
SPECTRAL TRANSFORMS IN THE CYCLE 42 OF

ARPEGE/IFS.

YESSAD K. (METEO-FRANCE/CNRM/GMAP/ALGO)

July 7, 2015

Abstract:
ARPEGE/IFS and ALADIN are spectral models, so this documentation has for purpose to describe the spectral

transforms done. The present note has for aim to give a brief summary of the spectral method (how to compute
Legendre polynomials, spectral transforms) and to describe parts of the code performing spectral transforms
(organigramme).

Résumé:
ARPEGE/IFS et ALADIN sont des modèles spectraux, en conséquence cette documentation a pour but de décrire

les transformées spectrales nécessaires pour passer de l’espace spectral vers l’espace point de grille. On y fait un
bref rappel de la méthode spectrale (comment calculer les polynômes de Legendre et les transformées spectrales).
On y décrit les parties de code faisant des transformées spectrales, avec fourniture de quelques organigrammes.

1

Contents

1 Introduction. 3

2 Theoretical aspects. 4
2.1 Notations. 4
2.2 Spectral representation of a scalar field. 4
2.3 Truncation. 5
2.4 Horizontal derivatives. 5
2.5 Spectral relationship between (divergence, vorticity) and (velocity potential, stream function). . . . 6
2.6 Spectral relationship giving wind components once known (velocity potential, stream function). . . 6
2.7 Spectral relationship giving (divergence, vorticity) once known wind components. 6
2.8 Steps involved in a direct and in an inverse spectral transformation for scalar fields. 7
2.9 Relationship between dimension of spectral space and grid point space for Gaussian grid. 8

3 Set-up routines. 10

4 Spectral transforms routines: the general routines (E)DIR TRANS and (E)INV TRANS. 12
4.1 Range of use. 12
4.2 Organigrammes for direct code. 12
4.3 Organigrammes for adjoint code. 15

5 Spectral transforms routines for general application. 16
5.1 Spectral transforms routines for scalar variables: SPEREE and REESPE. 16
5.2 Wind components: routines SPEUV and UVSPE. 16

6 Spectral transforms used in the model under routine STEPO and for specific applications. 17
6.1 Organigramme under STEPO. 17
6.2 Spectral transforms necessary for model integration. 17

6.2.1 3D primitive equation hydrostatic model. 18
6.2.2 3D non-hydrostatic model. 18
6.2.3 Shallow-water 2D model. 18

6.3 Spectral transforms necessary for particular applications. 18

7 Treatment of transmission coefficients when storing them in Fourier space. 19

8 Some distributed memory features. 20
8.1 Case LEQ REGIONS=F. 20
8.2 Case LEQ REGIONS=T. 20

9 Specific variables of the “trans” and “etrans” libraries. 21

10 Specific variables of the “arpifs” library. 22

11 Bibliography. 23
11.1 Publications. 23
11.2 Some internal notes and other ARPEGE notes. 23

2

1 Introduction.

ARPEGE/IFS and ALADIN are spectral models. One part of computations is done in spectral space (semi-
implicit scheme, horizontal diffusion scheme for model integration), the other part in grid-point space on a grid
defined by a Gaussian quadrature if global model, by the plane projection if LAM model. So it is necessary to
perform spectral transforms from spectral space to grid-point space or vice-versa. The present note has for aim
to give a brief summary of the spectral method and to describe parts of the code performing spectral transforms.
Spectral method is not described with too many details: for more details on can report to (Rochas and Courtier,
1992, note ARPEGE nr 30, in French) or to (Temperton, 1991).

For a global spectral model, spectral transforms are a combination of a Legendre transform and a Fourier
transform. A spectral limited-area model like ALADIN uses a double Fourier representation for spectral fields.

∗ Fourier transforms for transmission coefficients: The grid-point representation of the
transmission coefficients is the same as for the model variables, but the Fourier representation is done in a smaller
truncation. Fourier transforms are done for these transmission coefficients in order to minimise the storing place of
these coefficients: a lot of coefficients generate a lot of memory in grid-point if all the global information is stored,
so only the grid-point information for one packet of latitudes is stored after the inverse Fourier transforms. To
compute these transmission coefficients a model integration with full physics is done (one or several time steps, the
last option being to compute a temporal average of transmission coefficients), grid-point transmission coefficients
are computed by the radiation routine, then transformed into Fourier coefficients in a small truncation. To use
these transmission coefficients in the simplified physics, Fourier transmission coefficients are read on a file, and at
each timestep they are transformed into grid-point fields. This part of code can work only for non lagged physics.
The Fourier transform package used for transmission coefficients is not the one of the “trans” library but a special
one called in the grid-point part of the model.

∗ Fast Legendre transforms (FLT): They are now implemented and use specific routines. They are
not extensively documented there; one can refer to section 2 of (Wedi et al., 2013).

∗ Distributed memory: Some distributed memory features are now introduced in the code and will be
briefly described. For convenience one uses some generic appellations.

• Expression “DM-local” for a quantity means “local to the couple of processors (proca,procb)”: each
processor has its own value for the quantity. Expression “DM-local computations” means that the
computations are done independently in each processor on “DM-local” quantities, leading to results internal
to each processor, which can be different from a processor to another one.

• Expression “DM-global” for a quantity means that it has a unique value available in all the processors.
Expression “DM-global computations” means that the computations are either done in one processor, then
the results are dispatched in all the processors, or the same computations are done in all the processors,
leading to the same results in all the processors.

• In a routine description the mention “For distributed memory computations are DM-local” means that
all calculations done by this routine are DM-local; the mention “For distributed memory computations
are DM-global” means that all calculations done by this routine are DM-global; when no information is
provided it means that a part of calculations are DM-local and the other part is DM-global.

• Expression “main” processor currently refers to the processor number 1: (proca,procb)=(1,1).

∗ Modifications since cycle 41:

• New routine FFTW for Fourier transforms (global models only).

• Introduction of cubic grid concepts.

3

2 Theoretical aspects.

2.1 Notations.
• a is the Earth mean radius.

• r is the radius. It appears for deep-layer equations. In the White and Bromley formulation of deep-
layer equations (option LVERCOR=T), r is approximated by a pseudo-radius only depending on the
hydrostatic pressure. In the thin layer equations, r = a everywhere.

• Θ is the latitude on the Gaussian collocation grid.

• µ = sin Θ.

• Λ is the longitude on the Gaussian collocation grid.

• n is the total wave number, m is the zonal wave number.

• M is the mapping factor.

• V is the horizontal geographical wind. Its zonal component is U . Its meridian component is V . Reduced

components (U
′
, V
′
) are linked to unreduced components (U, V) by relationships U = M ∗U

′
, V = M ∗V

′
.

• D is the unreduced divergence of horizontal wind, D
′

is the reduced divergence. D and D
′

are linked by

the relationship D = (a/r) ∗M2 ∗D
′
.

• ζ is the unreduced vorticity of horizontal wind, ζ
′

is the reduced vorticity. ζ and ζ
′

are linked by the

relationship ζ = (a/r) ∗M2 ∗ ζ
′
.

• ∇2 is the horizontal unreduced Laplacian operator. ∇2 is linked to the horizontal reduced Laplacian

operator ∇
′2 by the relationship ∇2 = ((a/r) ∗M)2 ∗ ∇

′2.

• x and y are coordinates on the plane projection (LAM models).

2.2 Spectral representation of a scalar field.

∗ Spherical geometry.
A field f can be decomposed into its spectral components according to the following expression:

f(Λ,Θ) =

m=∞∑
m=−∞

n=∞∑
n=|m|

f(n,m)P(n,m)(µ) exp (imΛ) (1)

f(n,m) are spectral coefficients. P(n,m)(µ) are the first kind normalised polynomials of Legendre and are normalised
by the following relationship:

1

2

∫ µ=1

µ=−1

(P(n,m)(µ))2dµ = 1 (2)

That yields the following expression for P(n,m)(µ), if m is a positive integer:

P(n,m)(µ) =
1

2nn!

√
(2n+ 1)

(n−m)!

(n+m)!
(1− µ2)m/2

dn+m

dµn+m
(µ2 − 1)n (3)

For a real scalar field, P(n,−m)(µ) is set equal to P(n,m)(µ), f(n,−m) = f (n,m), so only the real and imaginary

parts of f(n,m) for m ≥ 0 are computed and stored. The algorithm of computation of P(n,m)(µ) is described in
appendix 3.

∗ LAM models with plane projection.
Coordinates x and y are assumed to vary between 0 and 1 in the limited-area domain. A bi-periodic field f
(assumed to match f(1, 0) = f(0, 0) and f(0, 1) = f(0, 0)) can be decomposed into its spectral components
according to the following expression:

f(x, y) =

m=∞∑
m=−∞

n=∞∑
n=−∞

f(n,m) exp (i2πmx) exp (i2πmy) (4)

f(n,m) are spectral coefficients.

4

2.3 Truncation.
∗ Spherical geometry.
In practical the expression of f is limited to a finite set of harmonics corresponding to 0 ≤ n ≤ Ns and−n ≤ m ≤ n.
That defines a triangular truncation Ns. Fourier representation of the transmission coefficients for simplified
physics is a very low truncation Ntc always lower than the model truncation Ns. From now on formulae and
algorithms will be written with truncation Ns. So equation (1) becomes:

f(Λ,Θ) =

m=Ns∑
m=−Ns

n=Ns∑
n=|m|

f(n,m)P(n,m)(µ) exp (imΛ) (5)

Due to the aforementioned properties of P(n,m), expression of f becomes for a real scalar field:

f(Λ,Θ) =

m=Ns∑
m=0

n=Ns∑
n=|m|

f(n,m)P(n,m)(µ) exp (imΛ) (6)

Some other types of truncations exist (for example rhomboidal truncation). Such truncations will not be detailed
there.

∗ LAM models with plane projection.
Elliptic truncation: in practical the expression of f is limited to a finite set of harmonics corresponding to:
(n/Ns)

2 + (m/Nms)
2 ≤ 1.

It is also possible (not coded) to use a rectangular truncation: n ≤ Ns and m ≤ Nms.

