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Abstract:

This documentation describes two types of schemes allowing to stabilize the numerical discretizations of
the models: the semi-implicit scheme and the iterative centred-implicit scheme (sometimes called predictor-
corrector scheme). An algorithmic description to different types of equations, and some technical information
(organigramme) are provided.

Résumé:

Cette documentation décrit deux types de schémas permettant de stabiliser les discrétisations numériques des
modéles: le schéma semi-implicite et le schéma ICI (centré implicite itératif) encore appelé prédicteur-correcteur.
On fournit une application de ces algorithmes a différents jeux d’équations, ainsi que des informations techniques
(organigramme).
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1 Introduction.

1.1 Interest of semi-implicit and iterative centred-implicit schemes.

For both hydrostatic and non-hydrostatic models it is necessary to treat implicitly the linear terms source of (fast
moving) gravity waves to ensure a good stability. Hence the resolution of equations involve the inversion of a
linear system leading to a Helmholtz equation: inversion of such a system is more convenient to do in spectral
space.

For non-hydrostatic models the semi-implicit scheme is generally not sufficient (especially for a two-time level
semi-Lagrangian scheme) and some non-linear terms have also to be treated implicitly; for that one uses an
iterative centred-implicit (abbreviated into “ICI”) scheme. The iterative centred-implicit schemes are often called
“predictor-corrector” schemes, but in a theoretical point of view one has normally to reserve this appellation for
a subset of iterative centred-implicit schemes with only one iteration. The iterative centred-implicit scheme can
have an incremental formulation or a non-incremental formulation. The one which is coded in ARPEGE/IFS and
its LAM version (for both hydrostatic and non-hydrostatic models) and which will be retained and described is a
non-incremental one. All the additional calculations generated by an iterative centred-implicit scheme are mainly
done in the grid-point calculations and in the spectral transforms.

1.2 The different models described.

e 2D shallow-water model.

e 3D primitive equations model (denoted as HYD).
e 3D fully elastic NH model with Q and d or d4s NH prognostic variables (denoted as NHEE or NH-PDVD).

1.3 Other restrictions of this documentation.

e In the non-hydrostatic model with Q and d or ds NH prognostic variables, only the option with Q and d
as prognostic variables (options NPDVAR=2 NVDVAR=3) is currently described. The choice of ds as
prognostic variable NVDVAR=4 does not change the expression of linear terms.

e Linear systems are written for thin layer equations: in practical, they don’t change for deep layer equations
because the radius r is linearised around a reference value equal to a.
For the (Wood and Staniforth, 2003) NH deep-layer system, hydrostatic pressures (I1,IIs) must be replaced
by mass-integrated coordinates (l:[,ﬁs) in the linear system.



2 Denotations.

M is the mapping factor. M is a reference mapping factor for semi-implicit computations. E =c
(stretching factor) if semi-implicit scheme with reduced divergence (LSIDG=.F. in YOMDYN). M = M
(mapping factor) if semi-implicit scheme with unreduced divergence (LSIDG=.T. in YOMDYN).

a is the Earth mean radius.

r is the radius. The reference value of r for the linearisation is the mean radius a. In the thin layer
equations, r = a everywhere. In the LVERCOR=T (White and Bromley, 1995) deep-layer equations, r
is replaced by a pseudo-radius rs depending only on the hydrostatic pressure. All the equations involving
the radius will be written with the denotation r.

V is the horizontal geographical wind. Its zonal component is U. Its meridian component is V.

D is the unreduced divergence of ho/rizontal wind, D' is the reduced divergence. D and D' are linked by
the relationship D = (a/r) * M? x D .

¢ is the unreduced vorticity of, horizontal wind, ¢ " is the reduced vorticity. ¢ and ¢ " are linked by the
relationship ¢ = (a/r) * M? .
dz

w is the z-coordinate vertical velocity: w = .

T is the temperature. T is a vertically-constant reference temperature which is used in the semi-implicit
scheme and in some non-hydrostatic equations. Default value is 300 K or 350 K according to configuration.
If LSPRT=.T. (use of virtual temperature in spectral transforms instead of real temperature), T is used
as a reference virtual temperature (same default value).

T, is a cold vertically-constant reference temperature which is used in the semi-implicit scheme in the NH
vertical divergence equation; it is recommended to have T, lower than the current temperature.

q is the humidity.

II is the hydrostatic pressure, Il is the hydrostatic surface pressure. IT* is a reference hydrostatic pressure
and IIs* is a reference hydrostatic surface pressure, which are used in the semi-implicit scheme and in some
non-hydrostatic equations. These reference quantities are vertically dependent and “horizontally” (i.e. on
n surfaces) constant. Default value of IIs* is generally between 800 hPa and 1000 hPa. AII* are layer
depths corresponding to a surface hydrostatic pressure equal to ITs*.

IL,g; is a reference hydrostatic pressure equal to the surface pressure of the standard atmosphere (variable

VPO00). Default value is 101325 Pa.

w = ‘fi—l;[ is the total temporal derivative of the hydrostatic pressure (vertical velocity in hydrostatic pressure

coordinate).
gz is the geopotential height.

® is the total geopotential (equivalent height in the shallow-water model), ®s is the surface geopotential
(i.e. the orography). In the thin layer equations, ® = gz. ® is assumed to be always equal to gzs. ®* is a
reference equivalent height which is only used in the shallow-water model (semi-implicit scheme). Default
value of ®* is 100000 J/kg. AP is a reference geopotential depth computed on model levels.

Q is the Earth rotation angular velocity.
r is the vector directed upwards, the length of which is the Earth radius a.

g is the gravity acceleration constant, assumed to be vertically constant in the current documentation. For
the (Wood and Staniforth, 2003) deep-layer NH equations with vertical variations of g, only the reference
value of g (vertically constant) is taken into account in the semi-implicit scheme.

R is the gas constant for air and R4 the gas constant for dry air.

¢p is the specific heat at constant pressure for air and ¢, is the specific heat at constant pressure for dry
air.

¢y is the specific heat at constant volume for air and ¢4 is the specific heat at constant volume for dry air.

V is the unreduced first order horizontal gradient on n-surfaces. V' is the reduced first order horizontal
gradient. These two operators are linked by the relationship V = (a/r) * M * V .

p is the pressure, ps is the surface pressure.

Q is the pressure departure variable. Expression of Q is:



Ds is the true 3D divergence. In the thin layer equations, expression of Dj is:

P oV gp ow
D; =VV + Vo () - () 2)
IXRT n SXRT \ On

d is the vertical divergence. In the thin layer equations, the relationship between d and the height-coordinate

vertical velocity w is:
gp ow
d=—-— | — 3
%RdT <(977) ( )

Variable dy =d + #}QTVCI) (%) can be also used as prognostic variable.
on

L: number of layers of the model.

A, B define hydrostatic pressure on the n levels ( II = A + Blls, where Il is the hydrostatic surface
pressure).

B coeflicient for the semi-implicit scheme (between 0 and 1).
v, T, v, i, G*, 8*, N* are generic denotations for linear operators (see subsection 4.2).

L*, Q" and T* are generic denotations for linear operators used in non-hydrostatic models (see subsection
4.2).

H, C, N are intermediate constants used in the semi-implicit scheme of the non-hydrostatic model.

Definitions are respectively:

- RqT

g
C=, /RdT*ZP—d (5)
vd
_ g

N —
v/ CpgT™*
For a variable X defined at full levels, (X) is the vector of coordinates (X1;...; Xi;...; Xr).
Rinte is the vertical integration operator used in the case LVERTFE=.T. :

— "1 Xdn is discretised by [Rinte] (top.surf) (X)-

n=0
- 77:;’ Xdn is discretised by [Rinte](top,i) (X)-
— ::nll Xdn is discretised by [Rinte)1,surf) (X)-

Rderi is the vertical first-order derivative operator used in the case where VFE are also applied to derivatives.



3 General considerations.

3.1 Advection schemes.

x Explicit Eulerian equations: In Eulerian form of equations, the time dependency equation of a

variable X writes as: ax
T -UVsX+A+F (7)
where U is the 3D wind, V3 is the 3D gradient operator, A is the dynamical contribution, and F is the physical

contribution. X (¢ + At) is computed knowing X (¢t — At) at the same grid point.

+x Explicit semi-Lagrangian equations: In semi-Lagrangian form of equations, the time dependency

equation of a variable X writes as:

dXx

— =A+F 8

i + (8)
In a three-time level semi-Lagrangian scheme (abbreviated into SL3TL scheme) X (¢ + At) is computed at a grid
point F knowing X (¢t — At) at the point O (not necessary a grid point) where the same particle is at ¢ — At. In a
two-time level semi-Lagrangian scheme (abbreviated into SL2TL scheme) X (¢ + At) is computed at a grid point

F knowing X (¢) at the point O (not necessary a grid point) where the same particle is at ¢.

3.2 Semi-implicit treatment of linear terms.

x Adding of a semi-implicit correction: In all cases the linear terms source of gravity waves must
be treated implicitly, in order to allow time-steps compatible with an operational use of the model. Expression
of the linear terms is obtained assuming a definition of a reference state. The reference state is defined by a dry
resting isotherm atmosphere in hydrostatic balance, reference orography is zero. Equations (7) and (8) become
respectively (9) and (10):

e FEulerian scheme:

887)75( = —-U.V3X + A+ F + [SIcorrection) 9)
e Semi-Lagrangian scheme:
% = A+ F + [SIcorrection) (10)

« Discretisation of equations (9) and (10): Equations (9) and (10) give the following discretized
equations, where At is the time step, £ is the linear term source of gravity waves, 3 is a tunable parameter (8 = 0
corresponds to an explicit formulation, 8 = 1 to an implicit formulation):

e Eulerian scheme (all computations are done at the same grid point):

[SIcorrection] = —BL" 4+ 0.58L 2" 4 0.58L T2 (11)
XA BALLTTAT = XA L OAL(—U.VsX 4+ A+ F) — 2BALL" + BALLTAY (12)
e Three-time level semi-Lagrangian (SL3TL) scheme (without uncentering factor):
[SIcorrection] = —BL" + 0.58L A 4 0.58L A (13)
XA BALLITAY = XA L 2AL(A + F) — 2BALLY + BALLTAY (14)

where X2t — BAtLMTA is computed at the final grid point of the semi-Lagrangian trajectory, X¢™4¢
and BALLP ™At are computed at the origin point of the semi-Lagrangian trajectory, —2BAtL" is computed
as an average between the origin and final points of the trajectory, A is computed either at the medium
point or as an average between the origin and final points of the trajectory. If there is a uncentering factor
e replace At by (1 — €)At¢ for terms at the origin point, At by (1 + €)At for terms at the final point. For
more details see documentation (IDSL) about the semi-Lagrangian scheme.

e Two-time level semi-Lagrangian (SL2TL) scheme (without uncentering factor):

[SIcorrection] = —BLTOPA L 0.58L" 4+ 0.58L T2 (15)
X' _058ALLTA = X 4 At(A+ F) — BALLTOPA 4 0.58ALL" (16)
where X'T2t — 0.58ALLA is computed at the final grid point of the semi-Lagrangian trajectory, X*

and 0.58AtL! are computed at the origin point of the semi-Lagrangian trajectory, —BAtL054% and A
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are computed either at the medium point or as an average between the origin and final points of the
trajectory. If there is a first-order uncentering factor e replace At by (1 — €)At for terms at the origin
point, At by (1 + €)At for terms at the final point. For more details see documentation (IDSL) about the
semi-Lagrangian scheme.

