ECOCLIMAP

Surfex Course 14-16 october 2009

Plan

- ECOCLIMAP: principle
- Technical aspects in SURFEX
- ECOCLIMAP I
- ECOCLIMAP II Europe
- ECOCLIMAP II Africa

A global database of surface parameters

• A land cover map at 1 km resolution in latlon projection

10-day period surface parameters:

LAI, fraction of vegetation veg, roughness length, emissivity, albedo, minimum stomatal resistance rsmin...

Subdivisions of surface for description of land covers and calculation of surface parameters

12 natural functional types

NO (bare soil) ROCK (bare rock) SNOW (permanent SNOW and ice) TREE (deciduous broadleaved forest) CONI (evergreen needleleaved forest) EVER (evergreen broadleaved forest) C3 (C3 crops) C4 (C4 crops) IRR (irrigated crops) GRAS (temperate /C3 grassland) TROG (tropical /C4 grassland) PARK (wetlands)

Description of covers in ECOCLIMAP: examples

COV1=100% SEA

COV2=100% WATER

COV7=60% TOWN + 40% NATURE , « NATURE » part composed of 50% PARK + 50% TREE

COV197=100% NATURE , composed of 40% CONI + 60% C3

⇒All combinations are possible among the 4 tiles and the 12 functional types inside the tile « NATURE »

Definition of surface parameters

- Some parameters are defined at **cover + functional type level**:
 - Some of the NATURE parameters: LAI, ground depths, heights of trees + irrigation parameters
 - TOWN parameters
- Other parameters are defined at functional type level:
 - Dependence on LAI or height of trees (fraction of vegetation veg, emissivity, roughness length)
 - Independence on LAI (albedos for vegetation, minimal stomatal resistance, coefficient of thermal inertia of vegetation, mesophylle conductance...)

Composition of 1 cover natural parameters initialized at cover + functional type level example

COVER i

NO LAI profile soil depthsROCK LAI profile SNOW LAI profile soil depthsTREE LAI profile soil depths Height of treesCONI LAI profile soil depths height of treesEVER LAI profile soil depths height of treesC3 LAI profile soil depthsIRR LAI profile soil depthsIRR LAI profile soil depthsSEAC3 LAI profile soil depthsIRR LAI profile soil depthsFROG LAI profile Soil depthsPARK	TOWN								WATER	
C3IRRLAI profileLAI profilesoil depthsGRASSoil depthsLAI profileLAI profileLAI profile	<i>NO</i> LAI profile soil depths	<i>ROCK</i> LAI profile soil depths	SNOW LAI profile soil depths	TREE LAI profile soil depths Height of trees L		(LAI soil heig	<i>CONI</i> AI profile oil depths eight of trees		EVER AI profile il depths eight of trees	SEA
LAI profile LAI profile soil depths flag for irrigation	C3 LAI profile soil depths	C4 LAI profile soil depths	IRR LAI prot soil dept seeding reaping water su flag for t	<i>IRR</i> LAI profile soil depths seeding date reaping date water supply flag for irrigation		GRAS TRO LAI profile LAI soil depths soil d		ile Is	<i>PARK</i> LAI profile soil depths	

Let a cover be composed of 100% of tile « NATURE », of which 50% TREE, 20% NO and 30% C3.

For <u>each of the functional types</u> present in the NATURE tile of this cover, **an individual annual Leaf Area Index (LAI) profile (10-day period : 36 values)** is defined.

- LAI profiles are defined for all 12 natural functional types of covers.
- LAI profiles of NO, ROCK and SNOW are always null in ECOCLIMAP.

Definition of root and total soil depths and of heights of trees

Let a cover be composed of 100% tile « NATURE », of which 50% TREE, 20% NO and 30% C3.

For <u>each of the functional types present</u> in the NATURE tile of this cover, a root depth and a total soil depth are defined, in meters.For the <u>TREE part</u>, a height of tree is defined.

Root and total soil depths are defined for all 12 natural functional types. (Superficial soil depth is constant = 0.01m)
Heights of trees are defined for TREE, CONI and EVER types (= trees types).

Let a cover be composed of 100% tile « NATURE », of which **50% IRR** and 50% C4 crops.