2.4 Horizontal derivatives.
∗ Meridian derivative relative to Gaussian latitude Θ in spherical geometry: for a
variable f , meridian derivative is discretised in spectral space by the following formula:(

cos Θ
∂f

∂Θ

)
(n,m)

= −(n− 1)e(n,m)f(n−1,m) + (n+ 2)e(n+1,m)f(n+1,m) (7)

where e(0,0) = 0 and:

e(n,m) =

√
n2 −m2

4n2 − 1
(8)

∗ Zonal derivative relative to Gaussian longitude Λ in spherical geometry: for a variable
f , zonal derivative is discretised in spectral space by the following formula:(

∂f

∂Λ

)
(n,m)

= imf(n,m) (9)

Such a derivation can be done on Fourier coefficients by a multiplication by im.

∗ Derivatives for LAM models: example is given for zonal derivative; for a variable f , zonal derivative
is discretised in spectral space by the following formula:(

∂f

∂x

)
(n,m)

= i2πmf(n,m) (10)

∗ Horizontal laplacian in the computational sphere for spherical geometry: for a
variable f , expression of the laplacian is:(

∇
′2f
)

(n,m)
=

(
1

(a cos Θ)2

∂2f

∂Λ2

)
(n,m)

+

(
1

a2 cos Θ

∂
(
cos Θ ∂f

∂Θ

)
∂Θ

)
(n,m)

(11)

One can show (for more details see appendix 1) that its discretisation writes:(
∇
′2f
)

(n,m)
= −n(n+ 1)

a2
f(n,m) (12)

5

∗ Horizontal laplacian in the computational sphere for LAM models: for a variable f ,
expression of the laplacian is: (

∇
′2f
)

(n,m)
=

(
∂2f

∂x2

)
(n,m)

+

(
∂2f

∂y2

)
(n,m)

(13)

2.5 Spectral relationship between (divergence, vorticity) and (velocity
potential, stream function).

• Relationships between: reduced divergence and velocity potential χ; reduced vorticity and stream function
ψ:

D
′

= ∇
′2χ ; ζ

′
= ∇

′2ψ

• These relationships can be rewritten, for each complex spectral component (spherical geometry):

D
′

(n,m) = −n(n+ 1)

a2
χ(n,m) ; ζ

′

(n,m) = −n(n+ 1)

a2
ψ(n,m)

2.6 Spectral relationship giving wind components once known (velocity
potential, stream function).

• Global models: relationship between U
′
, V
′
, ψ and χ:

(U
′
a cos Θ) =

∂χ

∂Λ
− cos Θ

∂ψ

∂Θ
; (V

′
a cos Θ) =

∂ψ

∂Λ
+ cos Θ

∂χ

∂Θ

the spectral discretisation is:

(U
′
a cos Θ)(n,m) = imχ(n,m) + (n− 1)e(n,m)ψ(n−1,m) − (n+ 2)e(n+1,m)ψ(n+1,m) (14)

(V
′
a cos Θ)(n,m) = imψ(n,m) − (n− 1)e(n,m)χ(n−1,m) + (n+ 2)e(n+1,m)χ(n+1,m) (15)

• LAM models: relationship between U
′
, V
′
, ψ and χ:

U
′

= U
′
moy +

∂χ

∂x
− ∂ψ

∂y
; V

′
= V

′
moy +

∂ψ

∂x
+
∂χ

∂y

We need a separate storage of U
′
moy and V

′
moy in spectral space.

2.7 Spectral relationship giving (divergence, vorticity) once known wind
components.

∗ Global models:
• Relationship between D

′
, U
′

and V
′
:

D
′

=
1

a cos Θ

(
∂U
′

∂Λ
+
∂(V

′
cos Θ)

∂Θ

)
(16)

which can be rewritten:

D
′

=
1

a2 cos2 Θ

(
∂(U

′
a cos Θ)

∂Λ
+ cos Θ

∂(V
′
a cos Θ)

∂Θ

)
(17)

• Relationship between ζ
′
, U
′

and V
′
:

ζ
′

=
1

a cos Θ

(
∂V
′

∂Λ
− ∂(U

′
cos Θ)

∂Θ

)
(18)

which can be rewritten:

ζ
′

=
1

a2 cos2 Θ

(
∂(V

′
a cos Θ)

∂Λ
− cos Θ

∂(U
′
a cos Θ)

∂Θ

)
(19)

• Spectral discretisations of (17) and (19) allow to retrieve easily spectral components of D
′
a2 cos2 Θ and

ζ
′
a2 cos2 Θ, but not directly spectral components of D

′
and ζ

′
(requiring inversion of a pentadiagonal

matrix). In practical algorithm involved to retrieve spectral coefficients of D
′

and ζ
′

once knowing values
of wind components is slightly different (requiring a division by a cos Θ in Fourier space), and is described
in detail in (Temperton, 1991) (see equations (2.16), (2.17), (2.21) to (2.27) of Temperton’s paper).

6

∗ LAM models: relationship between D
′
, ζ
′
, U
′

and V
′

writes:

D
′

=
∂U
′

∂x
+
∂V
′

∂y
; ζ

′
=
∂V
′

∂x
− ∂U

′

∂y

2.8 Steps involved in a direct and in an inverse spectral transformation for
scalar fields.

∗ Transformation from spectral to grid point space for a scalar field or a set of scalar
fields in a global model. Transformation from spectral to grid point space needs:
• An inverse Legendre transform, for each zonal wave number m. The following quantity Fm(µ) is computed

for each latitude Θ:

Fm(µ) =

n=Ns∑
n=|m|

f(n,m)P(n,m)(µ) (20)

One transforms real fields, so F−m(µ) = Fm(µ) and only Fm(µ) for m ≥ 0 is computed.
• An inverse Fourier transform, for each latitude Θ:

f(Λ,Θ) =

m=N(Θ)∑
m=−N(Θ)

Fm(µ) exp (imΛ) (21)

One transforms real fields, so formula (21) becomes:

f(Λ,Θ) = F0(µ) + 2

m=N(Θ)∑
m=1

(R(Fm(µ)) cos (mΛ)− I(Fm(µ)) sin (mΛ)) (22)

F0(µ) is the average of f on latitude Θ and is real; N(Θ) is not always equal to Ns (due to the use of a
reduced Gaussian grid). For latitude Θ one obtains nlon(Θ) grid-point values.

∗ Transformation from spectral to grid point space for a scalar field or a set of scalar
fields in a LAM model. Transformation from spectral to grid point space needs:
• An inverse meridian Fourier transform.
• An inverse zonal Fourier transform.

∗ Transformation from grid point to spectral space for global models. Transformation
from grid point to spectral space needs:
• A direct Fourier transform, for each latitude Θ:

Fm(µ) =
1

nlon(Θ)

jlon=nlon(Θ)∑
jlon=1

f(Λ(jlon),Θ) exp (−imΛ(jlon)) (23)

One transforms real fields, so formula (23) becomes for non-zero m:

R(Fm(µ)) =
1

nlon(Θ)

jlon=nlon(Θ)∑
jlon=1

f(Λ(jlon),Θ) cos (mΛ(jlon)) (24)

I(Fm(µ)) = − 1

nlon(Θ)

jlon=nlon(Θ)∑
jlon=1

f(Λ(jlon),Θ) sin (mΛ(jlon)) (25)

and for m=0:

R(F0(µ)) =
1

nlon(Θ)

jlon=nlon(Θ)∑
jlon=1

f(Λ(jlon),Θ) (26)

I(F0(µ)) = 0 (27)
nlon(Θ) is the number of grid-points for latitude Θ. Only N(Θ) Fourier coefficients are kept. N(Θ) is not
always equal to Ns.

• A direct Legendre transform, for each zonal wave number m.

f(n,m) =

jgl=lat2(m)∑
jgl=lat1(m)

Fm(µ(jgl))P(n,m)(µ(jgl)) (28)

lat1 and lat2 satisfy to Θ(lat2) = −Θ(lat1). lat1(m) is the first northern latitude where the wave number
m is represented and is not always equal to 1.

7

∗ Transformation from grid point to spectral space for LAM models. Transformation
from grid point to spectral space needs:

• A direct zonal Fourier transform.

• A direct meridian Fourier transform.

∗ Relationship between N and lat1 (global models):

N(lat1(m)− 1) < m ≤ N(lat(m)) (29)

∗ Use of symmetry properties of the polynomials of Legendre (global models): Due
to relation (30) scalar fields to be transformed are split into symmetric and antisymmetric parts fsym and fant

matching fsym(Λ,−Θ) = fsym(Λ,Θ) and fant(Λ,−Θ) = −fant(Λ,Θ). Spectral expression of fsym (resp. fant)
include all coefficients with even (resp. odd) value of m+ n. Legendre transforms are done on fsym and fant and
scalar products defined by equations (20) and (28) can reduce to latitudes lat1 to ndgnh.

2.9 Relationship between dimension of spectral space and grid point space
for Gaussian grid.

∗ Quadratic grid, linear grid and cubic grids in global models:
• Spectral space is defined by a triangular truncation Ns. Grid point space has ndglg latitudes and a

maximum number of longitudes equal to ndlon. ndlon and ndglg are always even integers: if ndlon is a
multiple of 4, ndglg = ndlon/2; if ndlon is not a multiple of 4, ndglg = ndlon/2 + 1. The latitudes of the
Gaussian grid are computed by an algorithm detailed in appendix 2.

• For a quadratic Gaussian grid, there is a relationship between these parameters to avoid aliasing on
quadratic terms. If the stretching coefficient c is equal to 1 (resp. > 1) Ns is the biggest integer which
matches the relationship 3 ∗Ns ≤ (ndlon− 1) (resp. 3 ∗Ns ≤ min(2 ∗ ndglg − 3, ndlon− 1)).

• In a semi-Lagrangian scheme the advective quadratic terms disappear, so it is possible to use a smaller
grid-point space. The most frequently grid used is the “linear grid”: If the stretching coefficient c is equal
to 1 (resp. > 1) Ns is the biggest integer which matches the relationship 2 ∗ Ns ≤ (ndlon − 1) (resp.
2 ∗Ns ≤ min(2 ∗ ndglg − 3, ndlon− 1)).

• Recently, the concept of cubic grid has been introduced. If the stretching coefficient c is equal to 1
(resp. > 1) Ns is the biggest integer which matches the relationship 4 ∗ Ns ≤ (ndlon − 1) (resp.
4 ∗Ns ≤ min(2 ∗ ndglg − 3, ndlon− 1)).

• We generally use a reduced Gaussian grid; the number of grid-points is progressively reduced as we
go towards computational poles. In reduced Gaussian grids the total amount of grid-points is around
(2/3)ndlon ∗ ndglg.