L1058 £t and £72 are computed in grid point space. The right-hand side members of equations (12), (14)

and (16) are computed in grid point space, then transformed into spectral space. Entering spectral space a system
of equations of the following type must be solved:

XUTHAL _ gAppttAt _ a7
for a leap-frog scheme, and:

XA _058ALLTA = X (18)

XAt is unknown.

for a two-time level semi-Lagrangian scheme, where X is known and
3.3 Iterative centred-implicit schemes and combination with semi-implicit
schemes.

In some cases (especially in the non-hydrostatic models), the model with a semi-implicit treatment of linear
terms may remain unstable, hence a treatment by an iterative centred-implicit scheme may be necessary. In the
following description one sticks to non-incremental formulations.

* Algorithm: The total number of iterations is denoted by Niiter-

t+At

(i=0) of X'*2% with a normal semi-implicit scheme.

e The iteration number (i = 0) computes an estimation X

e Iterations (i > 0): the i-th iteration (i > 0) computes Xf;gAt (after inversion of Helmholtz equation)

knowing XZ:;AS The final value of X**2? is equal to X&"':%\f er)”
e Horizontal diffusion is always done at the last iteration, it can be done optionally at the other iterations.
e This scheme is controlled by the key LPC_FULL=.T. .

e For unlagged physics, the physics has to be computed for the iteration (¢ = 0) only. For lagged physics,
iterations 0 to Nsiter — 1 are adiabatic ones, iteration Ngiter is diabatic one.

*x Discretisation of algorithm:

e First iteration (i = 0): One has to start from the discretisations of equations for a model with no
iterative centred-implicit formulation (see documentations (IDEUL) and (IDSL)). For a leap-frog scheme

the calculations are the same ones. For a SL2TL scheme, (A — BAtﬁ)Ej:od?At is assumed to be equal to

(A — BALL)! if no extrapolation is done (case LNESC=.T.), and to 1.5(A — BALL)! — 0.5(A — BALL) A¢
if extrapolation is done (case LNESC=.F.). For a SL2TL case with no uncentering factor that yields the
following discretisations (physics is assumed to be unlagged):

— no extrapolation:
(Xg;%;—o.mwzgj:%g)p = [0.5At A" —0.5AtBL p+[ X +0.5AtA —0.5AtBL +0.5ALBL +AtF | o (i=0)

(O(i = 0) and F are respectively the origin and final points of the semi-Lagrangian trajectory), which
can be rewritten:

(XG0 — 0BAtBLES ) r = [0.5ALA" — 0.5ALAL r + [X' + 0.5ALA" + ALF'|o(i0)

— extrapolation: discretisation is identical to the case with no iterative centred-implicit scheme and
conventional extrapolation (type LSETTLS=.F.); the RHS terms other than X* and F' can be
replaced by a “spatio-temporal” average; see documentation (IDSL).

e Following iterations (¢ > 0): The general iteration writes (no uncentering, unlagged physics):
— Eulerian scheme (ADV stands for advection terms):
t+At t+At
Xy —ABLg)
= X' L 2AtADV! + [ALAGSS — ABLAN 4 [ALATE — AtBLT A 4 ABLT A 4 2AtF TR
which can be rewritten:

XA = ABLER = AtATE] — AtBLIAS + (X8 4+ 2AtADV! + ALA'™2 4 2ALF A
7



— SL3TL (without uncentering factor):
[X(ti-&)-At At,@EHAt]

= X5+ [ALATES — AtBLE S p + [ALAT™ — AL M op) + [ABL T2 + 2AtF o)

which can be rewritten:

(X2 = AtBL e = XG0 + [ALATE) — AtBLGTA r + [ALAT2 4 2ALF o)

The iterative centred-implicit algorithm also applies to re-compute the semi-Lagrangian trajectory
(see documentation (IDSL) for more details), the position of the origin point at the i-th (resp ¢ —1-th)
iteration is O(i) (resp. O(i — 1)).

— SL2TL (without uncentering factor):

[Xt+At _o. 5Atﬁ£t+At}

= X6) + [0.5ALAG S — 0.5ALBLG T r + [0.5ALA" — 0.5AtBL o) + [0.5AtBL" + AtF o)

which can be rewritten:
(X2 = 05AtBLEY r = Xb0) + [0.5ALATES — 0.5AtBLIE | + [0.5ALA" + AtF o)

The iterative centred-implicit algorithm also applies to re-compute the semi-Lagrangian trajectory
(see documentation (IDSL) for more details), the position of the origin point at the i-th (resp ¢ —1-th)
iteration is O(z) (resp. O(i — 1)). Remark: when the iterative centred-implicit scheme is used, the
stable extrapolation LSETTLS=.T. is never involved.

x Cheap version of this algorithm: In a semi-Lagrangian scheme, it is possible not to iterate the
position of the origin point O (i.e O(i) = O(i = 0)): this cheap version is activated if LPC_CHEAP=.T. .
It is coded only for a non-extrapolating SL2TL scheme. In this case the quantity to be interpolated (i.e.
[0.5AtA" + AtF*)o) needs to be interpolated at the predictor step only. It is then stored in a buffer and re-
used at the corrector steps without any interpolation.

3.4 Introduction of uncentering for semi-Lagrangian schemes.

Averages along the semi-Lagrangian trajectory will be weighted by (1 — €) at the origin point and (1 + €) at the
final point. If the uncentering coefficient € is horizontally constant the algorithms remain valid, replacing S by

(1+¢€)pB.
3.5 Limited area models (ALADIN, AROME).

Particular features for LAM models are not described in detail, only brief comments are mentioned. Most parts
of this documentation remain valid, the main differences with ARPEGE/IFS are:

e The LAM model shallow-water model is not coded.
e Option LIMPF=.T. is not coded.

e Option LESIDG=.T. replaces LSIDG=.T., and is available only with the tilted-rotated Mercator
projection. See (IDESIDG) about its implementation.

e Some spectral calculations are done in routines named ESP..SI which are LAM counterparts of SP..SI
routines. The algorithm is the same as in global model but the truncation of the spectral representation is
elliptic and not triangular.

3.6 Finite elements on the vertical.
The option with finite element vertical discretisations is coded for the hydrostatic model and partly for the NH
models. For VFE, the main modifications in the semi-implicit scheme are the following ones:

e The discretisation of II, a and ¢§ at full levels is different.

e The model avoids as possible to compute quantities at half levels; all vertical integrals directly provide
quantities at full levels.

e The vertical integrals contained in some linear operators (v, 7 and v) are discretised differently, as a
matricial multiplication with special coefficients (contained in the matrix Rinte) computed in the setup
code under SUVERTFE; the vertical integration is done by routine VERINT.

e In NH models there are also vertical derivatives with a specific treatment.

8



4 Prognostic variables and quantities involved in the semi-
implicit scheme.

4.1 Prognostic variables.

Prognostic variables can be split into different classes:

e 3D variables, the equation RHS of which has a non-zero adiabatic contribution and a non-zero semi-
implicit correction contribution. They are called “GMV” in the code (“GMV” means “grid-point model
variables”). This class of variables includes the components of the horizontal wind V, temperature T, and
the two additional non-hydrostatic variables in a non-hydrostatic model. Details about equations of the
NH variables in the NH-PDVD model (choice of the two additional prognostic variables, discretisations,
linearisation for semi-implicit scheme) can be found for example in (IDNHPB).

e 3D “conservative” variables. The equation RHS of these variables has a zero adiabatic contribution, only the
diabatic contribution (and the horizontal diffusion contribution) can be non-zero. They are called “GFL”
in the code (“GFL” means “grid-point fields”). This class of variables includes for example humidity ¢,
liquid water, ice, cloud fraction, ozone, and some extra fields.

e 2D variables, the equation RHS of which mixes 3D and 2D terms, has a non-zero adiabatic contribution
and a non-zero semi-implicit correction contribution. They are called “GMVS” in the code (“GMVS”
means “grid-point model variables for surface”). This class of variables includes the logarithm of surface
pressure (continuity equation).

Only the GMV and GMVS variables appear in the semi-implicit scheme. In the shallow-water 2D model, only
GMYV variables exist, this class of variables includes the components of the horizontal wind V, and the equivalent
height ® — &5 (continuity equation).

4.2 Quantities used for vertical discretisations and linear operators.

The following quantities and operators may have different discretisations according to the fact that finite
differences (FD) or finite elements (VFE) are used for vertical discretisations in the model. The following
abbreviations will be used:

e FDO: finite differences (LVERTFE=.F.) using NDLNPR=0.

e FDI1: finite differences (LVERTFE=.F.) using NDLNPR=1.

e FD: finite differences (LVERTFE=.F.), any value for NDLNPR.
e VFE: vertical finite elements (LVERTFE=.T.).

4.2.1 Operators “alpha” and “delta”.

These operators are used for discretisations of some vertical integrals. They have a different expression according
to the value of variables NDLNPR, LVERTFE.

e FDO:
— For a layer [ between 2 and L (and also [ = 1 if the pressure at the top of the model is not zero), a*
and §* are discretised as follows at full levels:
af =1-— iy lo 1 (19)
l Ay B\
5 =1 H; 20
1 = 1og e (20)
-1
— For the layer [ =1 if the pressure at the top of the model is zero:
* aj_, =1 at METEO-FRANCE.
* aj—, = log(2) at ECMWEF.
* 0;—; has in theory an infinite value, but in the code it is computed with a top pressure equal to
0.1 Pa to provide a finite value.
e FDI1:

— For a layer [ between 2 and L (and also [ = 1 if the pressure at the top of the model is not zero), a*
and §* are discretised as follows at full levels:
L, I

m I
l l

af =1—

(21)



Iy 117
51* = A *l = A l (22)
I1; I
-1 1

IT* is discretised as follows at full levels:

H*l = 1/ H*YH*Y_I (23)

*

Denotation az* , is used for quantity 1 — 1211 instead of denotation ;" of (Bubnova et al., 1995).
- l

— For the layer | = 1 if the pressure at the top of the model is zero:
* ajp =land of_ = 1.
* 0y =1 +de/Rd~
* Iy = AT, /07—

VFE: for a layer | between 1 and L, o™ and 0" are discretised as follows at full levels:

LTI
l
. AI
i =S¢ (25)

where II] = A; 4+ BiIls*. See documentation (IDEUL) for computation of A; and By in this case. Formulae
(24) and (25) provide finite values of o] and 67 even if the pressure at the top of the model is zero. «; is
not used in the SI scheme in this case because vertical integrals are directly provided at full levels without
the intermediate state of interlayer data.

