situation
- → Warm temperatures (up to 34°C)
- → Very different rural/urban forcing:

Canopy and Aerosol Particles
Interaction in Toulouse Urban Layer
(CAPITOUL) experiment

Toulouse

500,000 inhabitants
Old european city, brick and tiles

Objectives

- 1) Energetic exchanges between city and atmosphere
- 2) The impact of the city on the atmosphere
- 3) The urban aerosol
- 4) Infra-Red Teledetection of the surface

→ All these experimental objectives are linked with <u>modelling</u> objectives

« CAPITOUL » experimental network

Measurements of energy exchanges

Toujours un temps d'avance

Anthropogenic Heat

Estimation of anthropogenic heat over Toulouse, summer/winter

Inventory of Q_F for the city center

- seasonnal cycle for gaz and electricity
- cycle linked to human activities for electricity and traffic

Processes taken into account in the SURFEX model for a complex urban landscape

Radiation

Direct radiation through windows, air conditioning releases, regetation in the street E road orientation, ground water infiltration, CO_2 emissions.

Toujours un temps d'avance

TEB

1) TEB (Town Energy Balance)
Masson 2000, Masson et al 2002, Lemonsu et al 2003

- Only 1 road, 1 roof, and 2 *identical* facing walls
- → ONLY ONE WALL SEB
- \rightarrow Only one wall temp.
- \rightarrow Only one road temp.
- Rain and snow interception
- Latent heat fluxes
- Heat conduction in the materials
- Anthropogenic fluxes

TEB validations

There is an important effort of measurements of urban surface energy balance & climate in the world

- → To understand urban climate
- → To validate models : here are presented the sites on which TEB has been valisated

TEB: validation in summer

TEB has been validated against several dense urban sites:

Mexico City, Vancouver (Masson et al 2002) Marseille (Lemonsu et al 2003)

These validations allowed **ameliorations** of the initial parameterizations of sensible heat exchanges in the canyon.

35

30

20

15

Temperature (°C)

Canyon air temperature

400

200

time (h)

5 10 15

TEB: validation in winter

- Domestic heating computed implicitly with a minimum internal temperature of 19°C. Internal temperature has its own equation evolution, not based on energy balance.
- Focus on fall and winter periods during which heating is strong in Toulouse.
- Use of observations collected during the CAPITOUL field campaign in Toulouse at a dense urban site

The surface temperature measurements (Evaluation)

Rue Remusat H/W 1.68, NE-SW

Rue Alsace-Lorraine H/W 1.46, N-S

Rue Pomme H/W 2.05, NW-SE

Roofs (use of only 1)

Toujours un temps d'avance

Fall results: scatterplots of model vs obs.

Winter results: scatterplots of model vs obs.

Aude Lemonsu¹, Stéphane Bélair², Jocelyn Mailhot²,

Sylvie Leroyer³

1 Météo France/CNRS, GAME

CNTS 3 Atmospheric and Environmental Research Lab, Mc Gill Universi W McGill

2 Environment Canada, Meteorological Research Division

Environnement

MUSE 2005 EXPERIMENT

MUSE 2005 aimed at documenting the evolution of surface characteristics and energy budgets in a dense urban area during the winter-spring transition, with evolution of snow cover from $\sim 100\%$ to 0%

Continuous measurements (17 March – 14 April 2005)

- Radiation components: K↓, L↓, K↑, L↑
- Turbulent fluxes: Q_H, Q_F
- Surface temperatures of urban facets
- Air temperature in street and alley
- Snow depth on roof

Manual measurements (4 IOPs)

- Surface temperatures of urban facets
- Photographs
- Snow properties: d, ρ, α, T_s

Lemonsu et al., JAMC, 2008: 'Overview and first results of the Montreal Urban Snow Experiment (MUSE) 2005'

Aerial photo: courtesy J. Voogt, UWO (EPiCC Program)

Montreal: urban snow measurements

17 March to 14 April 2005

Air temperature and humidity in canyons

Radiative temperature of walls

20 m tower

IR camera in heated case Incoming and outgoing

radiation

temperatures

Radiative surface

CNR1 radiometer Kipp & Zonen

Turbulent fluxes by eddy covariance 10Hz

3D sonic anemometer CSAT3

H₂O/CO₂ analyzer Li-Cor 7500

Fine wire thermocouple

Intensive observation periods

- Clear skies and southwest winds
- Four 26-hour IOPs (March 17-18, 22-23, 30-31, April 5-6)
- Measurements:
 - Hourly radiative surface temperatures using IR thermometer
 - Albedo (5 daytime measurements)
 - Snow depth and density (5 daytime measurements)
 - Pictures to document snow cover, snow melt, wet fraction

Evolution of snow cover

March 17th

March 22nd

March 30th

April 5th

100 % 95 %

50 %

METEO FRANCE
Toujours un temps d'avance

$$Q^* + Q_F = Q_H + Q_E + \Delta Q_S + Q_M + \Delta Q_A$$

Storage Net Anthrop. Sensible Latent Net Snow radiation heat heat heat heat melt heat flux flux flux flux flux advection

$$Q^* + QF = QH + QE + \Delta QS + QM + \Delta QA$$

Net Anthrop. Sensible Latent Storage Snow Net radiation heat heat heat heat heat heat flux flux flux flux flux flux advection