∗ Quadratic grid, linear grid and cubic grids in LAM models: similar notions exist in LAM
models. For example:
For a quadratic grid:

• Ns is the biggest integer which matches the relationship 3 ∗Ns ≤ (ndglg − 1).

• Nms is the biggest integer which matches the relationship 3 ∗Nms ≤ (ndlon− 1).

For a linear grid:

• Ns is the biggest integer which matches the relationship 2 ∗Ns ≤ (ndglg − 1).

• Nms is the biggest integer which matches the relationship 2 ∗Nms ≤ (ndlon− 1).

For a cubic grid:

• Ns is the biggest integer which matches the relationship 4 ∗Ns ≤ (ndglg − 1).

• Nms is the biggest integer which matches the relationship 4 ∗Nms ≤ (ndlon− 1).

∗ Admissible dimensions for spherical geometry: If FFT992 is used, the codes of FFT (fast
Fourier transforms) used allows to use integers ndlon which can write as 21+p2 ∗ 3p3 ∗ 5p5 . That limits the
possibility of choosing the dimensions in a discontinuous subset of truncations and dimensions for Gaussian grid.
In the following table one can find the admissible values for (ndlon, ndglg) for ndglg between 32 and 5000, and
the corresponding truncations for a quadratic grid and a linear grid. This constraint does not exist with FFTW.

∗ Admissible dimensions for LAM models: If FFT992 is used, the codes of FFT (fast Fourier
transforms) used allows to use integers ndlon and ndglg which can write as 21+p2 ∗3p3 ∗5p5 . This constraint does
not exist with FFTW.

8

(ndglg, ndlon) Cub Quad Quad Lin Lin (ndglg, ndlon) Cub Quad Quad Lin Lin
c > 1 c = 1 c > 1 c = 1 c > 1 c = 1 c > 1 c = 1

(32, 64) 15 20 21 30 31 (864,1728) 431 575 575 862 863
(36, 72) 17 23 23 34 35 (900,1800) 449 599 599 898 899
(40, 80) 19 25 26 38 39 (960,1920) 479 639 639 958 959
(46, 90) 22 29 29 44 44 (972,1944) 485 647 647 970 971
(48, 96) 23 31 31 46 47 (1000,2000) 499 665 666 998 999
(50, 100) 24 32 33 48 49 (1024,2048) 511 681 682 1022 1023
(54, 108) 26 35 35 52 53 (1080,2160) 539 719 719 1078 1079
(60, 120) 29 39 39 58 59 (1126,2250) 562 749 749 1124 1124
(64, 128) 31 41 42 62 63 (1152,2304) 575 767 767 1150 1151
(72, 144) 35 47 47 70 71 (1200,2400) 599 799 799 1198 1199
(76, 150) 37 49 49 74 74 (1216,2430) 607 809 809 1214 1214
(80, 160) 39 52 53 78 79 (1250,2500) 624 832 833 1248 1249
(82, 162) 40 53 53 80 80 (1280,2560) 639 852 853 1278 1279
(90, 180) 44 59 59 88 89 (1296,2592) 647 863 863 1294 1295
(96, 192) 47 63 63 94 95 (1350,2700) 674 899 899 1348 1349
(100, 200) 49 65 66 98 99 (1440,2880) 719 959 959 1438 1439
(108, 216) 53 71 71 106 107 (1458,2916) 728 971 971 1456 1457
(120, 240) 59 79 79 118 119 (1500,3000) 749 999 999 1498 1499
(126, 250) 62 83 83 124 124 (1536,3072) 767 1023 1023 1534 1535
(128, 256) 63 84 85 126 127 (1600,3200) 799 1065 1066 1598 1599
(136, 270) 67 89 89 134 134 (1620,3240) 809 1079 1079 1618 1619
(144, 288) 71 95 95 142 143 (1728,3456) 863 1151 1151 1726 1727
(150, 300) 74 99 99 148 149 (1800,3600) 899 1199 1199 1798 1799
(160, 320) 79 105 106 158 159 (1876,3750) 937 1249 1249 1874 1874
(162, 324) 80 107 107 160 161 (1920,3840) 959 1279 1279 1918 1919
(180, 360) 89 119 119 178 179 (1944,3888) 971 1295 1295 1942 1943
(192, 384) 95 127 127 190 191 (2000,4000) 999 1332 1333 1998 1999
(200, 400) 99 132 133 198 199 (2026,4050) 1012 1349 1349 2024 2024
(216, 432) 107 143 143 214 215 (2048,4096) 1023 1364 1365 2046 2047
(226, 450) 112 149 149 224 224 (2160,4320) 1079 1439 1439 2158 2159
(240, 480) 119 159 159 238 239 (2188,4374) 1093 1457 1457 2186 2186
(244, 486) 121 161 161 242 242 (2250,4500) 1124 1499 1499 2248 2249
(250, 500) 124 165 166 248 249 (2304,4608) 1151 1535 1535 2302 2303
(256, 512) 127 169 170 254 255 (2400,4800) 1199 1599 1599 2398 2399
(270, 540) 134 179 179 268 269 (2430,4860) 1214 1619 1619 2428 2429
(288, 576) 143 191 191 286 287 (2500,5000) 1249 1665 1666 2498 2499
(300, 600) 149 199 199 298 299 (2560,5120) 1279 1705 1706 2558 2559
(320, 640) 159 212 213 318 319 (2592,5184) 1295 1727 1727 2590 2591
(324, 648) 161 215 215 322 323 (2700,5400) 1349 1799 1799 2698 2699
(360, 720) 179 239 239 358 359 (2880,5760) 1439 1919 1919 2878 2879
(376, 750) 187 249 249 374 374 (2916,5832) 1457 1943 1943 2914 2915
(384, 768) 191 255 255 382 383 (3000,6000) 1499 1999 1999 2998 2999
(400, 800) 199 265 266 398 399 (3072,6144) 1535 2047 2047 3070 3071
(406, 810) 202 269 269 404 404 (3126,6250) 1562 2083 2083 3124 3124
(432, 864) 215 287 287 430 431 (3200,6400) 1599 2132 2133 3198 3199
(450, 900) 224 299 299 448 449 (3240,6480) 1619 2159 2159 3238 3239
(480, 960) 239 319 319 478 479 (3376,6750) 1687 2249 2249 3374 3374
(486, 972) 242 323 323 484 485 (3456,6912) 1727 2303 2303 3454 3455
(500,1000) 249 332 333 498 499 (3600,7200) 1799 2399 2399 3598 3599
(512,1024) 255 340 341 510 511 (3646,7290) 1822 2429 2429 3644 3644
(540,1080) 269 359 359 538 539 (3750,7500) 1874 2499 2499 3748 3749
(576,1152) 287 383 383 574 575 (3840,7680) 1919 2559 2559 3838 3839
(600,1200) 299 399 399 598 599 (3888,7776) 1943 2591 2591 3886 3887
(626,1250) 312 416 416 624 624 (4000,8000) 1999 2665 2666 3998 3999
(640,1280) 319 425 426 638 639 (4050,8100) 2024 2699 2699 4048 4049
(648,1296) 323 431 431 646 647 (4096,8192) 2047 2729 2730 4094 4095
(676,1350) 337 449 449 674 674 (4320,8640) 2159 2879 2879 4318 4319
(720,1440) 359 479 479 718 719 (4374,8748) 2186 2915 2915 4372 4373
(730,1458) 364 485 485 728 728 (4500,9000) 2249 2999 2999 4498 4499
(750,1500) 374 499 499 748 749 (4608,9216) 2303 3071 3071 4606 4607
(768,1536) 383 511 511 766 767 (4800,9600) 2399 3199 3199 4798 4799
(800,1600) 399 532 533 798 799 (4860,9720) 2429 3239 3239 4858 4859
(810,1620) 404 539 539 808 809 (5000,10000) 2499 3332 3333 4998 4999

9

3 Set-up routines.

∗ Organigramme for spherical geometry:

SU0YOMA ->

- SUTRANS0 ->

* SETUP_TRANS0 -> SUMP_TRANS0 ->

- PE2SET

- MPL_GROUPS_CREATE

- SUGEOMETRY -> SUTRANS ->

* SETUP_TRANS ->

- SET_RESOL

- SETUP_DIMS

- SUMP_TRANS_PRELEG -> SUWAVEDI

- SULEG ->

* INI_POL

* SUGAW ->

- GAWL -> CPLEDN

- SUPOLF

* SUPOL

* SUTRLE -> SET2PE and routines MPL_...

* SETUP_GEOM

* SUPOLF (for fast Legendre transforms only?)

* CONSTRUCT_BUTTERFLY (for fast Legendre transforms only)

- SUMP_TRANS ->

* SUMPLATF -> SUMPLATB or SUMPLATBEQ

* SUMPLAT -> SUMPLATB or SUMPLATBEQ

* SUSTAONL -> SET2PE and MPL_... routines

- SUFFT ->

* SET99 (use of FFT992)

* INIT_PLANS_FFTW (use of FFTW)

- SULEGA

∗ Organigramme for LAM models:

SU0YOMA ->

- SUETRANS0 ->

* SETUP_TRANS0 -> SUMP_TRANS0 ->

- PE2SET

- MPL_GROUPS_CREATE

- SUGEOMETRY -> SUETRANS ->

* ESETUP_TRANS ->

- ESET_RESOL

- ESETUP_DIMS

- SUEMP_TRANS_PRELEG

- ESETUP_GEOM

- SUEMP_TRANS ->

* SUMPLATF -> SUMPLATB

* SUEMPLAT -> SUEMPLATB

* SUESTAONL -> SET2PE and MPL_... routines

- SUEFFT -> SET99

- SUELEGA

∗ Computations done by these routines:

• For Legendre transforms, one needs to compute polynomials of Legendre and some other quantities, like
Gaussian latitudes, Gaussian weights, geometrical quantities containing cos Θ. Such computations are done
in routine SULEG and subroutines called by SULEG.

• For “FFT992” Fourier transforms, one needs to compute quantities TRIGS and NFAX necessary to use
routine FFT992. These two arrays are computed in routines SUFFT and SUEFFT (note that a call to
FFT992 reinitialises them).

• For “FFTW” Fourier transforms, the set-up is done in INIT PLANS FFTW.