4.2.2 Vertical integrals and linear products.

These operators are used in both hydrostatic and non-hydrostatic models.

* Linear operator “vy

”, and its dimensionless counterpart G*: this operator is applied to

temperature and pressure departure variable to compute linear term in momentum equation.

For a variable Z, (G*Z) is a discretisation of vertical integral: fnl 1 81}: Zdn

o
vZ = Ra(G*Z)
VFE expression of this discretisation is:
Z6*
*Z - ins sur AN 2

(G"Z)1 = [Rinte] t,sury) < An> (26)

FD expression of this discretisation is:
L
(G2 =aiZi+ Y Zidi (27)
k=1+1

Remark: if LSPRT=.T., G is applied to virtual temperature instead of real temperature.

x Linear operator “7”, and its dimensionless counterpart S*: this operator is applied to
divergence to compute linear term in temperature equation.

For a variable Z, (S*Z) is a discretisation of vertical integral: On DTTZ dn
7Z = [(RaT")/cpy|(S* Z) if LSPRT=F.

7Z = [(R3T*)/(Repy)](S*Z) if LSPRT=.T. (equivalent to apply a linear operator in a system of equations
using virtual temperature).

VFE expression of this discretisation is:

of Al Z
S*Z)1 = = [Rin 28
( ) AH;“ [ te](toza,l) < An > (28)
Remark: according to the expression of §; in this case, this equation can be rewritten:

" 1 Al Z
(S Z)l = H—T[Rinte](top,l) < An >

FD expression of this discretisation is:

(S*7) =

-1
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*x Linear operator “v” , and its dimensionless counterpart IN*: this operator is applied to
divergence to compute linear term in continuity equation.

e For a variable Z, (N*Z) is a discretisation of vertical integral: - fol %Zdn
e vZ = N"Z (because use of logIl).

e VFE expression of this discretisation is:

X 1 AIl*Z
(N Z) = f;[Rinte](top,suv'f) < An > (30)
e FD expression of this discretisation is:
1 &
(N*Z) = e IZAHE‘Z; (31)
=1

* Linear operator “u”, and its dimensionless counterpart I: this operator is applied to
log(Ils) to compute linear term in momentum equation.

e I is the identity matrix: IZ = Z.

e (uZ) = R4aT*Z if LSPRT=.F.

e (uZ) = (R%/R)T*Z if LSPRT=.T. (equivalent to apply a linear operator in a system of equations using
virtual temperature).

*x Relationship between these vertical operators and definition of constraint C1:
Continuous equations ensure the following identity:

G'S"—S"—G'+N"=0 (32)

According to the vertical discretisation used, this identity may or may not be matched by the discretised operators.
Definition of “constraint C1” is: the discretised operators matches equation (32).

e FDO and VFE: constraint C1 is not ensured.

e FD1: constraint C1 is ensured.
In the NH-PDVD model, constraint C1 SHOULD be ensured if one wants the complete elimination of variables
in order to provide a “one variable” Helmholtz equation computing the vertical divergence. This is why the FD1

is preferred to FDO when using FD discretisation. For VFE, Helmholtz equation treatment requires adaptations
to take account of the fact that constraint C1 is not ensured.

When constraint C1 is not ensured, we introduce the dimensionless quantity COR:

Cvd Cvd Cvd Cvd Cvd * Quk * * *
COR = - - Sd), - MGreT -8 -G+ N 33
BT Tas ! T Rl ey’ oy +N] (33)

4.2.3 Vertical derivatives and mixed operators (NH models only).

These operators are used in non-hydrostatic models only.

x Linear operator “L*”: this operator, called Laplacian operator, is applied to the pressure departure
variable to compute linear term in the vertical divergence equation (NH-PDVD model).

e For a variable Z, (L*Z) is the vertical double derivative [H* %(agjn**z)]_
e FD expression of this discretisation is:

— Layers 2 to L — 1:

L2y =AlZ1 1 +B{Z1+Ci Zipa (34)
Expressions of A*, B* and C* are:
* Hffl
Al = Sy (35)
o (I —1I7_y)
1 Iy IT;
BZ‘——*(* T T ) (36)
op \ 1y =17, f1— 10
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*
LIS}

o (Hl+1 - Hz)
Note that equation (34) can be rewritten:
(L*Z)1 = A{(Zi-1 — Z1) + C{ (Zi11 — Zi) (38)

— Layer 1: The quantity Z to which is applied L* is assumed to be zero at the top of the model, that
means that the term Aj(Zo — Z1) has to be replaced by —A7Z;. In practical, A} has to be set
to zero if the top hydrostatic pressure is zero, and the general formula valid for any non-zero top
pressure is:

115,
Al = (39)
! 51 (Hl - Htop)
C7 matches the general expression:
Cl =g/ (40)
61 (I3 — I17)
and, if the top hydrostatic pressure is zero:
B; = —C (41)
This upper condition is stable at least when the top hydrostatic pressure is zero.
That leads to the following formula for (L*Z);:
(L*Z)1 = —A1Z1 + C1(Z2 — Z1) (42)

— Layer L: The quantity Z to which is applied L* is assumed to be constant below the full level [ = L,
that means that the term C7(Zr4+1 — Z1) has to be replaced by 0. In practical, C7, is set to zero.
A7 matches the general expression:

*
Ly

A = —H L
P - )

(43)

Application of formula (38) would lead to B}, = —A7 but we actually use the formula (34) with a
slightly different expression for B} :

x 117,
Bl =——F7—7——— 44
(S T 4
That leads to the following formula for (L*Z)p:
(L*Z)p = A3 (Zp-1 — Z1) — A} (HL - 1) Zr (45)
L-1

e VFE expression of this discretisation in the NH-PDVD model: this topic is still in progress, at least two
solutions have been implemented:

— one option uses a second-order derivative operator [Rdderi] (case LVFE_LAPL_HALF=F).

— one option mixes a first-order VFE derivative operator [Rderi] and a first-order FD derivative operator
(case LVFE_LAPL_HALF=T).

e Remarks for NH-PDVD model:

— stability is ensured only if the top hydrostatic pressure is zero.

— FD1 expressions have been chosen in order to match “constraint C2” (definition of “constraint C2”
will be given below, in paragraph explaining linear operator T").
x Linear operator “T*” for NH-PDVD model, and definition of “constraint C2”:
General definition of T* uses a combination of linear operators L*, 7 and ~.

Definition of T writes:

Cvd

2
27 * Cpgq _ _“pg _ Spg
g°L (RdT* TV T eaT T v

T = RaN2C2 (46)
Using definitions for C' and H (see equations (5) and (4)) this equation can be rewritten:
L* (T*cp 7y — cpyC*1 — C?T*
T — ( paTY Pd ’Y) (47)

H2N2C?
12



Using G* and S™ this equation can be rewritten:

. _ 9L (8"G" — (cpg/cva)S” — (cpg/cva)G)

T N2C2 (48)
We can now introduce definition of “constraint C2”:
e Strong constraint C2: T* is the identity matrix.
e Weak constraint C2: T* matches (49):
T = (1+1°Q") (49)

and does not depart too much from identity matrix. Q* is a diagonal matrix equal to 6™ — 2a™.

Continuous equations ensure “strong” constraint C2. In some cases this is possible to match “weak” constraint
C2 in discretised equations, and from now “constraint C2” will mean “weak constraint C2”.

According to the vertical discretisation used, “constraint C2” may or may not be matched by the discretised
operators.

e FDO and VFE: constraint C2 is not ensured.
e FDI1: constraint C2 is ensured.
e We can notice that either C1 and C2 are both ensured, or none of C1 and C2 are ensured.

e Elimination between equations to obtain Helmholtz equation does not assume that constraint C2 is ensured
(use of formula (46)).

e Discretisations of T* matching constraint C2 or close to constraint C2 are preferred, in order to ensure
numerical stability.
Discretisation:

e FDI1: constraint C2 is ensured, and formula (49) is used. In this case, T* is a tri-diagonal operator, like
L*. Expression of the elements of the associated matrix is:

1 Iy II;
T*(u)=1—*( et *>(57—2a7) (50)
51 Hl - Hl*l +1 Hl
T*(l,l) == 1 (51)
* 1 Hl*—l * *
T == =———)(6_-1—20;_ 2
=) = 5 (H;‘ _Hz*—1> (61-1 — 200 1) (52)
T 41) = 5 <71l+_11—[zﬁ> (641 — 20041) (53)
+

with some particular expressions at the top and the bottom.
Discretisation of diagonal matrix Q" is: Q" ;) = (6/ — 2¢7), and if the top hydrostatic pressure is zero,

Q=0
e FDO and VFE: constraint C2 is not ensured. Formula (46) is used (use VFE or FDO discretisations of ~,
7, L*).

13



5 Semi-implicit scheme, no Coriolis term in the semi-implicit
scheme.

Equations are written for a leap-frog scheme (Eulerian scheme or SL3TL scheme). For a SL2TL scheme replace
At by 0.5A¢.
5.1 3D hydrostatic primitive equations model.

x Expression of the linear term £ for GMYV and GMVS variables:
e Continuity equation (X = log(Ily)):

L=-v(M'D) (54)
e Divergence equation (X = D/):
L=—V>?T + plogll) (55)
e Vorticity equation (X = C/):
L£L=0 (56)
e Temperature equation (X =T):
L=-r(M'D) (57)

* System to be solved: Equations are written for log(Ils) as a prognostic variable for continuity equation.

72 ’ *
log(Tls), ny + BALM vDyyne =P (58)
Diya + BAY *(VTisar + plog(Ils),, o,) =D * (59)
Tisae+ BAM 7Dyin, =T (60)

P*, D'*, T* correspond to X* defined in equation (17) and are available in spectral arrays (YDSP%SP,
YDSP%DIV, YDSP%T) at the beginning of the spectral computations. Equations (58) to (60) yield (61)
(Helmholtz equation):

(I—B2A2 B V2N )Dyony =D " — BAY 2(vT* + uP”) (61)

where B = 7 + pv is a matricial operator L * L (precomputed in routines SUDYN, SUBMAT and stored in
the array SIB).