For the <u>« IRR » functional type of this cover</u>, **4 specific parameters** are initialized:

- seeding date TSEED,
- reaping date TREAP,
- water supply WATSUP (mm),
- flag for irrigation IRRIG.

Definition of town parameters at cover level

COVER i, TOWN fraction not null

roughness length	building fraction	building height	building shape	street / canyon shape
ROOF	ROAD	WALL	TRAFIC	INDUSTRY
	albedo		concible l	aat fluw
	- emissivity -		sensible i	leat nux
	heat capacity	/		
the	mal conducti	vity	latent hea	at flux
Conrc	depth			
	· · · · · ·			Toujours un temps d'avance

NATURE parameters defined at functional type level <u>independent of LAI</u>

For a given functional type, these parameters keep **the same value in every cover**.

Their initialization relies on lookup tables.

Example for visible albedo of vegetation:

ALBVIS(NO)=0.1 ALBVIS(ROCK)=0.1 ALBVIS(SNOW)=0.1 ALBVIS(TREE)=0.05 ALBVIS(CONI)=0.05 ALBVIS(EVER)=0.05 ALBVIS(C3)=0.1 ALBVIS(C4)=0.1 ALBVIS(IRR)=0.1 ALBVIS(GRAS)=0.1 ALBVIS(TROG)=0.1 ALBVIS(PARK)=0.1

NATURE parameters defined at functional type level <u>dependant on LAI</u>

	veg	ZH =>	EMIS	ALBEDO
		Z0=max(0.001,0.13*max(0.001,ZH)		
NO	0.	0.1	f3(veg,SNOW)	f4(veg,sand)
ROCK	0.	1.	f3(veg,SNOW)	f4(veg,sand)
SNOW	0.	0.01	f3(veg,SNOW)	f4(veg,sand)
TREE	0.95	Height of TREE	f3(veg,SNOW)	f4(veg,sand)
CONI	0.95	Height of CONI	f3(veg,SNOW)	f4(veg,sand)
EVER	0.99	Height of EVER	f3(veg,SNOW)	f4(veg,sand)
C3	f1(LAI)	min(1,exp((LAI-3.5)/1.3)))	f3(veg,SNOW)	f4(veg,sand)
C4	f1(LAI)	min(2.5,exp((LAI-3.5)/1.3)))	f3(veg,SNOW)	f4(veg,sand)
IRR	f1(LAI)	min(2.5,exp((LAI-3.5)/1.3)))	f3(veg,SNOW)	f4(veg,sand)
GRAS	0.95	LAI/6	f3(veg,SNOW)	f4(veg,sand)
TROG	0.95	LAI/6	f3(veg,SNOW)	f4(veg,sand)
PARK	0.95	LAI/6	f3(veg,SNOW)	f4(veg,sand)

f1(LAI)=1-exp(-0.6*LAI)

f3(veg,SNOW)=EMISVEG*veg+EMISSOIL(SNOW)*(1-veg) f4(veg,sand)=ALBVEG*veg+ALBSOIL(sand)*(1-veg)

- <u>Definition</u>: a *patch* is a grouping of functional types.
 Grouping depens of total number of patchs wished by user.
- In SURFEX each patch is treated separately =>

ECOCLIMAP surface parameters are calculated separately <u>for each patch</u>

Aggregation of parameters is necessary, in relation with:

- Number of patchs chosen by user (if <12)
- Spatial resolution and projection chosen by user (if >1km)

Grouping of functional types in **patchs**

Total number of patchs chosen by user

	12	11	10	9	8	7	6	5	4	3	2	1
NO	1	1	1	1	1	1	1	1	1	1	1	1
ROCK	2	2	1	1	1	1	1	1	1	1	1	1
SNOW	3	3	2	2	2	2	1	1	1	1	1	1
TREE	4	4	3	3	3	3	2	2	2	2	2	1
CONI	5	5	4	4	3	3	2	2	2	2	2	1
EVER	6	6	5	3	3	3	2	2	2	2	2	1
C3	7	7	6	5	4	4	3	3	3	3	1	1
C4	8	8	7	6	5	4	3	3	3	3	1	1
IRR	9	9	8	7	6	5	4	4	4	3	1	1
GRAS	10	10	9	8	7	6	5	5	3	3	1	1
TROG	11	10	9	8	7	6	5	5	3	3	1	1
PARK	-12	11	10	9	8	7	6	4	4	3	1	1

ISBA standard can adopt the 12 possibilities

ISBA-AGS only runs with 12 patchs

Parameters aggregation process linked to number of patchs

Number of patchs chosen by user is 7. Let a cover be composed of 100% tile « NATURE », of which 30% TREE, 30% CONI, 40% GRAS.