10

• SUGAW computes a first estimation of Gaussian latitudes, then calls GAWL. It is required in spherical
geometry only. There is one call of GAWL for each latitude. GAWL manages an iterative algorithm for
one latitude: one call to CPLEDN corresponds to one iteration. Computations stop once the iterative
algorithm converges towards a satisfactory solution. So one obtains the Gaussian latitude and weight.
Details of the algorithm implemented in SUGAW and called routines is described in appendix 2.

• Exiting SUGAW the sine of Gaussian latitude µ = sin Θ is available in real array YRCSGLEG%RMU.
Gaussian weights are stored in global array YRCSGLEG%RW. The following attributes of
YRCSGLEG are then computed in routine SULEGA:

– R1MU2: cos2 Θ = 1− µ2

– R1MUI: 1
cos2 Θ

= 1
1−µ2

– R1MUA: 1
a cos2 Θ

= 1
a(1−µ2)

– RSQM2: cos Θ =
√

1− µ2

– R1QM2: 1
cos Θ

= 1√
1−µ2

– RACTHE: 1
a cos Θ

= 1

a
√

1−µ2

– RLATIG: Θ

• SUPOL computes the polynomials of Legendre. One call of SUPOL performs computations for one
latitude only. Computations are done in 128 bits precision, following an algorithm described in appendix 3.

• SUPOLF is an alternate version of SUPOL (for fast Legendre transforms?).

• Exiting SUPOL yields the array RPNM containing the polynomials of Legendre. For each Gaussian
latitude, RPNM is an array with a structure identical to spectral arrays. RPNM are stored only for the
Northern Hemisphere (of computational sphere) due to the following property:

P(n,m)(−µ) = (−1)(m+n)P(n,m)(µ) (30)

• Some other quantities involved in the spectral transforms are computed in (or under) the following routines:
SETUP DIMS, SETUP GEOM MOD, SET RESOL,
SUMP TRANS PRELEG, SETUP GEOM, SUMP TRANS and their LAM counterparts (names
starting by ESETUP, SUEMP).
For more details, see comments inside these routines.

∗ Distributed memory: Routine SUTRLE manages transpositions in the distributed memory
environment. For distributed memory, computations of the Legendre polynomials are DM-local for Gaussian
latitudes (a processor does computations only in a subset of latitudes) and DM-global for spectral coefficients (a
processor computes all the spectral coefficients for this subset of latitudes). So one first computes an intermediate
Legendre polynomials array with DM-local indexation for Gaussian latitudes and DM-global indexation for
spectral coefficients. Then a memory transfer with communications between processors is necessary to obtain
the final Legendre polynomials RPNM which has a DM-global indexation for Gaussian latitudes (all latitudes
are available in the same processor) and a DM-local indexation for spectral coefficients (contains only a subset
of zonal wave numbers). SET2PE gives the number of the processor between 1 and NPROC, once known the
following numbers:

• the “A-set” number of the processor between 1 and NPRGPNS for grid-point computations.

• the “B-set” number of the processor between 1 and NPRGPEW for grid-point computations.

• the “A-set” number of the processor between 1 and NPRTRW for spectral computations.

• the “B-set” number of the processor between 1 and NPRTRV for spectral computations.

PE2SET does the reverse thing of SET2PE. The MPL ... routines are message-passing routines doing
communication between processors. For more details about them see documentation (IDDM).

∗ Duplicate version for spherical geometry: Most of the variables computed under SUTRANS
have a “duplicate version” in the “arpifs” library, sometimes computed separately in “arpifs”, because they are
used in other parts of the ARPEGE code. The “trans” version (in modules TPM ...) is used in the spectral
transforms, the “arpifs” version is used elsewhere.

∗ Duplicate version for LAM models: Most of the variables computed under SUETRANS have
a “duplicate version” in the “arpifs” library, sometimes computed separately in “arpifs”, because they are used
in other parts of the ARPEGE/ALADIN code. The “etrans” version (in modules TPMALD ...) is used in the
spectral transforms, the “arpifs” version is used elsewhere.

11

4 Spectral transforms routines: the general routines
(E)DIR TRANS and (E)INV TRANS.

4.1 Range of use.

They can be used for a set of fields (model fields), but they use optional arguments, so they can also be used
for only one separate field. DIR TRANS (EDIR TRANS for LAM models) does direct transforms (from
grid-point space to spectral space), INV TRANS (EINV TRANS for LAM models) does inverse transforms
(from spectral space to grid-point space). These routines have adjoint versions (E)DIR TRANSAD and
(E)INV TRANSAD. The tangent linear code is identical to the direct code. These routines and the routines
called under them are in the “trans” library for spherical geometry, “etrans” library for LAM models.

4.2 Organigrammes for direct code.

∗ Organigrammes of INV TRANS and EINV TRANS:

INV_TRANS -> | EINV_TRANS ->
* SET_RESOL | * ESET_RESOL
* INV_TRANS_CTL -> | * EINV_TRANS_CTL ->
- SHUFFLE (case NPRTRV>1) | - SHUFFLE (case NPRTRV>1)
- FIELD_SPLIT | - FIELD_SPLIT
- LTINV_CTL -> | - ELTINV_CTL ->

* LTINV -> | * ELTINV ->
- PREPSNM |
- PRFI1B | - EPRFI1B
- VDTUV | - EVDTUV
- SPNSDE | - ESPNSDE
- LEINV -> DGEMM | - ELEINV -> FFT992

MULT_BUTM (FLT) |
- ASRE1B | - EASRE1B
- FSPGL_INT | - FSPGL_INT

* TRMTOL -> (MPL routines) | * TRMTOL -> (MPL routines)
- FTINV_CTL -> | - EFTINV_CTL ->

* FOURIER_IN | * FOURIER_IN
* FSC | * EFSC
* FTINV -> | * FTINV ->
- FFT992 | - FFT992
- CREATE_PLAN_FFTW | - CREATE_PLAN_FFTW
- DFFTW_EXECUTE_DFT_C2R | - DFFTW_EXECUTE_DFT_C2R

* TRLTOG -> (MPL routines) | * TRLTOG -> (MPL routines)

∗ Organigrammes of DIR TRANS and EDIR TRANS:

DIR_TRANS -> | EDIR_TRANS ->
* SET_RESOL | * ESET_RESOL
* DIR_TRANS_CTL -> | * EDIR_TRANS_CTL ->
- SHUFFLE (case NPRTRV>1) | - SHUFFLE (case NPRTRV>1)
- FIELD_SPLIT | - FIELD_SPLIT
- FTDIR_CTL -> | - EFTDIR_CTL ->

* TRGTOL -> (MPL routines) | * TRGTOL -> (MPL routines)
| * EXTPER
| * AUX_PROC

* FTDIR -> | * FTDIR ->
- FFT992 | - FFT992
- CREATE_PLAN_FFTW | - CREATE_PLAN_FFTW
- DFFTW_EXECUTE_DFT_R2C | - DFFTW_EXECUTE_DFT_R2C

* FOURIER_OUT | * FOURIER_OUT
- LTDIR_CTL -> | - ELTDIR_CTL ->

* TRLTOM -> (MPL routines) | * TRLTOM -> (MPL routines)
| * AUX_PROC

* LTDIR -> | * ELTDIR ->
- PRFI2 -> PRFI2B | - EPRFI2 -> EPRFI2B

| - EXTPER
- LDFOU2 |
- LEDIR -> DGEMM | - ELEDIR -> FFT992

MULT_BUTM (FLT) |
- PREPSNM |
- UVTVD | - EUVTVD

| - EUVTVD_COMM
- UPDSP -> UPDSPB | - EUPDSP -> EUPDSPB

12

∗ Work done by routines called under INV TRANS CTL and DIR TRANS CTL:
• LTINV CTL: upper control routine for inverse Legendre transforms.

• LTDIR CTL: upper control routine for direct Legendre transforms.

• LTINV: lower control routine for inverse Legendre transforms.

• LTDIR: lower control routine for direct Legendre transforms.

• FTINV CTL: upper control routine for inverse Fourier transforms.

• FTDIR CTL: upper control routine for direct Fourier transforms.

• FTINV: lower control routine for inverse Fourier transforms.

• FTDIR: lower control routine for direct Fourier transforms.

• PREPSNM: stores useful values of e(n,m) (in array REPSNM) for a given zonal wave number m.

• PRFI1B: stores useful spectral coefficients of the fields to be transformed for a given zonal wave number
m and latitudes lat1(m) to ndgnh in a work array PIA.

• PRFI2B: splits Fourier coefficients into symmetrical and antisymmetrical parts; stores useful Fourier
coefficients of the fields to be transformed for a given zonal wave number m and latitudes lat1(m) to
ndgnh in a work array PSIA for the symmetrical part and PAIA for the antisymmetrical part.

• PRFI2: interface for PRFI2B (one call to PRFI2B for scalars, two for vectors).

• VDTUV: used only when transform of vector wind is required. Computation of (a cos ΘU
′
, a cos ΘV

′
) in

spectral space knowing (D
′
, ζ
′
).

• UVTVD: computation of (D
′
, ζ
′
) in spectral space knowing

(
U
′

a cos Θ
, V

′

a cos Θ

)
.

• SPNSDE: computation of meridian derivatives when required.

• LDFOU2: division by a cos Θ in Fourier space for wind.

• LEINV performs two inverse Legendre transforms, the first one for fsym, the second one for fant, that
gives the Fourier coefficients stored respectively in arrays PSOA1 and PAOA1 for symmetrical and
antisymmetrical parts.

• LEDIR performs two direct Legendre transforms, the first one for Fsym m(µ), the second one for Fant m(µ),
that gives the spectral coefficients stored in the array POA1.

• DGEMM: product matrix by matrix.

• MULT BUTM: product matrix by matrix with the butterfly method.

• ASRE1B recombines symmetrical and antisymmetrical parts to compute Fourier coefficients Fm(µ).

Fm(µ) = Fsym m(µ) + Fant m(µ) ; Fm(−µ) = Fsym m(µ)− Fant m(µ)

Exiting ASRE1B Fourier coefficients are in the array PREEL. For a latitude index jgl the Fourier space
truncation is N(jgl) available in the array NMEN. Values are set to zero in the array PREEL for zonal
waves numbers m greater than N(jgl).

• UPDSPB: final memory transfer in spectral array containing all coefficients.

• UPDSP: interface routine for UPDSPB.

• FOURIER IN: separates the real and imaginary parts of the Fourier coefficients.