When M = M it is more convenient to rewrite equation (61) as:

(V2= B2A2 B M*)Dyya, =V 2D — BALYT™ + uP*) (62)

which shows a symmetric matricial operator in the left hand side.

* Spectral computations to solve system of equations (58) to (60). Algorithm works
zonal wave number by zonal wave number m (| m | varies between 0 and the truncation Ng) and performed in
the routine SPCSI before all horizontal diffusion schemes. For a given zonal wave number m:

e After a preliminary memory transfer the right-hand side member of equation (61) is computed for all total
wave numbers n between m and Ng.

e The diagonalisation of B is used: B = Q' A Q, where A is a diagonal L * L matrix, the diagonal
coefficients a; of which are stored in the array SIVP. Q is a L * L matrix stored in the array SIMI, Q! is
stored in the array SIMO. Note that the vertical operators v, u, 7, v, B , Q commute with the horizontal

operators V'2 and M2.

e Inversion of Helmholtz equation if M = ¢: algorithm is done according to the following steps:
— Do a multiplication by Q.
— Helmholtz equation (61) becomes, for each eigenmode I:

(I - BPALRQV 2D, = QD™ — BALY 2(NT™ + uP*)) (63)

— For each eigenmode [ and each zonal wave number m: (I — BQAtQalVl2M2) is a diagonal matricial
operator (Ns 4+ 1— | m |) * (Ns + 1— | m |): spectral coefficients of the right-hand side member of

(63) are simply divided by the diagonal coefficients of this matrix. That yields QD;+M.
— Multiplying by Q' one obtains D;_,_At‘

14



e Inversion of Helmholtz equation if M = M: inversion of Helmholtz equation is more complicated because
the left-hand side member of Helmholtz equation contains values of the divergence for all levels and five
total wave numbers (n — 2 to n+4 2). Of course M? is a symmetric pentadiagonal matrix, for a given zonal

wave number m. Pay attention to the fact that M? does not commute with the diagonal operator v'2.

e Once known D, L a¢ equation (58) provides log(Ils)

Do a multiplication by Q.
Helmholtz equation (61) (resp. (62)) becomes, for each eigenmode I:

(I— B2ALaV 2 M?)QDyar = QD — BALV 2 (T + uP%)) (64)

resp.:

(V2 = BPACaM?)QD a; = AUV D = BAL(YT ™ + pP")) (65)
Equation (65) is used for m > 0. For each eigenmode [ and each zonal wave number m:
(V/72—B2At2alM2) is a symmetric pentadiagonal matricial operator (Ns+1— | m |)*(Ns+1— | m |).
The factorisation LU of this matrix is computed, where L is a lower triangular tridiagonal matrix, U
is a upper triangular tridiagonal matrix with coefficients equal to 1 on the main diagonal. All useful
coefficients of L, U are computed in the set-up routine SUHEG and stored in the array SIHEG.
The right-hand side member of (65) is computed, then multiplied by the inverse of the symmetric
pentadiagonal operator (VL2 — B2At*M?a;) (resolution of two tridiagonal triangular systems by
routine MXTURS). That yields QD A,

For the zonal wave number m = 0 equation (64) is used rather than (65) to avoid a division by
0 for (m,n) = (0,0). The only difference is that the pentadiagonal but non-symmetric operator

(1- 52At2alv/2]\/[2) is factorised and inverted. All useful coefficients of L, U are computed in the
set-up routine SUHEG and stored in the arrays SIHEG and STHEG?2.

1

Multiplying by Q7" one obtains D;er.

++a; and equation (60) provides Tyia:. If M = M,

spectral multiplications by M? are performed by the product of a symmetric pentadiagonal matrix of
dimensions (Ns + 1— | m |) * (Ns + 1— | m |) (useful coefficients computed in routine SUSMAP (resp.
SUESMAP in LAM models) and stored in the array SCGMAP (resp. ESCGMAP in LAM models))
by a vector containing spectral coefficients (m,n) for n varying from | m | to Ns.

e Semi-implicit scheme ends by a final memory transfer.

5.2 3D NH-PDVD model.

The code described is valid for options NPDVAR=2 and NVDVAR=3. For NVDVAR=4 the linear terms
are the same as for NVDVAR=3.

x Expression of the linear term £ for GMYV and GMYVS variables:
e Continuity equation (X = log(Ily)):

£=-v(d’'D) (66)
e Divergence equation (X = D/):
L= -V2NT ~T*(3Q) + plog(IL) + RaT"Q) (67)
e Vorticity equation (X = C/):
L£L=0 (68)
e Temperature equation (X =1T):
L= _RcdiT[MQD’ +d| (69)
vd

Pressure departure variable equation (X = Q)

[ 72 G 2
L= 201D +d) - (01D (70)
e Vertical divergence equation (X = d):
2
g * A
=———(L 71
o) ()



*x System to be solved: Equations are written for log(Ils) as a prognostic variable for continuity equation.

72 ’ *

log(Ils),, ny + BAW(M Dyyne) =P (72)
Diyas + BANY [V Tosar — T (1Qurae) + ulog(Hs)HAt + RaT*Quyad =D (73)

~ C _ ’ A
Qirat + BAL [cpd (M2Dt+At + diyae) — Ra T* (M Dt+At)i| =Q (74)

e
divnt + 5AtR = (L*Qiyat) = D" (75)
RqT* ~——2 + *
Titae + BAL cd [M Dipne +dirat) =T (76)
vd

P, Dl*, O*, D*, T* correspond to X* defined in equation (17) and are available in spectral arrays (YDSP%SP,
YDSP%DIV, YDSP%SPD, YDSP%SVD, YDSP%T) at the beginning of spectral computations.

x Elimination of variables: The following calculations are valid for both M horizontally constant and
M horizontally variable. All the constants and the vertical operators commute with V 2 and M.

e Elimination of 7', Q and log(Ils) between equations (72), (73), (74) and (76) leads to equation (77):

Dypar — (BAY?V 2 RaT™ (7 — 1) (g5 7 — 24) 4+ By 4 RyT*VYM Dy,

H{—RaT" 24 (5= — 1) + “T W}dt+At]
=D + BAIV 2 [RaT* (4= — 1)Q" —4T" — RaT*P"] (77)

D'** is defined by equation (78):

D =D 1 BAIV? [R T~ 1)@ - T - RdT*P*] (78)
d

We use the relationship ¢py — ¢va = Raq, the definition of C' and we isolate the term COR (see equation
(33)): this equation can be rewritten:

[—(BAL?V'2(C? — T™y)desar + [I — (BA)?V 2(C*(1 + COR))M'|Dyyny = D (79)

Quantity COR is zero when the constraint “C1” is fulfilled.This is the case for the finite-difference vertical
discretisation with NDLNPR=1. In the other cases, COR is generally non-zero but weak (COR << 1).

e Elimination of Q between equations (74) and (75) leads to equation (80):

T* L* 02 * Nk
ditat — (BAt)ZT*; [HQ( CpaT + C*)M Dyyas + ek dt+At:| =D (80)
where D** is defined by:
ANE* gy 721* * Ak
D =D +,8At{ HT;‘LQ} (81)

e When COR = 0, elimination of D between equations (79) and (80) leads to Helmholtz equation (84):

|:I _ ,BQAt2CZ(M2V,2 + T L* ) _ /84At4N202M2v/2 ;—:T*} dt+At

TF H?

= (1= FPAPCTM V)D™ + AL L b (—cp 7+ C?)M D' (82)

TF H?

which can be rewritten:

[(I — B2ArC? L ,I;z) - (,32At202 + /34At4N202%T*) MQV,Q} devat

= (1= FPAPCTM VD™ + AL L I (—cp 7+ C?)M D' (83)

Ty H2

or:

TF H2

-1 . ,
[1 — BARC? (1 — BARCPLLL ) (1 + ﬁQAﬁNQ%T*) v 2} s ae

-1 _— ) *L* —_— ’
( - PAPCE Hz) [(1 _ BALCTIPV D + BPARLE L (—ep 7 + C2)ID } (84)

TF H?
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e In the LHS of equation (84), we denote by B the following matrix, by analogy with the hydrostatic model:

-1
_ 2 _p2 2 QT*L* 2 2 2T)k *
B =C (I BEAL°C T;H2> <I+ﬁ At°N T.;T) (85)

The LHS of equation (84) can be rewritten:

{I — B*A*B M%ﬂ

If we compare with the LHS of the Helmholtz equation in the hydrostatic case we can notice three things:

The order of M~ and V'? is inverted (these two operator do not commute if M is not constant).
B now depends on At, it must be recomputed each time the timestep is changed.
B is now a tridiagonal matrix (at least in the LVERTFE=.F. discretisation).

e When M = M it is more convenient to rewrite equation (84) as:

H?2

’ * * -1 * J— ’
{v 2 _ g2ARC? (1 ~ BPAPC L L ) (1 n 52At2N2%T*> MQ} (V'2dus ae]

-1 — ’ ~ * — ’
= (1-parcrR k) |- BARCIIY D 4 BPARE Ky (—epy7 + CHITD™] (86)

TF H2 TF H2

which shows a symmetric matricial operator in the left hand side.

* Spectral computations to solve system of equations (72) to (76). The algorithm has
some similarities with what is done in the hydrostatic model. Algorithm works zonal wave number by zonal wave
number m (| m | varies between 0 and the truncation Ng) and performed in the routine SPNHSI before all
horizontal diffusion schemes. For a given zonal wave number m:

e After a preliminary memory transfer the right-hand side member of equation (84) is computed for all total
wave numbers n between m and Ns. We can do some remarks:

During the elimination of variables between the equations (72) to (76) we have to perform
matricial multiplications by (I — BQAtQC2M2V/2) and M~. When I is horizontally constant (case

LSIDG=.F., LESIDG=.F.) these operators are purely diagonal; when M = M these operators are
pentadiagonal and matricial products require additional calls to routine MXPTMA.

2 2 QT* L*
(1 e ko)

The matricial operator

which appears in the RHS of (84) and also in B is pre-computed in routine SUNHSI and is stored
in the array SIFAC. Its inverse is stored in the array SIFACI.

e The diagonalisation of B is used: B = Q™' A Q, where A is a diagonal L * L matrix, the diagonal

coefficients a; of which are stored in the array SIVP. Q is a L * L matrix stored in the array SIMI, Q~

tis

stored in the array SIMO. Note that the vertical operators v, u, 7, v, B , Q, L™, T* commute with the
!
horizontal operators V' 2 and M?2.

e Inversion of Helmholtz equation if M = ¢: algorithm is done according to the following steps:

Do a multiplication by Q.