This cover contributes to

- patch 3 : CONI+TREE+EVER at 60%
- patch 6: GRAS+TROG at 40%

In covers, fractions of natural **patchs** are <u>linearly</u> calculated from fractions of natural **functional types**.

Fractions of functional types in a grid point are linearly calculated, for example: FRAC_C3(POINT) = 0.4*FRAC_NATURE(COV1)*FRAC_C3(COV1) + 0.35*FRAC_NATURE(COV2)*FRAC_C3(COV2) + 0.25*FRAC_NATURE(COV3)*FRAC_C3(COV3)

Parameters aggregation process linked to spatial resolution

Surface parameters are aggregated same way (linear combination), in simple case, for example, for the <u>C3 patch</u> (**PAR_VAL** is « parameter value »):

PAR_VAL_C3(POINT) =

0.4*FRAC_NAT(COV1)*FRAC_C3(COV1)*PAR_VAL(C3,COV1) + 0.35*FRAC_NAT(COV2)*FRAC_C3(COV2)*PAR_VAL(C3,COV2) + 0.25*FRAC_NAT(COV3)*FRAC_C3(COV3)*PAR_VAL(C3,COV3)

If PAR_VAL calculation is independent of LAI or height of trees, PAR_VAL_C3(POINT) = FRAC_C3(POINT) * PAR_VAL(C3) Linear calculation From correspondence table

Parameters are <u>averaged</u> on all <u>covers</u> present in grid point and <u>weighted</u> with :

Fraction of cover in grid point * fraction of nature in cover * fraction of patch in cover

Parameters aggregation process <u>linked to spatial resolution</u>: variants

Parameters can also be weighted with other coefficients than the fraction of tile « NATURE », according to their field of application:

 VEG, LAI, fraction of TREE / CONI / EVER, fraction of TOWN, fraction of building, fraction of street.

The mean applied is not always arithmetic, it can be :

• **opposite** : opposite of parameters values are added and the mean is the total number of added values on this sum.

It concerns RSMIN (minimal stomatal resistance).

 inverse of square logarithm: 1 / ln(dz/PAR_VAL)**2 is the averaged quantity. DZ is the height of the first model mass level or 20m by default. It concerns Z0 (roughness lenght).

- ECOCLIMAP: principle
- Technical aspects in SURFEX
- ECOCLIMAP I
- ECOCLIMAP II Europe
- ECOCLIMAP II Africa

Namelists associated to ECOCLIMAP in SURFEX

&NAM_FRAC LECOCLIMAP=T / F

=> Flag to use ECOCLIMAP. Otherwise fractions of tiles are prescribed by user.

&NAM_COVER

YCOVER= name of the file containing the ECOCLIMAP land cover map.

YFILETYPE= DIRECT / BINLLV / BINLLF / ASCLLV => type of this file.

XRM_COVER= treshold fraction before which a cover is removed from a grid point.

XRM_COAST= limit of coast coverage under which the coast is replaced by sea or inland water in grid points.

XRM_LAKE= limit of inland lake coverage under which the water is removed from grid points.

XUNIF_COVER= fractions of covers prescribed by user. If set, YCOVER file isn't used.

&NAM_PGD_ARRANGE_COVER

LWATER_TO_NATURE = T / F

If T, all WATER fractions in covers become NATURE fractions.

LTOWN_TO_ROCK = T / F

If T, all TOWN fractions in covers become ROCK fractions in tile NATURE.

Additional namelist for the use of ECOCLIMAP II Europe

&NAM_ECOCLIMAP2

LCLIM_LAI= T / F

- \Rightarrow If .TRUE., mean LAI of 2002-2006 is used. Otherwise, the LAI corresponding to current year (if between 2002 and 2006) is used.
- **YIRRIG =** irrigation file name. This irrigation file contains values of parameters for irrigation.