• FOURIER OUT: recombines the real and imaginary parts of the Fourier coefficients.

• FSC: division by a cos Θ in Fourier space for wind, and first order derivatives.

• FFT992 performs Fourier transforms for “FFT992” package.

• CREATE PLAN FFTW and DFFTW EXECUTE DFT C2R are called instead of FFT992 if
“FFTW” package is used.

• TRLTOM: transposition routine for distributed memory. Transpose Fourier buffer data from partitioning
over latitudes (necessary for direct Fourier transforms) to partitioning over wave numbers (necessary for
direct Legendre transforms).

• TRMTOL: does the inverse transposition of TRLTOM.

• TRGTOL: transposition routine for distributed memory. Transpose grid-point data from partitioning
over sets of NGPTOT grid-points containing complete columns (all the NFLEVG model layers) and
incomplete latitudes to partitioning over complete latitudes (a processor contains a subset of complete
latitudes) and layers if NPRTRV>1 (a processor contains NFLEVL layers).

• TRLTOG: does the inverse transposition of TRGTOL.

• SHUFFLE: re-shuffle fields for load balancing if NPRTRV>1. Note that the relative order of the local
spectral fields has to maintained.

• FIELD SPLIT: split fields for case NPRTRV>1; simple memory transfer if NPRTRV=1.

• FSPGL INT: interface for calculations done in Fourier space.

13

∗ Work done by routines called under EINV TRANS CTL and EDIR TRANS CTL:

We can notice that we generally have the same routines as for “trans” routines, with an additional “E” at the
beginning of their names when a specific “etrans” routine is required: for example ELEDIR instead of LEDIR.
Note the following specificies:

• ELEDIR and ELEINV do meridian Fourier transforms and call FFT992.

• AUX PROC is called to do periodicisation of auxiliary fields.

• EXTPER is called to do periodicisation when there is no extension zone.

14

4.3 Organigrammes for adjoint code.

Organigramme is given for INV TRANSAD and DIR TRANSAD; their LAM counterparts
EINV TRANSAD and EDIR TRANSAD also exist (organigramme not detailed).

∗ Organigramme of INV TRANSAD:

INV_TRANSAD ->

* SET_RESOL

* INV_TRANS_CTLAD ->

- SHUFFLE (case NPRTRV>1)

- FIELD_SPLIT

- FTINV_CTLAD ->

* TRGTOL -> (MPL routines)

* FTINVAD ->

- FFT992

- CREATE_PLAN_FFTW

- DFFTW_EXECUTE_DFT_R2C

* FSCAD

* FOURIER_INAD

- LTINV_CTLAD ->

* TRLTOM -> (MPL routines)

* LTINVAD ->

- PREPSNM

- ASRE1BAD

- LEINVAD -> DGEMM

MULT_BUTM (FLT)

- VDTUVAD

- SPNSDEAD

- PRFI1BAD

∗ Organigramme of DIR TRANSAD:

DIR_TRANSAD ->

* SET_RESOL

* DIR_TRANS_CTLAD ->

- SHUFFLE (case NPRTRV>1)

- FIELD_SPLIT

- LTDIR_CTLAD ->

* LTDIRAD ->

- UPDSPAD -> UPDSPBAD

- PREPSNM

- UVTVDAD

- LEDIRAD -> DGEMM

MULT_BUTM (FLT)

- LDFOU2AD

- PRFI2AD -> PRFI2BAD

* TRMTOL -> (MPL routines)

- FTDIR_CTLAD ->

* FOURIER_OUTAD

* FTDIRAD ->

- FFT992

- CREATE_PLAN_FFTW

- DFFTW_EXECUTE_DFT_C2R

* TRLTOG -> (MPL routines)

15

5 Spectral transforms routines for general application.

5.1 Spectral transforms routines for scalar variables: SPEREE and REESPE.

REESPE does direct transforms (from grid-point space to spectral space), SPEREE does inverse transforms
(from spectral space to grid-point space). SPEREE calls INV TRANS; REESPE calls DIR TRANS; the
adjoint SPERAD of SPEREE calls REESPE. These routines perform transforms for scalar fields according
to the algorithm described in subsection (2.8).

These routines have LAM counterparts: EREESPE and ESPEREE (direct code and TL code), ESPERAD
(adjoint code).

5.2 Wind components: routines SPEUV and UVSPE.

∗ Transformation from spectral to grid point space. D
′

is the reduced divergence, ζ
′

is

the reduced vorticity. χ is the velocity potential, ψ is the stream function. U
′

and V
′

are the reduced wind
components. D

′
and ζ

′
are available in spectral space. Transformation from spectral to grid point space needs:

• A transformation (χ, ψ) → (D
′
, ζ
′
) if required.

• Computation of (a cos ΘU
′
, a cos ΘV

′
) in spectral space knowing (D

′
, ζ
′
), following formulae (14) and (15).

• Inverse Legendre transform on a cos ΘU
′

and a cos ΘV
′
.

• In Fourier space, division by a cos Θ for each latitude: yields U
′

and V
′

in this space.

• Inverse Fourier transform on U
′

and V
′

for each latitude.

∗ Transformation from grid point to spectral space. Transformation from grid point to spectral
space needs:

• Direct Fourier transform on U
′

and V
′

for each latitude.

• Computation of
(

U
′

a cos Θ
, V

′

a cos Θ

)
in Fourier space for each latitude.

• Direct Legendre transform on U
′

a cos Θ
and V

′

a cos Θ
. Spectral coefficients obtained after this transform

correspond to the Ũ(n,m) and Ṽ(n,m) defined in equations (2.24) and (2.25) of (Temperton, 1991).

• Computation of (D
′
, ζ
′
) in spectral space knowing

(
U
′

a cos Θ
, V

′

a cos Θ

)
, following formulae (2.26) and (2.27)

of (Temperton, 1991).

• A transformation (D
′
, ζ
′
) → (χ, ψ) if required.

∗ Routines performing transformations: SPEUV performs a transformation from spectral space

(input variables are (D
′
, ζ
′
) or (χ, ψ)) to grid-point space (output variables are U

′
and V

′
). UVSPE performs

a transformation from grid-point space (input variables are U
′

and V
′
) to spectral space (output variables are

(D
′
, ζ
′
) if KOUTP=1 or (χ, ψ) if KOUTP=2). SPEUV calls INV TRANS; UVSPE calls DIR TRANS.

∗ LAM model versions:

• ESPEUV is the LAM counterpart of SPEUV.

• There are also EUVGEOVD (retrieve divergence and vorticity from wind components in spectral space)
and EVDUVGEO (retrieve wind components from divergence and vorticity in spectral space).

16

6 Spectral transforms used in the model under routine STEPO
and for specific applications.

6.1 Organigramme under STEPO.

In model integration, routines TRANSINVH and TRANSDIRH play the same part as SPEREE/SPEUV,
REESPE/UVSPE, but they deal with a pre-determined set of variables. Horizontal derivatives of these variables
have generally to be computed during the inverse transform. Meridian derivatives are computed after converting

(D
′
, ζ
′
) into (a cos ΘU

′
, a cos ΘV

′
) and before inverse Legendre transforms in spectral space (call to routine

SPNSDE). These spectral transforms routines are also used for the spectral fit of FULL-POS.

∗ General organigramme under STEPO: one starts from routine STEPO which controls one
time-step.

• control/STEPO →

– Data reading/writing

– (E)TRANSINVH (see below the detailed organigramme)

– SCAN2M (grid point computations)

– OBSV (for assimilation part computing Jo)

– Diagnostics

– (E)TRANSDIRH (see below the detailed organigramme)

– Spectral computations

FULLPOS has its own version of STEPO (STEPO FPOS) calling TRANSINV FPOS and TRANSDIR FPOS.

∗ Organigramme under (E)TRANSINVH:

(E)TRANSINVH -> (E)TRANSINV_MDL -> (E)INV_TRANS (model variables)

∗ Organigramme under (E)TRANSDIRH:

(E)TRANSDIRH -> (E)TRANSDIR_MDL -> (E)DIR_TRANS (model variables)

∗ Tangent linear code: The tangent linear code of (E)TRANSINVH (called under STEPOTL)
is (E)TRANSINVH itself. The tangent linear code of (E)TRANSDIRH (called under STEPOTL) is
(E)TRANSDIRH itself.

∗ Adjoint code: The adjoint code of (E)TRANSINVH
(called under STEPOAD) is (E)TRANSINVHAD. The adjoint code of (E)TRANSDIRH (called under
STEPOAD) is (E)TRANSDIRHAD. Organigrammes are:

(E)TRANSINVHAD -> (E)TRANSINV_MDLAD -> (E)INV_TRANSAD

and:

(E)TRANSDIRHAD -> (E)TRANSDIR_MDLAD -> (E)DIR_TRANSAD

6.2 Spectral transforms necessary for model integration.

Only model integration is here presented. For other applications where TRANSDIRH or TRANSINVH
are used (assimilation, initialisation by DFI), see corresponding documentations. Variables are divided in three
classes:

• GMV (3D) variables: the adiabatic part of the RHS of their equation is non-zero and these variables have
always a spectral representation (example: wind components, temperature).

• GMVS (2D) variables: the adiabatic part of the RHS of their equation is non-zero and these variables have
always a spectral representation (example: logarithm of hydrostatic surface pressure).

• GFL variables: the adiabatic part of the RHS of their equation is zero and these variables can have a
spectral representation or not (example: specific humidity, ozone).

For more details about this classification, see documentation (IDEUL).

17

6.2.1 3D primitive equation hydrostatic model.

∗ Input variables in spectral space to be transformed into grid-point space: For GMV

variables: reduced divergence D
′
, reduced vorticity ζ

′
, temperature T if LSPRT=.F. or RT if LSPRT=.T.. For

GMVS variables: pressure surface variable log Πs (Πs is the surface pressure). All the GFL variables which have
a spectral representation.

∗ Output variables to be obtained in grid-point space: Variable X, meridian derivative
1

a cos Θ
∂X
∂Θ

and zonal derivative 1
a
∂X
∂Λ

for the following variables: reduced divergence D
′
, reduced vorticity ζ

′
,

reduced wind components U
′

and V
′
, temperature T if LSPRT=.F. or RT if LSPRT=.T., pressure surface

variable log Πs, all the GFL variables which have a spectral representation. All horizontal derivatives are required
in an Eulerian model but some derivatives are useless in a semi-Lagrangian model.