Helmholtz equation (61) becomes, for each eigenmode I:

(I— B2A2a M V'?)Qdisar

-1 — ’ A * — ’
—q(1-pArC R L) [(1- BARCIIIY D™ + BALR L L (—cpgr + CHIT D [87)

TF H2 TF H2

For each eigenmode [ and each zonal wave number m: (I — BQAtQalMQV/Q) is a diagonal matricial
operator (Ns + 1— | m |) * (Ns + 1— | m |): spectral coefficients of the right-hand side member of
(87) are simply divided by the diagonal coefficients of this matrix. That yields Qd¢+a:.

Multiplying by Q! one obtains ditAt.

e Inversion of Helmholtz equation if “M = M”: inversion of Helmholtz equation is more complicated because
the left-hand side member of Helmholtz equation contains values of d for all levels and five total wave
numbers (n — 2 to n + 2). Of course M? is a symmetric pentadiagonal matrix, for a given zonal wave

number m. Pay attention to the fact that M? does not commute with the diagonal operator v'2.
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— Do a multiplication by Q.
— Helmbholtz equation (84) (resp. (86)) becomes, for each eigenmode :

(1 - ATV )disar =0 (T- PACCTE L)

TF H?

(1= BACCTRV D 4+ BPAR T L (o + OO D™ (88)

resp.:

(V'~2 = B2 ALV *desad = Q (1 _ BPARCRIL L, )_

TF H?

[(I — PAPCTIV D 4 AL L L (et + c%ﬁp’**} (89)

— Equation (89) is used for m > 0. For each eigenmode ! and each zonal wave number m:
(Vl72fﬂ2At2alM2) is a symmetric pentadiagonal matricial operator (Ns+1— | m |)x(Ns+1— | m |).
The factorisation LU of this matrix is computed, where L is a lower triangular tridiagonal matrix,
U is a upper triangular tridiagonal matrix with coefficients equal to 1 on the main diagonal. All
the useful coefficients of L, U are computed in the set-up routine SUNHHEG and stored in the
array STHEG. The right-hand side member of (89) is computed, then multiplied by the inverse of
the symmetric pentadiagonal operator (VL2 — 52At2alM2) (resolution of two tridiagonal triangular
systems by routine MXTURS). That yields Q[V/th_‘_m].

— For the zonal wave number m = 0 equation (88) is used rather than (89) to avoid a division by
0 for (m,n) = (0,0). The only difference is that the pentadiagonal but non-symmetric operator

(1- BQAtQQZMQVIQ) is factorised and inverted. All useful coefficients of L, U are computed in the
set-up routine SUNHHEG and stored in the arrays SIHEG and SIHEG?2.

— Multiplying by Q! then V/_Z one obtains di4A¢.

e Once known di+a+ equation (79), which can be rewritten as follows:
Diyar = [I— (BAEPV2CP M D™ 4 (BAV 2 (=T + C?)desad] (90)

yields D;+At, Note that when M is constant, [I — (ﬂAt)2V/2C2M2] is a purely diagonal operator, but

when M = M [I— (ﬂAt)2V/2C2M2] is a pentadiagonal operator which has to be inverted by a LU method
(all useful coefficients of L, U are computed in the set-up routine SUNHHEG and are stored in STHEGB
and STHEGB2) and that introduces additional calls to routines MXTURS or MXTURE. For m > 0

2
].
e After calculation of M2D2+At (which requires an additional call to routine MXPTMA if M = M),
equation (76) yields Ti4+a¢, equation (74) yields Q4a¢, and equation (72) yields log IIs;1 a¢. For the case
LSIDG=.T. only (resp. LESIDG=.T. in LAM models), spectral multiplications by M? are performed
by the product of a symmetric pentadiagonal matrix of dimensions (Ng+1— | m |)* (Ns+1— | m |) (useful
coefficients computed in routine SUSMAP (resp. SUESMAP in LAM models) and stored in the array

SCGMAP (resp. ESCGMAP in LAM models)) by a vector containing spectral coefficients (m,n) for n
varying from | m | to Ns.

we prefer to invert the symmetric operator [V/_Q — (BAY)2C*M

e Semi-implicit scheme ends by a final memory transfer.

*x Case where the constraint C1 is not matched (non zero COR): An iterative algorithm
has been implemented, which can briefly described as follows:

e The total number of iterations is NITERHELM.

e For the predictor step, we replace COR by 0 and we do the eliminations and the inversion of the Helmholtz
equation like previously described.

e For the corrector step, the term containing COR is put in the RHS, it is multiplied by D;+At at the
previous iteration. The LHS is unchanged, so the elimination and the Helmholtz solving can be done like
in the predictor step. We rather take as unknowns the increments between the current iteration and the
predictor step, that allows to simplify the calculation of the RHS for the corrector step (some terms become
0).
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5.3 2D shallow-water model.

*x Expression of the linear term L:
e Continuity equation (X = ®):

L=-®MD (91)

e Divergence equation (X = D/):
L=-V?*®) (92)

e Vorticity equation (X = C/):
L£L=0 (93)
x System to be solved:

Diine + 5Atﬁ2q)*Dt+At =H" (94)
Diyae+ BAIV (@48, =D (95)

#H*, D'* correspond to X* defined in equations (17) and are available in spectral arrays (YDSP%SP,
YDSP%DIV) at the beginning of the spectral computations. Equations (94) and (95) yield (96) (Helmholtz
equation):

(1— B2ALD V' 2 M) Dyyny = D * — BALV 2(HY) (96)

When M = M it is more convenient to rewrite equation (96) as:
(V"2 = B2AL2®*M?)Dyyn, =V 2D* — BALH) (97)

which shows a symmetric matricial operator in the left hand side.

* Spectral computations to solve system of equations (94) and (95). Algorithm works
zonal wave number by zonal wave number m (| m | varies between 0 and the truncation Ng) and performed in
the routine SPC2 before all horizontal diffusion schemes. For a given zonal wave number m:

e After a preliminary memory transfer the right-hand side member of equation (96) is computed for all total
wave numbers n between m and Ns.

e Inversion of Helmholtz equation if M = ¢: for each zonal wave number m: (1 — B2At2¢>*vl2ﬁ2) is a
diagonal matricial operator (Ns + 1— | m |) * (Ns + 1— | m |). Spectral coefficients of the right-hand side
member of (96) are simply divided by the diagonal coefficients of this matrix.

e Inversion of Helmholtz equation if M = M: inversion of Helmholtz equation is more complicated because
the left-hand side member of Helmholtz equation contains values of the divergence for all levels and five
total wave numbers (n — 2 to n + 2).

— For m > 0 equation (97) is used. For each zonal wave number m: (V,_2 — B2 A2 M?d*) is a symmetric
pentadiagonal matricial operator (Ns+1— | m |)*(Ns+1— | m |). The factorisation LU of this matrix is
computed, where L is a lower triangular tridiagonal matrix, U is a upper triangular tridiagonal matrix
with coefficients equal to 1 on the main diagonal. All useful coefficients of L, U are computed in the
set-up routine SUHEG and stored in the array SIHEG. The right-hand side member of (97) is
multiplied by the inverse of the symmetric pentadiagonal operator (VL2 — B2At2®* M?) (resolution

of two tridiagonal triangular systems by routine MXTURS). That yields D; LA
— For the zonal wave number m = 0 equation (96) is used preferably than (97) to avoid a division
by 0 for (m,n) = (0,0). The only difference is that the pentadiagonal but non-symmetric operator

1- ,BQAtQQY‘V/QM %) is factorised and inverted. All useful coefficients of L, U are computed in the
set-up routine SUHEG and stored in the arrays STHEG and SIHEG?2.

e Once known D;er equation (94) provides ®;1a:. When M = M, spectral multiplications by M? are
performed by the product of a symmetric pentadiagonal matrix of dimensions (Ng+1— | m |) * (Ns +1— |
m |) (useful coefficients computed in routine SUSMAP and stored in the array SCGMAP) by a vector
containing spectral coefficients (m, n) for n varying from | m | to Ns.

e Semi-implicit scheme ends by a final memory transfer.

5.4 Plane geometry (LAM models).

For 3D models, semi-implicit calculations are done in ESPCSI, ESPNHSI, instead of SPCSI, SPNHSI.
Option LSIDG=.T. has an equivalent LESIDG=.T. designed for LAM models, coded only for a tilted-rotated
Mercator projection.
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6 Inclusion of Coriolis term in the semi-implicit scheme.

Although this term is non linear, it may be added to linear terms in the semi-implicit scheme. Equations are
written for a leap-frog scheme (Eulerian scheme or SL3TL scheme). For a SL2TL scheme replace At by 0.5At.
In ARPEGE/IFS this option is coded for both Eulerian and semi-Lagrangian schemes (3D model and shallow-
water model). This option is available only in unstretched untilted spherical geometry, in setting LIMPF=.T. in
namelist NAMDYN. The reason to use such option is accuracy for long range forecasts (but not stability issues:
LIMPF=F. is as stable as LIMPF=.T. but may lead to worse scores for long-range forecasts).

This option is limited to global model with unstretched and untilted geometry. In unstretched and untilted global
model Coriolis parameter f = 2 sin writes as a first degree polynomial of the sinus of computational sphere
latitude. This property leads to invert pentadiagonal matrices in the algorithm which will be described. This
simple property is lost in stretched or tilted geometry and in LAM models.

6.1 Semi-implicit scheme including Coriolis term in the 3D hydrostatic
model.
6.1.1 Thin layer equations.
x Expression of the linear term L: Equations (55) and (56) become respectively:
e Divergence equation (X = D'):

L=-V2T + ploglly) — 2V (R AV) (98)

e Vorticity equation (X = C/):
L=—2k[V A(QAV)] (99)

* System to be solved: Equations (58) and (60) are unchanged. Equation (59) is replaced by the two
following equations, for divergence and vorticity. Restriction to unstretched untilted global model allows to replace

D' by D, ¢ by ¢,V by V.
Diyar + BAV? (YT i ar + plog(Tls) ., a,) + BAL(2V (R AV)) = D (100)

Corat + BAL2K.IV A (A V)]) = ¢ (101)

D*, ¢ correspond to X* defined in equation (17) and are available in spectral arrays (YDSP%DIV,
YDSP%VOR) at the beginning of the spectral computations.