Measured Measured Measured

Neglected (see Lemonsu et al. 2008)

$$Qres \cong \Delta Qs + Qm - QF$$

Storage heat flux Snow Anthrop.
melt heat
flux flux

Q_F diagnosed as the heat flux produced by domestic heating to maintain a comfort temperature inside buildings [Pigeon et al. 2008]

Q_F estimated using data of electricity consumption provided by Hydro-Quebec

Q_F found to be negligible in comparison with the comparison with

$$Qres \cong \Delta Qs + Qm - QF$$

Storage Snow Anthrop.
heat melt heat
flux flux flux

Energy budget correctly simulated by TEB-ISBA with snow

Melting is a predominant term of the budget (27 %)

Urban heat Island

Lemonsu and Masson (2002), CNRM, Toulouse, France

3D Simulation over Paris
With the MESO-NH atmospheric model
coupled with TEB

- UHI maximum at night (positive heat flux)
- small UHI at day

Urban breeze over Paris

With urban parameterization (TEB)

- City is warmer
- Urban breeze develops
- winds strongest over suburban area
- →Effect of heat dominates over roughness

Without urban parameterization

Nothing happens

Example of offline study with TEB: Nantes

Analysis of the transformations of Nantes city from 17th to 20th century:

- Ground cover, density, deviation of rivers,...
- Building type, urban design, insulation...

■ Usa(-plans

End of XVIIth century

« 1835 »

« 1880 »

From 1945

- iconographies

End of XVIIth century

before 1777

after 1779

« 1866 »

Example of offline study with TEB: Nantes

Urban micro-climate impacts are simulated with TEB:

- Wind decrease up to the middle of the 19th century (densification, increase of number of stories)
- Wind increase after (larger roads)
- Increase of 1,5°C between the 17th and the 20th century

Slight decrease of humidity

Options & Namelists

- There is very few scientific options in TEB (for the time being...)
- In 'PGD' step :
 - Nothing to do if ecoclimap is used
 - Possibility to specify all urban characteristics in Namelist NAM_DATA_TEB

Input data for TEB-SURFEX

INPUTS		Unit
Atmosphere	Air temperature above canopy Specific humidity above canopy Incoming solar radiation Infrared solar radiation Air pressure Rainfall rate Snowfall rate Wind speed Wind direction Carbon dioxyde concentration	K kg kg ⁻¹ W m ⁻² W m ⁻² Pa kg m ⁻² s ⁻¹ kg m ⁻² s ⁻¹ deg / North kg m ⁻³
Land Use	Urban area fraction Nature area fraction Sea area fraction Lake area fraction	- - -

Atmospheric forcings

Surface description

Input data for TEB-SURFEX

	Building area fraction (inside urban fraction)	-
	Road area fraction (inside urban fraction)	-
	Wall surface / building and road surface	-
	Building height	m
Urban morphology	Urban roug hness length	m
and building thermal	Number of wall layer	-
and radiative	Number of roof layer	-
characteristics	Number of road layer	-
	Wall layers depth	m
	Roof layers depth	m
	Road layers depth	m
	Wall layers specific heat	J m ⁻³ K ⁻¹
	Roof layers specific heat	J m ⁻³ K ⁻¹
	Road layers specific heat	J m ⁻³ K ⁻¹
	Wall layers thermal conductivity	W m ⁻¹ K ⁻¹
	Roof layers thermal conductivity	W m ⁻¹ K ⁻¹
	Road layers thermal conductivity	W m ⁻¹ K ⁻¹
	Roof albedo	-
	Road albedo	-
	Wall albedo	-
	Roof emissivity	-
	Road emissivity	-
	Wall emissivity	-
	Anthropogenic sensible and latent heat flux released by traffic	W m ⁻²
Anthropogenic heat	Anthropogenic sensible and latent heat flux released by	$W m^{-2}$
releases	industry	
	Area fraction of bare soil	-
	Area fraction of low vegetation	_
	Area fraction of high vegetation	_
Vegetation	Leaf Area Index (for each veg. Type and month)	_
	Vegetation roughness length (for each veg. type and month)	
	Vegetation characteristics for photosynthesis and vegetation	m
	growing (for each veg. type)	
	T =	

Surface description

Options & Namelists

- There is very few scientific options in TEB (for the time being...)
- In 'PGD' step :
 - Nothing to do if ecoclimap is used
 - Possibility to specify all urban characteristics in Namelist NAM_DATA_TEB
- In 'PREP' step: Namelist NAM PREP TEB:
 - Intializes the surface temperatures, water reservoirs and snow
 - Possibility to activate the SBL (or « canopy ») scheme
- During the run : Namelist NAM_TEBn
 - Only one option (thanks to Canadian developers): choice of the thermal roughness length for roofs and roads: CZ0H
- Several diagnostics in Namelist NAM_DIAG_TEBn

Conclusions

- Most important characteristics of urban surface energy exchanges well reproduced by TEB:
 - Upward radiative fluxes (trapping, ...)
 - Building surface temperature
 - Strong contribution of Q_µ during the day
 - Small positive Q_H values during the night (thanks to energy storage during the day)
 - High values of the anthropogenic heat flux in winter
 - Snow mantel evolution & snow melt
- TEB allows both offline applications on urban impacts and online atmospheric simulations of urban climate and meteorology (e.g. UHI)

Perspectives

- Better inside building energy balance & Including direct heat releases from building through chimneys
- Including heat releases due to air conditioning
- Add vegetation into TEB, to allow human comfort studies
- Use of TEB for the forecast of the energy demand for thermal comfort in buildings at the scale of a city and with different climate change scenarios