∗ Input variables in grid-point space to be transformed into spectral space: Provisional
t + ∆t quantities before semi-implicit scheme and horizontal diffusion scheme for GMV variables equations
(momentum equation, temperature equation (virtual temperature equation if LSPRT=.T.)), GMVS variables
equations (continuity equation), GFL equations for GFL variables which have a spectral representation. For
momentum equation input variables are reduced wind components, output variables are reduced divergence and
vorticity.

6.2.2 3D non-hydrostatic model.

∗ Input/Output variables: See part 6.2.1 for the list of variables which exist in the hydrostatic model.
Two additional variables (one linked to the pressure departure, the second one linked to the vertical divergence)
must be transformed with the same treatment of temperature. In some cases a quantity denoted ”NHX” (X-term)
must be also transformed.

∗ Additional spectral transforms necessary for iterative centred-implicit schemes:
The iterative part of these schemes do spectral transforms as for the predictive part (transforms are done on the
provisional t+ ∆t quantities obtained after each iteration); transforms involves all variables or a subset of them
according to the type of centred-implicit scheme used.

6.2.3 Shallow-water 2D model.

∗ Input variables in spectral space to be transformed into grid-point space: Reduced

divergence D
′
, reduced vorticity ζ

′
, equivalent height Φ.

∗ Output variables to be obtained in grid-point space: Variable X, meridian derivative
1

a cos Θ
∂X
∂Θ

and zonal derivative 1
a
∂X
∂Λ

for the following variables: reduced divergence D
′
, reduced vorticity ζ

′
,

reduced wind components U
′

and V
′
, equivalent height Φ. All horizontal derivatives are required in an Eulerian

model but some derivatives are useless in a semi-Lagrangian model.

∗ Input variables in grid-point space to be transformed into spectral space: Provisional
t + ∆t quantities before semi-implicit scheme and horizontal diffusion scheme for momentum equation and
continuity equation. For momentum equation input variables are reduced wind components, output variables
are reduced divergence and vorticity.

6.3 Spectral transforms necessary for particular applications.

One finds some other TRANSDIR ... (which call DIR TRANS) and TRANSINV ... (which call
INV TRANS) routines (resp. ETRANSDIR ... and ETRANSINV ... routines for LAM models) which
are designed for specific applications. For example, for ARPEGE, one finds:

• TRANSDIR NHCONV and TRANSINV NHCONV: interface routine for the spectral transforms
which are required when converting the data read on files towards the prognostic variables (and the reverse
one) in the non-hydrostatic model.

• TRANSDIR NHCONVPRHS and TRANSINV NHCONVPRHS: same type of application as
the previous one; additional transforms required for Wood and Staniforth formulation of deep-layer NH
equations.

• TRANSDIR WAVELET and TRANSINV WAVELET: interface routine for the spectral transforms
which are required to compute the wavelet Jb in a 3D-VAR or 4D-VAR assimilation using a wavelet
representation. These routines have adjoints.

18

7 Treatment of transmission coefficients when storing them in
Fourier space.

∗ Introduction: The structure of the code does not allow to have a distributed memory code which
gives NPROMA-dimensioned grid-point arrays for transmission coefficients without the intermediate stage of
NGPTOT-dimensioned grid-point arrays. The problem comes principally from Fourier transforms and not from
Legendre transforms. So a new code structure has been developed:

• Fourier coefficients instead of spectral coefficients are stored on files. No Legendre transform is done.

• Files are currently LFI files (code with ARPEGE files to be provided later).

• Fourier transforms are done by special routines called under MF PHYS on NPROMA-dimensioned
grid-point arrays, so a DM-code can be provided without a big increase of memory, at least when reading
coefficients.

• The “trans” library is not used.

∗ Setup and data reading:

• Writing Fourier coefficients is controlled by LWRTCFOU in NAMCT0. In this case the Fourier
coefficients written are a temporal average from the timesteps number 2 to NSTOP. NSTOP=2 provides
instantaneous coefficients.

• Reading Fourier coefficients is controlled by LRETCFOU in NAMCT0.

• Reading Fourier coefficients on files is done by the following sequence:
SUSPEC → SUSPECTCFOU.
SUSPECTCFOU reads data on files and calls some diagnostics (routine FOUTCNORM). For DM
code these actions are done on the “main” processor and data are then sent to the other processors by
routine DISFOU. For the Curtis matrix, the matrix read on file can be not horizontally constant, but
SUSPECTCFOU replaces it by its horizontal average because the simplified physics can currently use a
horizontally constant quantity for this variable.

• Fourier transforms need to compute a basis of sines/cosines put in (NTCMAX,NGPTOT)-dimensioned
DM-local grid-point arrays (like arrays describing geometry). This is done by the following sequence:
SU0YOMB → SURCOFTC → SURCOF. SURCOFTC does some allocations, SURCOF does
calculations. Basis of sines (i.e. sin (mΛ(jlon))) is stored in array RBASSITC, basis of cosines (i.e.
cos (mΛ(jlon))) is stored in array RBASCOTC. The array TRIGS computed in SUFFT (project
“trans”) has not a proper dimension to be used in this case.

∗ Fourier transforms:

• Inverse transforms are done in CPPFTTCINV called under MF PHYS. Code allows that latitudes can
be split between processors or NPROMA-packets.

• Direct transforms are done in CPPFTTCDIR called under MF PHYS. Currently the code does not
allow that latitudes can be split between processors or NPROMA-packets. For the DM-code that means
that the only admissible value of NPROMA is NGPTOTMX.

• These two routines call grid-point diagnostics (GPTCNORM).

∗ Data writing: Writing Fourier coefficients on files is done by the following sequence:
IOPACK → WRTCFOU.
WRTCFOU writes data on files and call some diagnostics (routine FOUTCNORM). For DM code these
actions are done on the “main” processor after that data have been collected from the other processors by routine
DIWRFOU.

∗ Adjoint and linear tangent codes: CPPFTTCINV and CPPFTTCDIR are also called under
MF PHYS AD and MF PHYS AD for configurations which use adjoint and tangent linear codes of the
model. There are no adjoint routines coded nor used for CPPFTTCINV and CPPFTTCDIR.

19

8 Some distributed memory features.

8.1 Case LEQ REGIONS=F.

∗ Grid-point computations: The total number of processors involved in the A-level parallelisation
is NPRGPNS. The total number of processors involved in the B-level parallelisation is NPRGPEW. One
processor treats NGPTOT points (a part of the Gaussian grid points, latitudes are not always complete).
The total amount of grid-points for all the processors is NGPTOTG. The maximum value of NGPTOT
is NGPTOTMX. In the grid-point space there is a subdivision of the current processor grid-points into
NGPBLKS=int[(NGPTOT+NPROMA-1)/NPROMA] packets of length NPROMA (the useful number
of values in each packet is lower or equal than NPROMA). These packets do not contain neither extra-longitudes
nor polar or extra-polar latitudes data. A NPROMA-packet does not always contain a set of complete latitudes.

One 2D field has NGPTOTG points divided into NPROC sets of NGPTOT points treated by each
processor. NGPTOT does not take account of the extra-longitudes, the poles and the extra-polar latitudes. All
these variables take account of the reduced Gaussian grid. It is assumed and hardcoded that there are one western
extra-longitude and two eastern extra-longitudes. The DM-global longitude jlon = 1 is always the “Greenwich”
meridian of the computational sphere. All the vertical levels and the variables corresponding to a same grid-point
are treated by the same processor. There are necessary transpositions (reorganisation of data) between grid
point computations and fast Fourier transforms because fast Fourier transforms need complete latitudes but not
necessary all the layers together.

∗ Fast Fourier transforms: The total number of processors involved in the A-level parallelisation is
NPRTRNS. The total number of processors involved in the B-level parallelisation is NPRTRV. Fast Fourier
transforms are done latitude by latitude for each NPROMA-packet. A processor treats a subset of latitudes,
one latitude at the time. A processor can treat only a subset of the vertical levels (if NPRTRV>1 for inverse
transforms, if NPRTRV>1 for direct transforms). Data reorganisation and transpositions are necessary in the
Fourier space between the zonal wave structure necessary for Legendre transforms and the latitudinal structure
necessary for fast Fourier transforms.

∗ Legendre transforms: The total number of processors involved in the A-level parallelisation is
NPRTRW. The total number of processors involved in the B-level parallelisation is NPRTRV. Legendre
transforms are done zonal wave number by zonal wave number. A processor treats a subset of zonal wave
numbers, one zonal wave number at the time. A processor can treat only a subset of the vertical levels (if
NPRTRV>1).

∗ Spectral computations: The total number of processors involved in the A-level parallelisation is
NPRTRW. The total number of processors involved in the B-level parallelisation is NPRTRV for horizontal
diffusion. The total number of processors involved in the B-level parallelisation is NPRTRN for semi-implicit
scheme. Spectral computations are done zonal wave number by zonal wave number. A processor treats a subset of
zonal wave numbers. For more details see documentations (IDSI) about semi-implicit scheme and (IDDH) about
horizontal diffusion scheme.

∗ Computation of Legendre polynomials: These computation is done latitude by latitude for all
the spectral coefficients. Data reorganisation and transpositions are necessary for Legendre transforms to gather
all latitudes and split into zonal wave numbers because for Legendre transforms one processor treats a subset of
zonal wave numbers and all latitudes.

∗ Additional remarks about the LEQ REGIONS environment variables. Variables
N REGIONS NS, N REGIONS and N REGIONS EW are used even when LEQ REGIONS=F but in
this case:

• N REGIONS NS=NPRGPNS.

• N REGIONS=NPRGPEW everywhere.

• N REGIONS EW=NPRGPEW.

8.2 Case LEQ REGIONS=T.

This case is relevant only when NPRGPEW>1 (B-level parallelisation at least in the grid-point calculations).
This is an optimised version of the LEQ REGIONS=F case which is well designed for reduced Gaussian grid and

20

it improves the load balance in this case. A comprehensive description can be found in (Mozdzynski, 2006). To
sum-up, we can say that:

• the A-level grid-point distribution splits the Earth into N REGIONS NS bands. N REGIONS NS
can be slightly different from NPRGPNS.

• for each band jroca, the B-level grid-point distribution splits the band into N REGIONS(jroca) zones:
the minimum value of N REGIONS is at the poles of the computational sphere (equal to 1 in the examples
provided by Mozdzynski); the maximum value of N REGIONS is at the equator of the computational
sphere and this maximum is equal to N REGIONS EW. The meridian variations of N REGIONS are
highly correlated to those of NLOENG.