Other useful namelists inputs / outputs

&NAM_DIAG_SURF_ATMn

LFRAC = T / F Flag to save in the output file the sea, inland water, town and nature fractions.

&NAM_WRITE_SURF_ATM LNOWRITE_COVERS = T / F If true, do not write covers fractions in initial/restart files.

&NAM_IO_OFFLINE

LWRITE_COORD = T / F If true, latlon coordinates of grid points are written in ouput files.

&NAM_DIAG_ISBAn

- **LPGD** = T / F flag to save in the ouput file the physiographic fiels of ISBA scheme computed from ECOCLIMAP data.
- **LPGD_FIX** = T / F flag to save in the ouput file the physiographic fiels of ISBA scheme computed from ECOCLIMAP data and that don't vary in time.

ECOCLIMAP in SURFEX

PGD step :

- Reading of ECOCLIMAP map
- For each Surfex grid point, definition of fractions of present covers => definition of Land / Sea mask
- Writing of fractions of covers by grid point in PGD output file

PREP step:

- Reading of PGD output file to get fractions of covers by grid point
- Writing of fractions of covers by grid point in PREP output file
- (+ calculation and writing of surface parameters values if asked by user)

Model Run step:

- Reading of PREP output file to get fractions of covers by grid point
- Calculation of surface parameters values at initial time
- Update of surface parameters values at each time step
- Writing of surface parameters values is asked by user

ECOCLIMAP files format

• ECOCLIMAP files consist of 2 files, [file name].dir and [file name].hdr. The « .dir » is a binary file containing land cover map data in raster format.

The « .hdr » contains metadata:

Nodata value (0) North domain limit in degrees (90) South domain limit in degrees (-90) West domain limit in degrees (-180) East domain limit in degrees (180) Number of rows (21600) Number of columns (43200) Record type (integer 8 bytes)

version	Nom du fichier
ECOCLIMAP-1.2	ecoclimats_v2 / ECOCLIMAP_I_GLOBAL
ECOCLIMAP-1.3 (special South West France)	ecoclimats_v3
ECOCLIMAP-2 Europe	ECOCLIMAP_II_EUROP

Other physiographic data needed by SURFEX

- **Orography**: GTOPO30 (USGS, U.S. Geological Survey) or user defined
- **clay fraction**: FAO (Food and Agriculture Organization) or user defined
- **sand fraction**: FAO or user defined
- **subgrid runoff coefficient**: user defined
- **subgrid drainage coefficient**: user defined

Namelists to define associated data files are **NAM_ZS** and **NAM_ISBA**.

Plan

- ECOCLIMAP: principle
- Technical aspects in SURFEX
- ECOCLIMAP I
- ECOCLIMAP II Europe
- ECOCLIMAP II Africa

ECOCLIMAP I: realization

LAI profiles of covers are deduced from covers mean NDVI profiles through <u>linear transformations</u>, setting <u>arbitrary LAImin and LAImax</u>.

For mixed ecosystems (more than 1 functional type), the shapes of LAI profiles for the functional types are either the same inside one class, or taken from near pure ecosystems.

Plan

- ECOCLIMAP: principle
- Technical aspects in SURFEX
- ECOCLIMAP I
- ECOCLIMAP II Europe
- ECOCLIMAP II Africa

ECOCLIMAP II: objectives

- Use more recent/accurate data concerning:
 - Land cover maps
 - Satellite NDVI time series
- Process Kmeans automatic classification to discriminate NDVI profiles.
- Use LAI satellite data to fill in ECOCLIMAP LAI profiles.
- Introduce the interannual variability of LAI

NDVI is the Normalized Difference vegetation index, defined by: nir-red / nir + red (nir = near infrared satellite band)

ECOCLIMAP II Europe: realization

- Kmeans classification process to cluster NDVI profiles in covers
- Existing maps to control class homogeneity in terms of cover types
- MODIS LAI profiles at 1km resolution are smoothed and averaged by cover.
- An automatic desaggregation process allows to pass from covers LAI profiles to functional types LAI profiles.