*x Divergence and vorticity in spherical geometry: For a vector Y of horizontal components Yy
and Yy, the divergence and vertical component of vorticity write as:

1 dYx  O(Yy cos®)
VY = acos 6 |: oA 00 (102)
1 Yy 9(YxcosO)
k(VAY)= acos [8/\ 00 (103)

*+ Helmholtz equation: Using relations (102) and (103) in equations (100) and (101) lead to the following
equations:

. 2Q cos 0 .
Deyar + BAV? (VTisac + plog(Ils), 5,) + BAH(—2Qsin 0)Corae + BAE ( cos ) Uiyae =D (104)
. 2Q cos 0 N
Cornt + BAH2Qsin0) Dy a: + BAL ( cos ) Viear = ¢ (105)
The four following expressions are used, for each complex spectral coefficient:
e Relationship between divergence and velocity potential x:
D =V (106)

e Relationship between vorticity and stream function :
¢=V*% (107)
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e (106) and (107) can be rewritten, for each complex spectral component:

n(n+1)

Dimony = *(TX“”’") (108)

n(n+1)
a2

e Relationship between U, ¢ and x:
(Uacos0)(m,n) = iMmX(m,n) + (1= 1)em,n)¥m,n—1) = (N + 2)€(m,nt1)¥(m,n+1) (110)
e Relationship between V', ¢ and x:

(Vacos8)m,n) = imi(m,n) — (n = 1)€@m,m) X(mmn—1) + (10 + 2)€(mn+1)X(m,n+1) (111)
where e(g,0) = 0 and:
n2 _ m2
— 112
e(mvn) An2 — 1 ( )

Equations (108) to (111) allow to eliminate Uiy a¢ and Viya¢ in equations (104) and (105).
|:1 — zzﬁiﬁq’)’l} D(m,vL),t+At + /BAtvz(’yT(m,n)’t+At + MlOg(HS)(m,n),t-&-At) — ﬂAt(ZQ(sm 6){)(m,n),t+At

2Qe m,n 2Q¢e(m n %
—BAt 731 )C(m,n—l),t+At + BAti(nH“) Comn+1),t+at = D ) (113)

m . 2Qe(m n
[1 - 12,?(’2?_3) } C(m,n),t+At + ﬁAt(QQ(Sln 6)D)(m,n),t+At + ﬁAt%D(m,nfl),thAt

2Q m,n *
_ﬂAt%D(m,nH),HAt = C(m,n) (114)
Multiplication by sin € is eliminated by using the following relationship valid for any variable X, in not stretched
and not tilted geometry:
[(Sin Q)X](m,n) = e(m,n)X(m,nfl) + 6(m,n+1)X(m,n+1) (115)
Equations (113) and (114) become:

m 2Qe(m,n) (n+1)
|:1 - 12,,?51?,2) :| D(m,n),t+At + BAtv2 (FYT(m,n),t-&-At + :U“IOg(HS)(m,n),t+At) - BAt%

2Qe n
_ (m,n+1)
BAE e,

C(m,n—l),t+At
Comomt1),t4at = Dl ny (116)

QQe(m ﬂ+1)n

2Qe(pm n) (nt1)
n

|:1 - ZQ&iﬁt{)n:I C(m,n),t+At + BAt D(m n—1),t+At + /BAt

= mn) (117)
¢ is eliminated in equation (116) by using (117) in replacing n by n — 1 then by n + 1. Equation (116) becomes:

D(m n+1),t+At

- 2QB8Atm 2BALQ n—1)(n+1 2BAtQ n)(n+2)

|:I — n(i.é) + ( 62&2[3A)tm ?m,n)( ,)lg ) + 1— 2( BQSZ[iA)tnL e?m n+1) ((23_1)2 D(m,n),tJrAt
(n—1)n (n+1)(n+2)
2BAtQ (2BAtQ
+%e(m n)€(m,n—1) (n 1) D(m n—2),t+At T %e(m,n+l)e(m,n+2)TZL_Q)D(m,n+2),t+At
(n—D)n (n+1)(n+2)
+5Atv2(7T(m,n),t+At + NlOg(HS)(m,n),t+At)
2BAtQ 1) rx 2BAtQ n *
D(m n) + ( %Q;Agm e(m n) ("I >C(m,”71) + (( gnﬁt)(&)m - 6(m,n+1) (n+1) C(m,n+1) (118)
n n+1)(n+2

Ti+at and log(Ils),, A, are eliminated by using equations (58) and (60). That leads to Helmholtz equation (119):

2Q8AL (2BAtQ 2 (n—1)(n+1) (28At 2 )(n+2 2 A 42 2
I—-1 n(i+17)n + 1— QQBA)tm (m,n) = zgn + 1—: QQBA)tm €(m,n+1) <?n:1)2) B At"B V D(m n),t+At
(n n (n+1)(n+2)
2BAtQ) (2BAt2
+ ¢ an[fAtm €(m,n)€(m,n—1) (n 1) D(m n—2),t+At + i ﬁQQ,BA)tm E(m,n+1)€(m,n+2) 13 (n+2) D(m n+2),t+At
(n—1)n (n+1)(n+2)

2BALQ +1 28ALQ n *
+ 1 (ZEQEAt)m €(m,n) (n )C(m n—1) + .(gnilmgme(m,nﬂ)mC(m,nH) (119)
(n—1)n n+1)(n+2)

Equation (119) is solved in eigenmodes space. The right-hand side member needs a multiplication by a tridiagonal
complex matrix, for each zonal wave number m. Inversion of Helmholtz equation is equivalent to invert a
pentadiagonal complex matrix (done in routine SIMPLICO), for each zonal wave number m. All computations
are currently (in cycle 45) done in SPCSI. For m = 0 complex operators become real operators.
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x Determination of other quantities at ¢+ At: Equation (118) is used to compute :+a¢ (for each
zonal wave number m, multiplication by a complex tridiagonal matrix). Then equation (58) is used to compute
log(Tls),, o, and equation (60) is used to compute Ti+a¢-

6.1.2 Deep layer equations (according to White and Bromley, 1995).

Equations (98) to (101) remain valid. Only the horizontal part of the Coriolis term (—2€ A V) can be included
in the semi-implicit scheme. The term (—2Q A Wk) remains explicit. Equations (100) to (119) remain valid,
replacing D by (rs/a)D, ¢ by (rs/a)(, V by (rs/a)V. The code of spectral computations is unchanged.

6.2 Semi-implicit scheme including Coriolis term in the 3D NH-PDVD
model.

Extending such an algorithm to the 3D NH-PDVD model in not stretched and not tilted geometry is possible but
not straightforward. Most difficulties come from the fact that the unknown in the Helmholtz equation is d and
not D’

6.2.1 Thin layer equations.
*x Expression of the linear term £: Equations (67) and (68) become respectively:

e Divergence equation (X = D'):
L= V2N —T"(vQ) + plog(Ily) + RaT*Q] — 2V (Q A V) (120)

e Vorticity equation (X = g‘/):
L=-2k[V A(QAV)] (121)

* Helmholtz equation: Elimination of T, Q and log(Il;) between equations (72), (74), (76), and the
modified (73) is done like for the case LIMPF=.F. . We have now a 3-equations system with the unknowns

d or dy, D' and C/ (equation of (l is identical to the hydrostatic one). Since LIMPF can work only with a

not stretched not tilted spherical geometry, we omit the mapping factor and we replace D' and CI by D and ¢
everywhere.

The relationships (106), (107), (106), (109), (108), (110), (111), (112), (115) are still used, in the same manner as
in the hydrostatic model. Using these relationships allows to replace the occurrences of U and V exactly as it is
done in the hydrostatic model (calculations are not detailed) and to have only the spectral components of d (or

ds), D" and ¢ .

To simplify, we adopt the following denotations:
e B, = —C?
e BC; =—-C?+COR
e B,=—-C%+ Ty
e By = —%ﬁL*(—CPdT-‘r Cc?)

T*C2I
® Bi=—7rim :
a

Equations for d (or d4), D and ¢ become:

{1 — i2085tm 4 (BA1)PV (B, + BC, )} Dimomy it ae + [(BAL)2V2Bo] dimomy o ae

—BAt

2Qe m,n (n+1) 2Qe (1 n n *k
%C(m,nfl)nH»At - /BAt%C(m,nﬁ»l),t#»At = D(m,n) (122)

[(5At)2B3] D(7n,n),t+At [I + (ﬁAt)2B4] d(m,n),tJrAt = ﬁ?;,n) (123)

. ¢ 2Qe (., ) (n+1) 2Q€e(m n n
{I - Zﬁiﬁﬁ?} Cimom). ot + BAL—"2 2D )y ar + BAL—SEENE D 1y e ar
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¢ is eliminated in equation (122) by using (124) in replacing n by n — 1 then by n 4+ 1 (exactly like we do in the
hydrostatic model). Equation (122) becomes:

QBAtm 28At0)2 -1 1 26AtQ)?2 2
I- ZQn(i+t1) + 1( BZQEA)tm e?m n) (o ,i(2n+ Lt i ( BZQZA)tm e?m,'rri»l)% + (BAL)*V?(By + BCy ) D(mn),t+at

(n—1)n W
26ALQ (28At0)2
+([32972A)tme(m n)€(m,n—1) (n 1) D(m n—2),t+At + %e(m n+1)€(m,n+2) Th12) (n+2) D(m n+2),t+At
n—T1)n n+tD(nt2)
[(ﬂAt)2V2B2] d(m,n),t+At
28AL0 +1 2BALQ n e
- D(m n) + 1— . ZQﬁAt)m €(m,n) e )C (m,n—1) + 171.( mBAt)T €(m,n+1) (nt1) C(m,n+1) (125)
(n n (n+1)(n+2)

The similarities with the hydrostatic model are the following ones:

e The ¢* terms added to D, ,,) are the same ones than those added to D{,, ,,y in the hydrostatic Helmholtz
equation. We introduce the following quantity:

Dy = Pimn) + T z00580m €0mm) Clmom—1) + WB(W»"H)WC(WWFU (126)
(n=1)n (n+1)(n+2)

e In the LHS, the additional terms containing 2 (in factor of D(,, n—2),t+at) Dm,n),t+at 80d D nt2) t4+A¢)
are the same ones as in the hydrostatic model.

That means that some pieces of code present in the hydrostatic code (the call to SIMPLICO and most of the
input dummy arguments of SIMPLICO) can be re-used with no significant change in the NH model.

The main difference with the hydrostatic model, which will provide an additional difficulty, is the elimination
between the D equation and the d equation. We first assume that COR = 0 (constraint C1) and, like in the case
LIMPF=F, we do the elimination in order to have an Helmholtz equation with d as unknown.