• In the examples provided by Mozdzynski, NPRGPNS=NPRGPEW=NPRTRW=NPRTRV and we
notice that N REGIONS NS is slightly below NPRGPNS, and that N REGIONS EW is slightly
below 2∗NPRGPEW.

9 Specific variables of the “trans” and “etrans” libraries.

Variables (and comments) can be found in the following modules of the “trans” and “etrans” libraries, see
comments in the code for more details. They may have mirror counterparts in “arpifs/module”.

∗ “trans”:

• TPM CONSTANTS: constants.

• TPM DIM: dimensions.

• TPM DISTR: variables describing distributed memory parallelization.

• TPM FFT: setup for fast Fourier transforms. TRIGS contains the sines and cosines which are used in
the matricial product which defines the Fourier transform.

• TPM FIELDS: Legendre polynomials and some variables linked to the Gaussian grid. For a given total
wave number jn, NLTN(jn) is the number of available Legendre coefficients P (n = jn,m).

• TPM FLT: variables for fast Legendre transforms.

• TPM GEN: general control variables.

• TPM GEOMETRY: data describing Gaussian grid.

• TPM POL: encapsulated routines for Legendre polynomials.

• TPM TRANS: variables ”local” to a specific call to a transform.

∗ “etrans”:

• TPMALD DIM: dimensions.

• TPMALD DISTR: variables describing distributed memory parallelization.

• TPMALD FFT: setup for fast Fourier transforms. TRIGSE contains the sines and cosines which are
used in the matricial product which defines the Fourier transform.

• TPMALD FIELDS: contains for example the eigen-values of the inverse Laplace operator.

• TPMALD GEO: data describing plane projection grid.

• TPMALD TCDIS (useless).

21

10 Specific variables of the “arpifs” library.

These modules are auto-documented so description of each variable is provided in the code source. We can recall
here the most important variables to know for each module:

• YOMARG (0-level control, former command line) and YOMCT0 (0-level control):

– NCONF, CUSTOP (in NAMARG).

– LSPRT.

– LRETCFOU, LWRTCFOU, LRFOUTCNORM, LRGPTCNORM (transmission coefficients in
Fourier space).

Some of these variables are in namelist NAMCT0.

• YOMDIM, YOMDIMV and YOMDIMF (dimensioning): most of variables. Some of these variables
are in namelist NAMDIM.

• YOMFFTTC (base of sines and cosines used in the Fourier transforms done in CPPFTTCDIR and
CPPFTTCINV).

• MODULE RADTC MIX (structures and variables for radiation transmission coefficients). In particular
RFOAC and RFORADTC.

• YOMGEM (computational space grid-point horizontal geometry): all variables. Some of these variables
are in namelist NAMGEM.

• YOMLAP (constants related to the Laplace space).

• YOMLEG (description of Legendre polynomials). In particular YRCSGLEG.

• YOMMP0 and YOMMP (distributed memory environment, see documentation (IDDM) for more
details).

• YOMTRANS (spectral transforms control variables). Some of these variables are in namelist
NAMTRANS and NAMTRANS0.

Additional remarks:

• In a spectral array X dimensioned with NSPEC2, order of storing spectral coefficients is the following:
<(X)(n=0,m=0), =(X)(n=0,m=0), <(X)(n=1,m=0),
=(X)(n=1,m=0), ..., <(X)(n=Ns,m=0), =(X)(n=Ns,m=0), <(X)(n=1,m=1), =(X)(n=1,m=1), <(X)(n=2,m=1),
=(X)(n=2,m=1), ..., <(X)(n=Ns,m=1), =(X)(n=Ns,m=1), ..., <(X)(n=Ns−1,m=Ns−1), =(X)(n=Ns−1,m=Ns−1),
<(X)(n=Ns,m=Ns−1), =(X)(n=Ns,m=Ns−1), <(X)(n=Ns,m=Ns), =(X)(n=Ns,m=Ns).

• In the array RPNM containing the Legendre polynomials, order of storing Legendre coefficients for a
given Gaussian latitude is the following for (n,m): (Ns + 1, 0), (Ns, 0), ..., (1, 0), (0, 0), (Ns + 1, 1), (Ns, 1),
..., (1, 1), ..., (Ns + 1, Ns), (Ns, Ns), ..., (Ns, Ns).

• The reader can also look at modules linked to the GMV and GFL structures:
yom ygfl.F90, yomgfl.F90, yomgmv.F90, type gfls.F90, type gmvs.F90, gfl subs mod.F90,
gmv subs mod.F90.
See comments inside these modules and documentation (IDEUL) for more details.

22

11 Bibliography.

A lot of references are available in note ARPEGE nr 30.

11.1 Publications.

• Bubnová, R., G. Hello, P. Bénard, and J.F. Geleyn, 1995: Integration of the fully elastic equations cast
in the hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/Aladin NWP
system. Mon. Wea. Rev., 123, 515-535.

• Courtier, Ph., C. Freydier, J.F. Geleyn, F. Rabier and M. Rochas, 1991: The ARPEGE project at METEO-
FRANCE. ECMWF Seminar Proceedings 9-13 September 1991, Volume II, 193-231.

• Courtier, Ph., and J.F. Geleyn, 1988: A global numerical weather prediction model with variable resolution:
Application to the shallow-water equations. Quart. J. Roy. Meteor. Soc., 114, 1321-1346.

• Geleyn, J.F., and R. Bubnová, 1995: The fully elastic equations cast in hydrostatic pressure coordinate:
accuracy and stability aspects of the scheme as implemented in ARPEGE/Aladin. Atm. Ocean, special
issue memorial André Robert.

• Laprise, R., 1992: The Euler equations of motion with hydrostatic pressure as an independent variable.
Mon. Wea. Rev., 120, 197-207.

• Laprise, R., 1992: The resolution of global spectral models. Bulletin American Meteor. Society, 73,
1453-1454.

• Ritchie, H., C. Temperton, A. Simmons, M. Hortal, T. Davies, D. Dent, and M. Hamrud, 1995:
Implementation of the semi-Lagrangian method in a high resolution version of the ECMWF forecast model.
Mon. Wea. Rev., 123, 489-514.

• Schmidt, F., 1977: Variable fine-mesh in spectral global model. Beitr. Phys. Atmos., 50, 211-227.

• Swarztrauber, P.N., 2002: On computing the points and weights for Gauss-Legendre quadrature. SIAM J.
Sci. Comput., 24, 945-954.

• Temperton, C., 1991: On scalar and vector transform methods for global spectral models. Mon. Wea.
Rev., 119, 1303-1307.

• Wedi, N. P., M. Hamrud and G. Mozdzynski, 2013: A fast spherical harmonics transform for global NWP
and climate models. Mon. Wea. Rev., 141, 3450-3461.

• Williamson, D. L., and J. M. Rosinski, 2000: Accuracy of reduced grid calculations. Q. J. R. Meteorol.
Soc., 126, 1619-1640.

• Wood, N., and A. Staniforth, 2003: The deep-atmosphere Euler equations with a mass-based vertical
coordinate. Q. J. R. Meteorol. Soc., 129, 1289-1300.

• Yessad, K. and P. Bénard, 1996: Introduction of a local mapping factor in the spectral part of the METEO-
FRANCE global variable mesh numerical forecast model. Quart. J. Roy. Meteor. Soc., 122, 1701-1719.

11.2 Some internal notes and other ARPEGE notes.

• (TDECDYN) 2014: IFS technical documentation (CY40R1). Part III: dynamics and numerical procedures.
Available at “http://old.ecmwf.int/research/ifsdocs/”.

• (TDECTEC) 2014: IFS technical documentation (CY40R1). Part VI: technical and computational
procedures. Available at “http://old.ecmwf.int/research/ifsdocs/”.

• (IDTSN) Hamrud, M., 2002: New transform library. Internal note (9pp) available on the intranet server
“http://www.cnrm.meteo.fr/gmapdoc/”.

• (IDEQR) Mozdzynski, G., 2006: A new partitioning approach for IFS. Internal note, 6pp.

• (IDTSAL) Radnoti, G., 2001: The transformation package for ALADIN. Internal note, 6pp.

• (NTA30) Rochas, M., et Ph. Courtier, 1992: La méthode spectrale en météorologie. Note de travail
ARPEGE numéro 30, 58pp.

• (IDBAS) Yessad, K., 2015: Basics about ARPEGE/IFS, ALADIN and AROME in the cycle 42 of
ARPEGE/IFS (internal note).

• (IDEUL) Yessad, K., 2015: Integration of the model equations, and Eulerian dynamics, in the cycle 42 of
ARPEGE/IFS (internal note).

• (IDSL) Yessad, K., 2015: Semi-Lagrangian computations in the cycle 42 of ARPEGE/IFS (internal note).

• (IDSI) Yessad, K., 2015: Semi-implicit spectral computations in the cycle 42 of ARPEGE/IFS (internal
note).

• (IDDH) Yessad, K., 2015: Horizontal diffusion in the cycle 42 of ARPEGE/IFS (internal note).

• (IDFPOS) Yessad, K., 2015: FULL-POS in the cycle 42 of ARPEGE/IFS (internal note).

• (IDDM) Yessad, K., 2015: Distributed memory features in the cycle 42 of ARPEGE/IFS (internal note).

• (IDLAM) Zagar, M., and C. Fischer, 2007: The ARPEGE/ALADIN Tech’Book: Implications
of LAM aspects on the global model code for CY33/AL33. Internal note, 31pp, available on
“http://www.cnrm.meteo.fr/gmapdoc/”.

23

Appendix 1: Expression of the laplacian in spectral space
(spherical geometry).