ECOCLIMAP II Europe: Definition of fractions of functional types inside covers

Example:

- Same thing done with CORINE2000 100m, CORINE2000 1km, GLC2000.
- Additional data sources are used to refine composition of ECOCLIMAPII covers in tiles and functional types:
 - •AGRESTE (Agricultural statistics on France at hectare scale)
 - •ISLSCP2 (global map of C4 vegetation fraction at 1° resolution)
 - •FORMOSAT (60km side land cover map over South-West Toulouse, at 20m resolution)

ECOCLIMAP II Europe: definition of LAI profiles of functional types of covers

Input data are only LAI profiles of covers (from MODIS satellite data) and fractions of functional types of covers + use of a climatic map (Firs, Koeppe & De Long) to manage the cover neighbourhood.

Automatic method in four steps :

- In each cover: Hypothesis: LAI(main functional type in this cover)=LAI(cover) Then: LAI(other functional types)=LAI(neighbour covers where these types are paramount)
- 2. New LAI(main functional type in this cover) corrected by subtraction of minor types LAI profiles weighted with their fractions in this cover.
- 3. Same step as 1 but with new LAI(main fonctional type in this cover)
- 4. Still new LAI(main functional type in this cover) with same correction as 2.

ECOCLIMAP I : the map on Europe

ECOCLIMAP II Europe: the map (simplified 103 classes)

ECOCLIMAP II simplified map Legend

Forest classes	Turkey / Iran / Mesopotamia shrubs	71. Turkish/Spanish crops
Russian forests	35. North Arabian Arc shrubs	72. Spanish/North Arabian arc crops
1. North Russian Needleleaved forest	36. Mesopotamian / Maghrebian semi-desertic areas 1	73. Mediterranean sparse crops
2. South Russian Needleleaved forest	37. Mesopotamian / Maghrebian semi-desertic areas 2	Crops associated to a country
3. Russian broadleaved forest	38. Anatolia shrubs	74. Bulgarian crops
4. Baltics Mixed Forest	39. Turkish sparse herbaceous	75. Hungarian crops
Scandinavian forests	40. Syrian irrigated mosaic herbaceous / shrubs / crops	76. Swedish crops
5. Gulf of Bothnia Needleleaved forest	Caucasian shrubs	77. Poland crops
6. South Norvegian mountain Needleleaved forest	41. South-East Caucasian shrubs	78. German/North arabian arc crops
7. Swedish intermediate Needleleaved forest	42. South-East Caucasian/Medit. mosaic shrubs/crops	79. Danish crops
8. South Norvegian coastal Needleleaved forest	Maghrebian shrubs	Mil crops
9. South Swedish Needlele aved forest	43. Tunisian mosaic shrubs / crops	80. Nil crops 1
Temperate European forests	44. Maghreb/West Spanish /Kopet Dag mosaic shrubs/crops	81. Nil crops 2
10. European high altitude mosaic forest/herbaceous	45. Semi-desertic shrubs	82. Nil crops 3
11. European mean altitude mosaic forest/herbaceous	Mediterranean Shrubs	83. South Nil crops
12. Western Europe mosaic forest/herbaceous	46. Mediterranean Coastal shrubs 1	Spanish Estremadura agro-forestry
Seaborne forests	47. Mediterranean Coastal shrubs 2	84. Estremadura agro-forestry 1
13. Galician/North Spain coast mosaic forest/herbaceous	48. Mediterranean Coastal shrubs 3	85. Estremadura agro-forestry 2
14. Landes Needleleaved forest	49. North Mediterranean sparse shrubs	86. Estremadura agro-forestry 3
15. North Mediterranean mosaic forest/herbaceous	50. Mediterranean mosaic shrubs/crops	North West Europe crops
16. North Med. coastal mosaic forest/herbaceous/crops	51. Spanish mosaic herbaceous/forest/permanent crops	87. West France crops
Mediterranean Forests	Central and West Europe	88. North East Parisian Basin crops
17. Turkish needlele ayed forest	52. Eastern Europe and Central Asia sparse herbaceous	89. South West Parisian Basin and England Crop
18. North Mediterranean mosaic forest / herbaceous	53. Centre/West Europe sparse mosaic shrubs/forest/crops	Bare land
19. West Spanish mosaic forest / herbaceous	54. Massif Central meadows	Desertic bare land
20. Portuguese 2003 burnt areas	55. Vendée mosaic herbaceous/crops	90. Bare rock 1
Herbaceous/shrubs classes	Crops classes	91. Bare rock 2
Northern Europe	Black sea and Russian crops	92. Bare land 1
21. New Zemble tundra	56. Caucasian C4 crops	93. Bare land 2
22. North tundra	57. East Ukrainian South Russia mosaic crops / natural vegetation	94. Arabian very sparse vegetation 1
23. Intermediate tundra	58. West Ukrainian Belarus and Baltics mosaic crops / nat. yeg.	95. Caspian sea very sparse vegetation 2
24. South tundra	59. North Black Sea crops	Cold bare land
Atlantic meadows	60. Kazakhstan crops	96. High altitude/latitude bare land
25. North Great Britain meadows	South Europe crops	97. Snow and ice
26. Great Britain and Ireland meadows	61. Pô plain C4 rainfed crops	Wetlands
27. North West Europe meadows	62. Balkan Peninsula crops	Coastal wetlands
Caspian Sea shrubs	63. West Turkish C4 irrigated crops	98. West Europe deep coastal wetlands
28. Caspian Depression shrubs 1	64. North Mediterranean C4 irrigated crops	99. West Europe shallow coastal wetlands
29. Caspian Depression shrubs 2	65. North Mediterranean dense C3 crops	Continental wetlands
30. North East Caspian Sea shrubs	бб. North Mediterranean mosaic crops/other vegetation	100. North Europe wetlands
31. Kazakhstan / Turkish shrubs	South Mediterranean and Spanish crops	101. Central Europe wetlands
32. South Kazakhstan / Iranian shrubs	67. North Mediterranean dense crops	Urban areas
33. South Aral sea mosaic herbaceous / shrubs / crops	68. French/Spanish vineyards/other permanent crops	102-123. Urban areas
34. South Aral sea Semi-desertic areas	69. Moroccan and Tunisian crops	Water bodies
	70. Moroccan crops	124. Water bodies