Equation (123) is used three times, for the total wavenumbers n — 2, n and n + 2 to do the elimination of
Dmn—2),4at, Dimn)e+ar and Dy n—2),c+a¢. After this elimination, a left multiplication of the LHS and of
the RHS by [1 + (,BAt)ZB4] (which commutes with all the coefficients containing 2) is performed. We obtain an
Helmholtz equation containing d(m,n—2)++at, d(m,n),t+a¢ a0d d(m nt2)t4+a¢ in the LHS:

QBAtm 28At0Q)? —1 1 28ALQ)2 2
I-— (BAt) Bv2 2n(i+tl> + 1( %QZA)tm ?’m,n) (n 72‘(2"1"!‘ ) + 175 [;QZA)tm ?m n+1) “(22{?{2) d(m,n),t+At
(n—1)n (n+1D)(n+2)
28ALQ 28At0)2 n
+1(529W)m€(m n)€(m,n—1) (m—1) (n 1) d(m n—2),t+At T ﬂ%e(m,n+l)e(m,n+2)md(m,n+2),t+At
(n—1)n (n+1)(n+2)
-1 *ok ok N s sk ok
= [T+ (BAt)’Ba| ~ (—(BAt)’BsD[ ) + D) (127)
where
Diiny =
QBAtm 28At n—1)(n+1 28AtQ)? n)(n+2
I+ (ﬁAt) B: v2 Qn(i+751) + ¢ an;A>fm ?m,n)< 71(2 =) + 172 BZSZZALm Q%m n+l)% D(m n)
—1n (n+1)(n+2)
2BALQ n+1 28AtQ)? Aok
+1(172(”ﬁ§);m €(mom) €(min—1) (oag) Diomn—2) + 1754(,231@)7?)@2) €(m.nt1)€(m.n+2) Trgz) D(m,n+2) (128)

We can first remark that the RHS of the Helmholtz equation requires an additional multiplication by a complex
pentadiagonal matrix which is not present in the hydrostatic model. Such a multiplication is done in the routine
SI_MXPTCO which re-uses some input dummy arguments of SIMPLICO. This multiplication computes a
quantity which must be added to the D{,",, term, before applying the inverse of [I + (BAt)ZBJ.

Once computed its RHS, equation (127) is solved in eigenmodes space. Inversion of Helmholtz equation is
equivalent to invert a pentadiagonal complex matrix (done in routine SIMPLICO), for each zonal wave number
m; the coefficients are the same ones as in the hydrostatic model, the only difference being the content of B
(filled in the set-up), so this is transparent in routine SPNHSI. All computations are currently (in cycle 45) done
in SPNHSI, by calling routine SIMPLICO. For m = 0 complex operators become real operators.

Once computed d(,,n),t+a¢, equation (125) is used to retrieve Dy, n) t+a¢- Equation (125) contains Dy, n—2),t4+At»
D(nny t+at and Dy, nt2),i4+a¢, that means that we need a second complex matrix inversion (there was only one
in the hydrostatic model). But we can notice that the coefficients in the LHS look like those present in the LHS
of the Helmholtz equation:
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e All the coefficients containing §2 are exactly the same ones of the Helmholtz equation.

e The coefficient (3At)? B V? of the Helmholtz equation is replaced by —(B8At)?B; V2, where B; is already a
(constant coefficients) diagonal matrix.

That means that, for this complex matrix inversion, routine SIMPLICO can be re-used without any change (the
only input coefficient which changes is the one containing the eigenvalues).

Once computed Diyat, equation (124) allows to retrieve (¢+4a¢, and this piece of calculations is identical to what
is done in the hydrostatic model.

* Determination of other quantities at ¢ + At: Retrieval of T, Q and log(Il,) at t + At is done
exactly like in the LIMPF=F case.

x Combination with the NITERHELM algorithm when the constraint C1 is not
matched: This is possible and now implemented.

6.2.2 Deep layer equations (according to Wood and Staniforth, 2003).

Equations (120) to (124) remain valid. Only the horizontal part of the Coriolis term (—2€ A V) can be included
in the semi-implicit scheme. The term (—2€ A wk) remains explicit. Equations (125) to (127) remain valid,
replacing D by (r/a)D, ¢ by (r/a){, V by (r/a)V. The code of spectral computations is unchanged.

6.3 Semi-implicit scheme including Coriolis term in the 2D shallow-water
model.

Such an algorithm is also coded in the 2D shallow-water model in not stretched and not tilted geometry.

Replace (vT' + plog(Ils)) by @ in equation (98).

Replace (yTi+at + plog(Ils),, A,) by Pitas in equations (100) and (104).
Y
Y

Tim,ny,t+at + 11og(ls) (0 o ar) BY Py t+ae in equations (113), (116) and (118).
Tinn) T HP(mn)) BY H{y ny in equation (119).

(
Replace (
Replace (

e Once computed D;+At equation (94) provides ®¢4a¢.
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7 Spectral multiplications by polynomial expressions of the
mapping factor.

x Expression of mapping factor M in spectral space in ARPEGE. Let us denote by:
e ac=05(c+2)
e be=05(c—12)
® e =0

_ TLQ*TrLQ
® C€(m,n) = 4n2—1

Expression of M is:
M = ac + b€ (129)

where ¢ is the sinus of computational sphere latitude. Expression of [M X](,,n) is:
[MX](m.n) = be€(m.n) X (mn-1) + @cX(mn) + be€imnt1) X m.n+1) (130)

It is easy from (130) to retrieve the coefficients of spectral multiplication by any first degree polynomial of M.
This is equivalent to a multiplication by a tridiagonal symmetric matrix in spectral space.

+ Expression of M? in spectral space in ARPEGE.

[M2 X () = b2(m,n) €(mn—1) X (mon—2) + 2acbee(m,n) X (mn—1) + (@2 + 02(€frn) + €fng1))) X(mom)
+2acbce(m,n+l)X(m,n+l) + bge(m,”nrl»l)6(m,n+2)X(m,n+2) (131)

This is equivalent to a multiplication by a pentadiagonal symmetric matrix in spectral space.

+ Expression of M and M? in spectral space in LAM models. This formula is only valid on
a tilted-rotated Mercator projection, and it assumes that the reference latitude of the projection is at the middle
of sub-domain C+I.

If we assume that the plane coordinates will be not slanted relatively to the longitudes and latitudes of the
Mercator projection, the mapping factor M always depends only on the y coordinate and never vary along the x

coordinate. . )
M = = ——— = cosh(y/a)

cosf . /1_ U2
where 1 = sinf, the y coordinate (this is an distance measured on the plane projection) assumes that y = 0 at
the apparent equator, and a is the mean Earth radius. M is not a low order polynomial function of y so even in
this case it needs to be approximated. The approximation used is, for a Fourier decomposition of M?, to have
only two harmonics.
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8 Organigramme of the spectral part of the

computations.

8.1 Set-up and control routines until STEPO.

CNTO ->
* SUOYOMA ->
- SUCTO
- SUDYNA
- SUGEOMETRY -> SUSMAP, SUESMAP, and so on
* SUOYOMB ->
- SUDYN ->
* SUALDYN
* SUALDYNB (global model) or SUELDYNB (LAM model).
* SUSI (hydrostatic model) ->
- GPHPRE
- SUBMAT -> SITNU and SIGAM
- EIGSOL
- SCORDO
- MINV
- SUHEG -> SUHER and SUHES (LSIDG=T only)
- SUEHEG -> SUHER and SUHES (LESIDG=T only)
* SUNHSI (NH models) ->
- GPHPRE
- SUNHBMAT -> SISEVE and MINV (NH-PDVD model)
- EIGSOL
- SCORDO
- MINV

- SUNHHEG -> SUHER and SUHES (LSIDG=T only, NH-PDVD model)
- SUENHHEG -> SUHER and SUHES (LESIDG=T only, NH-PDVD model)

* SUNHSI_TESTCONV (NH models)
* CNT1 -> CNT2 -> CNT3 -> CNT4 ->
- SUHEG -> SUHER and SUHES (LSIDG=T only)
- SUEHEG -> SUHER and SUHES (LESIDG=T only)
- SUNHSI (NH model) -> (see above)
- STEPO -> (see below)

semi-implicit

x Adjoint code: For adjoint code STEPO is replaced by STEPOAD, organigramme is slightly different
between CNTO0 and STEPOAD. For example CNT3 is replaced by CNT3AD, CNT4 is replaced by

CNT4AD.

x Tangent linear code: For tangent linear code STEPO is replaced by STEPOTL, organigramme is
slightly different between CNTO and STEPOTL. For example CNT3 is replaced by CNT3TL, CNT4 is

replaced by CNT4TL.

8.2 Direct code under STEPO or tangent linear code under STEPOTL.

STEPO or STEPOTL ->
* SPCM —>
- SPCIMPFINIT (LIMPF=T only)
- TRMTOS (transposition routine for distributed memory)
- SPCSI (hydrostatic model) ->
* SITNU -> VERINT
SIGAM -> VERINT

MXMAQP
MXTURS and MXTURE (LSIDG=T or LESIDG=T only)
MXPTMA (LSIDG=T or LESIDG=T only)
PNHSI (NH-PDVD model) ->
SIDD -> SIGAM and SISEVE
SI_CCCOR
MXPTMA (LSIDG=T or LESIDG=T only)
SISEVE -> VERDER
SITNU -> VERINT
SIMPLICO and SI_MXPTCO (LIMPF=T only)
MXMAQP
MXTURS and MXTURE (LSIDG=T or LESIDG=T only)
* SIGAM -> VERINT
- TRSTOM (transposition routine for distributed memory)
- SPCIMPFPOST (LIMPF=T only)
- SPCHOR (horizontal diffusion)
* SPC2M -> SPC2 ->

* oK K X X X X X 2 X X X ¥ X
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SPCIMPFSOLVE (LIMPF=T only) -> TRSTOM, SIMPLICO, TRMTOS



SIMPLICO (LIMPF=T only)

MXTURS (LSIDG=T or LESIDG=T only)
MXTURE (LSIDG=T or LESIDG=T only)
MXPTMA (LSIDG=T or LESIDG=T only)
BALADSM

In LAM models:
e ESPCM, ESPCSI, ESPNHSI, ESPCHOR are called instead of SPCM, SPCSI, SPNHSI,

SPCHOR.