Equation: (
∇
′2f
)

(n,m)
=

(
1

(a cos Θ)2

∂2f

∂Λ2

)
(n,m)

+

(
1

a2 cos Θ

∂
(
cos Θ ∂f

∂Θ

)
∂Θ

)
(n,m)

(31)

can be rewritten: (
(a cos Θ)2∇

′2f
)

(n,m)
=

(
∂2f

∂Λ2

)
(n,m)

+

(
cos Θ

∂
(
cos Θ ∂f

∂Θ

)
∂Θ

)
(n,m)

(32)

One assumes that this equation can be rewritten as:(
∇
′2f
)

(n,m)
= Z(n,m)f(n,m) (33)

Combining equations (32) and (33) yields:(
(a cos Θ)2Zf

)
(n,m)

=

(
∂2f

∂Λ2

)
(n,m)

+

(
cos Θ

∂
(
cos Θ ∂f

∂Θ

)
∂Θ

)
(n,m)

(34)

∗ LHS of equation (34): One uses the following relationships:

(a cos Θ)2 = a2(1− µ2) (35)

and:
[µX](n,m) = e(n,m)X(n−1,m) + e(n+1,m)X(n+1,m) (36)

Applying µ to equation (36) yields:

[µ2X](n,m) = e(n,m)

(
e(n−1,m)X(n−2,m) + e(n,m)X(n,m)

)
+ e(n+1,m)

(
e(n+1,m)X(n,m) + e(n+2,m)X(n+2,m)

)
(37)

i.e.
[µ2X](n,m) = e(n,m)e(n−1,m)X(n−2,m) +

(
e2

(n,m) + e2
(n+1,m)

)
X(n,m) + e(n+1,m)e(n+2,m)X(n+2,m) (38)

Introducing the results of equations (35) and (38) in the LHS of equation (34) yields:(
(a cos Θ)2Zf

)
(n,m)

=
(
a2(1− µ2)Zf

)
(n,m)

=

−a2e(n,m)e(n−1,m)[Zf](n−2,m) − a2
(
−1 + e2

(n,m) + e2
(n+1,m)

)
[Zf](n,m) − a2e(n+1,m)e(n+2,m)[Zf](n+2,m) (39)

∗ RHS of equation (34): Equation (9) yields:(
∂2f

∂Λ2

)
(n,m)

= −m2f(n,m) (40)

Equation (7) yields: (
cos Θ

∂
(

cos Θ
∂f
∂Θ

)
∂Θ

)
(n,m)

=

−(n− 1)e(n,m)

(
−(n− 2)e(n−1,m)f(n−2,m) + (n+ 1)e(n,m)f(n,m)

)
+(n+ 2)e(n+1,m)

(
−ne(n+1,m)f(n,m) + (n+ 3)e(n+2,m)f(n+2,m)

)
(41)

i.e. (
cos Θ

∂
(

cos Θ
∂f
∂Θ

)
∂Θ

)
(n,m)

= e(n,m)e(n−1,m)(n− 1)(n− 2)f(n−2,m) +(
−(n− 1)(n+ 1)e2

(n,m) − n(n+ 2)e2
(n+1,m)

)
f(n,m) + e(n+1,m)e(n+2,m)(n+ 2)(n+ 3)f(n+2,m) (42)

The sum of equations (40) and (42) yield:(
∂2f
∂Λ2

)
(n,m)

+

(
cos Θ

∂
(

cos Θ
∂f
∂Θ

)
∂Θ

)
(n,m)

= e(n,m)e(n−1,m)(n− 1)(n− 2)f(n−2,m)

+
(
− m2

n(n+1)
− (n−1)

n
e2

(n,m) −
(n+2)
n+1

e2
(n+1,m)

)
n(n+ 1)f(n,m) + e(n+1,m)e(n+2,m)(n+ 2)(n+ 3)f(n+2,m) (43)

24

∗ Identity of the LHS and the RHS: After some strenuous calculations which are not detailed in
this documentation and using the expression of e(n,m) (see formula (8)), one can show that the two expressions:

−1 + e2
(n,m) + e2

(n+1,m)

and:

− m2

n(n+ 1)
− n− 1

n
e2

(n,m) −
n+ 2

n+ 1
e2

(n+1,m)

are equal. So equation (43) can be rewritten:(
∂2f
∂Λ2

)
(n,m)

+

(
cos Θ

∂
(

cos Θ
∂f
∂Θ

)
∂Θ

)
(n,m)

= e(n,m)e(n−1,m)(n− 1)(n− 2)f(n−2,m)

+
(
−1 + e2

(n,m) + e2
(n+1,m)

)
n(n+ 1)f(n,m) + e(n+1,m)e(n+2,m)(n+ 2)(n+ 3)f(n+2,m) (44)

The identity of the LHS and RHS of equation (34) can be satisfied taking:

Z(n,m) = −n(n+ 1)

a2
(45)

So equation (33) can be rewritten: (
∇
′2f
)

(n,m)
= −n(n+ 1)

a2
f(n,m) (46)

25

Appendix 2: Computation of Gaussian latitudes and Gaussian
weights (spherical geometry).

Appendix 2.1: First method.

Method used until CY35T2.

∗ Gaussian latitudes: ndglg is the number of Gaussian latitudes (for convenience it is assumed to be an
even number), jgl is the index numbering the latitudes. Θ is the latitude on the computational sphere, µ = sin Θ.
P(n,m) are the unnormalized Legendre polynomials. The relationship between P(n,m) and P(n,m) is:

P(n,m)(µ) =
1√

(2n+ 1) (n−m)!
(n+m)!

P(n,m)(µ) (47)

The Gaussian latitudes Θjgl match the following relationship:

P(n=ndglg,m=0) (µjgl) = 0 (48)

A first guess approximation for Θjgl (which are “nearly” equidistant) yields:

Θ
(i=0)
jgl =

π

2
− 4jgl − 1

4ndglg + 2
π − 1

8ndglg2

cos
(

4jgl−1
4ndglg+2

π
)

sin
(

4jgl−1
4ndglg+2

π
) (49)

and thus µ
(i=0)
jgl = sin Θ

(i=0)
jgl . An iterative Newton method is then applied to find the “final” value of µjgl.

µ
(i+1)
jgl = µ

(i)
jgl −

P(n=ndglg,m=0)

(
µ

(i)
jgl

)
dP(n=ndglg,m=0)

dµ

(
µ

(i)
jgl

) (50)

This algorithm is used to find the Northern hemisphere latitudes (jgl from 1 to ndglg/2). The southern hemisphere
latitudes are given by:

µndglg+1−jgl = −µjgl

One can see that this algorithm needs the calculation of P(n=ndglg,m=0) and
dP(n=ndglg,m=0)

dµ
. This calculation is

done with some recurrence formulae which will be detailed in appendix 3 for the normalized Legendre polynomials.
The derivatives of the unnormalized Legendre polynomials are given by the following formula, once knowing the
unnormalized Legendre polynomials:

dP(n,m)

dµ
= − nµ

1− µ2
P(n,m) +

n+m

1− µ2
P(n−1,m) (51)

∗ Gaussian weights: They are given by the following formula:

ωjgl =
1− µ2

jgl

[ndglg ∗ P(n=ndglg,m=0) (µjgl)]2
(52)

Appendix 2.2: Second method.

Method used by the current version of SUGAW. Not yet described. Uses a method described in (Swarztrauber,
2002).

26

Appendix 3: Computation of the normalized Legendre
polynomials (spherical geometry).

Appendix 3.1: First method.

Method used until CY35T2.

∗ Introduction: The algorithm uses recurrence formulae. There are several possible solutions, the following
one is used in the code. The order is the following one:

• P(n=0,m=0); P(n=1,m=0); P(n=1,m=1).

• P(n,m=0) where n > 1.

• P(n,m=1) where n > 1.

• P(n,m=n) where n > 2.

• The remaining Legendre polynomials in the following order: P(n=3,m=2); P(n=4,m=2); P(n=4,m=3);
P(n=5,m=2); P(n=5,m=3); P(n=5,m=4); ...; P(n,m=2); P(n,m=3); ...; P(n,m=n−1); P(n+1,m=2); P(n+1,m=3); ...;
P(n+1,m=n−1); P(n+1,m=n); etc.

∗ Wave numbers 0 and 1:
P(n=0,m=0) = 1

P(n=1,m=0) =
√

3µ

P(n=1,m=1) =
√

1.5 (1− µ2)

∗ Other polynomials for m = 0: P(n,m=0) is computed knowing P(n−1,m=0) and P(n−2,m=0). The
following recurrence formula is used (formula (1.20) of (Rochas and Courtier, 1992)):

µP(n,m) =
√

(n2 −m2)/(4n2 − 1)P(n−1,m) +
√

((n+ 1)2 −m2)/(4(n+ 1)2 − 1)P(n+1,m) (53)

Changing n into n− 1 in equation (53), then putting P(n,m) in the LHS, yields:

P(n,m) = µ
√

(4n2 − 1)/(n2 −m2)P(n−1,m) −
√

((n− 1)2 −m2)/(4(n− 1)2 − 1)
√

(4n2 − 1)/(n2 −m2)P(n−2,m) (54)

For m = 0 equation (54) becomes:

P(n,m=0) = µ
√

(4n2 − 1)/n2P(n−1,m=0) −
√

(n− 1)2/(4(n− 1)2 − 1)
√

(4n2 − 1)/n2P(n−2,m=0) (55)

∗ Other polynomials for m = 1: P(n,m=1) is computed knowing P(n,m=0) and P(n−1,m=0). The following
recurrence formula is used (formula (1.22) of (Rochas and Courtier, 1992)):√

1− µ2P(n,m) =
√

[(2n+ 1)(n+m− 1)]/[(2n− 1)(n+m)]P(n−1,m−1) +
√

(n−m+ 1)/(n+m)P(n,m−1) (56)

For m = 1 equation (56) becomes:√
1− µ2P(n,m=1) =

√
[(2n+ 1)n]/[(2n− 1)(n+ 1)]P(n−1,m=0) +

√
n/(n+ 1)P(n,m=0) (57)

∗ Other polynomials for m = n: The following recurrence formula is used:

P(n,n) =
√

1− µ2
√

(2n+ 1)/(2n)P(n−1,n−1) (58)

∗ Other polynomials: The following recurrence formula is used (formula (1.31) of (Rochas and Courtier,
1992)):

P(n,m) =

√
(2n + 1)(n +m− 1)(n +m− 3)

(2n− 3)(n +m)(n +m− 2)
P(n−2,m−2)−

√
(2n + 1)(n +m− 1)(n−m + 1)

(2n− 1)(n +m)(n +m− 2)
P(n−1,m−2)+

√
(2n + 1)(n−m)

(2n− 1)(n +m)
P(n−1,m)

(59)

Appendix 3.2: Second method.

Method used by the current version of SUPOL. Uses a method described in (Swarztrauber, 2002) and briefly
described in (Wedi et al., 2013).

27