Correlation between LAI profiles of covers ECOCLIMAP I / ECOCLIMAP II on Europe

1.00

0.50

Comparison of C4 fraction on Europe

Comparison of C4 fraction on Europe ECOCLIMAPII

Comparison of irrigated crops fractions on Europe

Plan

- ECOCLIMAP: principle
- Technical aspects in SURFEX
- ECOCLIMAP I
- ECOCLIMAP II Europe
- ECOCLIMAP II Africa

ECOCLIMAP II Africa Supervised classification over AMMA zone

ECOCLIMAP II Africa – First step of the classification

Partition of the 1st class of GLC2000 (*Closed Evergreen forest*) in subsets of class of ECOCLIMAP-I

Average annual temporal profile spanning the period 2000-2007

ECOCLIMAP II Africa – 37 classes over the AMMA box (1km)

75% of agreement with GLOBCOVER(300m)

ECOCLIMAP II Africa – Computation of soil albedo (1 km)

$$Alb = veg * Alb_{veg} + (1 - veg) * Alb_{soil}$$

$$= veg * (Alb_{veg} - Alb_{soil}) + Alb_{soil}$$

$$veg = 1 - e^{(-0.6 * LAI)}$$
[Kaptue et al., RSE, 2009]

The slope $Alb_{veg}-Alb_{soil}$ is spectrally signed (< 0 in the Visible, > 0 in the near infrared)

Banizoumbou (Niger), lat=13.54, lon=2.66 in the visible

ECOCLIMAP II Africa – Soil albedo

1.00

0.20

0.10

0.00

0.90 0.80 0.70 0.60 0.50 0.40 0.30

NIR 750-850 µm

ECOCLIMAP II Africa Unsupervised classification on the entire Africa

[Kaptue et al., J. Climate in preparation]

ECOCLIMAP II Africa – LCM-I with 90 ecosystems (1km)

LEGEND

Open Deciduous Shrubland III Open Deciduous Shrubland IV Monom odal Rainfed Cropland I Monom odal Rainfed Cropland II Monom odal Rainfed Cropland III Monomodal Rainfed Cropland IV Monomodal Rainfed Cropland V Monomodal Mosaic Cropland Vegetation I Monomodal Mosaic Cropland Vegetation I Bim odal Mosaic Cropland Vegetation I Binn odal Mosaic Cropland Vegetation II Bim odal Irrigated Cropland Closed Gassland I Closed Gassland II Closed Gassland III Closed Gassland IV Closed Gassland V Closed Gassland VI Closed Gassland VI Closed Gassland VII Closed to Open Gassland I Closed to Open Gassland II Closed to Open Gassland III Closed to Open Gassland IV Closed to Open Gassland V Closed to Open Gassland VI Closed to Open Gassland VII Open Grassland I Open Grassland II Open Grassland III Copen Grassland IV C Open Grassland V Sparse Grassland I Sparse Grassland II Sparse Grassland III Sparse Grassland IV Sparse Grassland V Sparse to absent Grassland I Sparse to absent Grassland II Sparse to absent Grassland III Bare Land Dunes Stony Rock Inland Water Urban and Built up

ECOCLIMAP II Africa – LCM-II with 73 ecosystems (1km)

LEGEND

SH. Closed Lowland Evergreen Forest D. Closed Lowland Evergreen Forest SA, Closed Lowland Evergreen Forest D. Closed to Open Lowland Evergreen Forest SA. Closed to Open Lowland Evergreen Forest A. Closed to Open Lowland Evergreen Forest H. Closed Deciduous Forest SH. Closed Deciduous Forest D. Closed Deciduous Forest SA, Closed Deciduous Forest H.Lower Montane Forest SH. Lower Montane Forest D. Lower Montane Forest H. Upper Montane Forest SH. Upper Montane Forest D. Upper Montane Forest SA. Upper Montane Forest H. Flooded Forest SH. Flooded Forest D. Flooded Forest SA, Flooded Forest A. Flooded Forest H. Mosaic Forest Cropland SH. Mosaic Forest Cropland D. Mosaic Forest Cropland SA. Mosaic Forest Cropland A. Mosaic Forest Cropland H. Mosaic Forest Savanna. SH. Mosaic Forest Savanna D. Mosaic Forest Savanna SA. Mosaic Forest Savanna. A. Mosaic Forest Savanna H. Closed Deciduous Woodland SH. Closed Deciduous Woodland D. Closed Deciduous Woodland SA, Closed Deciduous Woodland

H. Closed Lowland Evergreen Forest

A. Closed Deciduous Woodland D. Closed Deciduous Shrubland SA. Closed Deciduous Shrubland A. Closed Deciduous Shrubland SH. Open Deciduous Shrubland D. Open Deciduous Shrubland SA, Open Deciduous Shrubland A. Open Deciduous Shrubland D. Rainfed Cropland SA. Rainfed Cropland A. Rainfed Cropland SH. Mosaic Cropland Vegetation D. Mosaic Cropland Vegetation SA. Mosaic Cropland Vegetation AMosaic Cropland Vegetation H. Irrigated or Post Flooding Cropland SH. Irrigated or Post Flooding Cropland D. Irrigated or Post Flooding Cropland SA. Irrigated or Post Flooding Cropland A. Irrigated or Plost Flooding Cropland SH. Closed Grassland D. Closed Grassland SA, Closed Grassland A. Closed Grassland SA, Open Grassland A. Open Grassland SA. Sparse Grassland A. Sparse Grassland SA. Bare land A. Bare land A. Stony SA. Stony A Rock SA, Rock Inland Water

Urban and Buit up

ECOCLIMAP-II Africa- Evaluation

Prospects ECOCLIMAP

- Evaluation of Europe and Africa products:
 - Study of the impact of ECOCLIMAPII Europe in SIM (Safran Isba Modcou)
 - Evaluation of the quality of ECOCLIMAPII Europe LAI
 - Study of the impact of ECOCLIMAPII Africa with ARPEGE-CLIMAT
- Realization of ECOCLIMAPII on other continents isn't planned for the moment. Users returns on Europe and Africa are waited before.