8.3 Adjoint code under STEPOAD.

STEPOAD ->

* SPCMAD ->

BRPTOB -> PE2SET

SPCHORAD (horizontal diffusion)

- SPCIMPFPOSTAD (LIMPF=T only)

TRMTOS (transposition routine for distributed memory)
SPCSIAD (hydrostatic model) ->

*

O K K X XM X X X X K

*

SITNUAD -> VERINTAD

SIGAMAD -> VERINTAD

SPCIMPFSOLVEAD (LIMPF=T only) -> TRSTOM, SIMPLICOAD, TRMTOS
MXMAQOP

MXTURS and MXTURE (LSIDG=T or LESIDG=T only)
MXPTMA (LSIDG=T or LESIDG=T only)

SPNHSIAD (NH-PDVD model, not yet coded) ] ->
SIDDAD —> SIGAMAD and SISEVEAD

MXPTMA (LSIDG=T or LESIDG=T only)

SISEVEAD

SITNUAD -> VERINTAD

MXMAQOP

MXTURS and MXTURE (LSIDG=T or LESIDG=T only)
SIGAMAD -> VERINTAD

TRSTOM (transposition routine for distributed memory)
SPCIMPFINITAD (LIMPF=T only)

In LAM models:
¢ ESPCMAD, ESPCSIAD and ESPCHORAD are called instead of SPCMAD, SPCSIAD,

SPNHSIAD and SPCHORAD.

8.4 Action done by these routines.

x Set-up routines:

SUCTO: computes 0-level control variables, and also some variables linked to dynamics.
SUDYNA: set-up for dynamics, part A.

SUDYN: set-up for dynamics, part B.

SUSI: set-up for hydrostatic SI scheme.

SUNHSTI: set-up for non-hydrostatic SI schemes.

SUNHSI_TESTCONYV: test convergence necessary condition of the NITERHELM algorithm (NH-
PDVD SI scheme).

GPHPRE: some reference vertical-dependent hydrostatic pressure quantities.
SCORDO: reorders eigenvalues and eigenvectors in order to have ascending values of eigenvectors.

SUBMAT, SUNHBMAT: computes array SIB containing operator B respectively for 3D hydrostatic
model, 3D NH-PDVD model.

SUGEOMETRY: geometry set-up.
SUSMAP: computes array SCGMAP containing coefficients for spectral multiplication by M?.

SUESMAP: computes array ESCGMAP containing coefficients for spectral multiplication by M? (LAM
models, tilted-rotated Mercator projection).

SUHEG (SUEHEG in LAM models): computes the LU factorisation of Helmholtz operator in case of
semi-implicit scheme with unreduced divergence. Routine SUHEG (resp. SUEHEG) is called only if
LSIDG=.T. (resp. LESIDG=.T.), for 3D hydrostatic model and 2D shallow-water model (and more

generally when the elimination gives an Helmholtz equation with D as unknown).

SUNHHEG (resp. SUENHHEG in LAM models): the same as SUHEG (resp. SUEHEG in LAM
models) but for the NH-PDVD model.

SUALDYNB (ARPEGE) or SUELDYNB (LAM models): allocation of some arrays used in the semi-
implicit scheme.
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x Control routines: CNTO0, CNT1, CNT2, CNT3, CNT4, CNT3AD, CNT4AD, CNT3TL,
CNTA4TL, STEPO, STEPOAD, STEPOTL are control routines. STEPO (resp. STEPOAD, STEPOTL)
manages one direct (resp. adjoint, tangent linear) integration timestep.

* Routines under STEPO, STEPOAD or STEPOTL:

SPCSI: semi-implicit scheme spectral computations in the hydrostatic model.
SPNHSI: semi-implicit scheme spectral computations in the NH-PDVD model.

SPC2: spectral space computations, including the semi-implicit scheme and all horizontal diffusion schemes
in the 2D model.

SPCM: distributed memory interface for SPCSI and SPNHSI.

SPC2M: distributed memory interface for SPC2.

Their LAM models counterparts have names ESPC.. instead of SPC...

These routines have adjoints (same names + “AD”).

SPCIMPFINIT, SPCIMPFPOST, SPCIMPFSOLVE: contain code for LIMPF=T case.
SITNU: computes a linear application by operator v (see equations (31) and (30)).

SIGAM: computes a linear application by operator v (see equations (27) and (26)).
VERINT: does vertical integrations (vertical finite element scheme).

VERDER: does vertical derivations (vertical finite element scheme).

SI_.CCCOR: computes COR (NH-PDVD model).

SISEVE: computes a linear application by operator L* in the NH-PDVD model (see equation (34)).

SIDD: performs the elimination of T, log Ils and Q in the linear system of NH-PDVD equations (in order
to compute the RHS of the Helmholtz equation).

BALADSM: solve linear balance equation in spectral space to convert vorticity into geopotential (used
for vorticity 2D equation only).

* Linear algebra routines (project XLA/ALGOR):

EIGSOL: finds eigenvalues and eigenvectors of a matrix.
MINYV: inverts a matrix.
MXTURE: inverts a set of tridiagonal (lower or upper) triangular matrices.

MXTURS: combines two calls to MXTURE to invert a set of symmetric pentadiagonal matrices, the
decomposition LU of which is known.

MXPTMA: products of a set of pentadiagonal matrices by a set of matrices or vectors.

MXMAOP: matrix by matrix product.

SIMPLICO: solves a set of set of complex pentadiagonal systems (in practical called when LIMPF=T).
SI_MXPTCO: complex multiplications by a penta-diagonal matrix (in practical called when LIMPF=T).
SUHER: performs the LU factorisations of a set of non symmetric pentadiagonal matrices.

SUHES: performs the LU factorisations of a set of symmetric pentadiagonal matrices.

* Distributed memory routines (for ex. transposition routines) doing

communications between processors: the list of transposition and communication routines used
in horizontal diffusion scheme is the following: TRSTOM, TRMTOS, BRPTOB and PE2SET; see
documentation (IDDM) about distributed memory features for the action of these routines.
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9 Other remarks.

9.1

Adjoint and tangent linear codes.

These codes have been updated for semi-implicit computations in cycle 45, for 3D hydrostatic model and 2D
model. Use of both options LSIDG=.F. and LSIDG=.T. is possible for adjoint and tangent linear codes of
semi-implicit scheme in cycle 45 (except for non-hydrostatic model). Notice that tangent linear of SPCSI is
SPCSI itself.

9.2

Place of calculation of linear terms in grid-point space.

In the 3D model, we find such calculations in CPEULDYN for the Eulerian advection and in LACDYN (callees
LASSIE, LANHSI) for the semi-Lagrangian advection. Grid-point coupling also needs to compute these terms
to add them to couplers (routine ESEIMPLS called by ECOUPLL1).

In the 2D model, we find such calculations in CPG2 for the Eulerian advection and in LACDYNSHW for the
semi-Lagrangian advection.

Linear term calculations are done according to the following pattern:

9.3

9.4

3D hydrostatic model:

— one call to SITNU.

— two calls to SIGAM.

— if LSPRT=T, a conversion for the T-equation linear term.

— if LIMPF=T, add Coriolis term to wind-equation linear term.

3D NH-PDVD model:

— one call to SIPTP.

— two calls to SIDD.

— one call to SISEVE.

— if LSPRT=T, a conversion for the T-equation linear term.

— if LIMPF=T, add Coriolis term to wind-equation linear term.

timestep of calculation (given for predictor step):

— Eulerian advection: linear terms for X (¢t — At) — 2X (¢).
— SL3TL advection: linear terms for X (¢) and X (¢ — At).
— SL2TL advection: linear terms for X (¢).
— coupler: linear terms for coupler instant.

Place of inversion of semi-implicit scheme in spectral space.

The semi-implicit calculations are done after mass corrector computations.
The semi-implicit calculations are done before spectral nudging (LAM models).
The semi-implicit calculations are done before horizontal diffusion.

The semi-implicit calculations are done before nudging (climate models).

If an ICI scheme is activated (LPC_FULL=T), spectral semi-implicit calculations should be done at all
iterations.

Some distributed memory features in spectral calculations.

The total number of processors involved in the A-level parallelisation is NPRTRW.
The total number of processors involved in the B-level parallelisation is NPRTRN.
The total number of processors is NPROC=NPRTRW*«NPRTRN.

One processor treats only a subset of zonal wave numbers.

If LSIDG=.T. or LIMPF=.T. spectral part of the semi-implicit scheme is done zonal wave number by
zonal wave number. A call to SPCSI currently treats only one zonal wave number (case LLONEM=.T.).
In the other cases a call to SPCSI can treat several wave numbers: currently all the zonal wave numbers
treated by the current processor (case LLONEM=.F.).

All the NFLEVG layers are treated together, there is no subdivision into packets of NFLEVL layers
when the second level of parallelisation is activated contrary to the horizontal diffusion. That means
that additional transpositions (TRSTOM in the direct code) are necessary between the semi-implicit
calculations of SPCSI and the horizontal diffusion calculations of SPCHOR to convert the fields from
the NFLEVG structure required in the semi-implicit calculations to the NFLEVL structure required in
the horizontal diffusion calculations.

In LAM models the way of distributing ESPCSI and ESPNHSI is the same one as in SPCSI and
SPNHSI.
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10 Precomputed module and namelist quantities.

These modules are auto-documented so description of each variable is provided in the code source. We can recall
here the most important variables to know for each module:

e Modules for geometry:

SPGEOM_MOD (spectral geometry).
YOMVERT: all variables.

¢ YOMARG (0-level control, former command line) and YOMCTO (0-level control):

NCONF, LELAM (in NAMARG).
LR3D, LR2D, LRSHW, LRVEQ.
LNHDYN (in NAMCTO).
LRPLANE (in NAMCTO).

¢ YOMCVER (vertical finite element discretisation keys): most of variables. Some of these variables are
in namelist NAMCVER.

¢ YOMDIM, YOMDIMYV and YOMDIMF (dimensioning): most of variables. Some of these variables
are in namelist NAMDIM.

¢ YOMDYNA (adiabatic dynamics: first part):

LPC_FULL, LPC_CHEAP (predictor-corrector scheme).

LNESC, LNESCT, LNESCV, LSETTLS, LSETTLST, LSETTLSV (extrapolation).

LAPRXPK, NDLNPR, RHYDRO (vertical discretisation).

LSLINLC2, LSLINL.

NPDVAR, NVDVAR, ND4SYS, LNH_PDVD, LNHX, LNHXDER, RC_PD1 (NH model).
LGWADV, NGWADVSI, LRDBBC (treatment of vertical divergence equation in NH model).
LVERCOR, LRWSDLW, LRWSDLR, LRWSDLR2, LRWSDLG, LCURVW (deep-layer equations).

Some of these variables are in namelist NAMDYNA.
¢ YOMDYN (adiabatic dynamics: second part). The following variables are attributes of YRDYN.

LSIDG, BETADT (B), RBT, RBTS2, NITERHELM, LIMPF (semi-implicit scheme).

REFGEO, SIPR (IL;*), SITR (T7"), SITRA (7;), SITRUB, SIPRUB, SITIME, SIRPRG (R4aT"),
SIRPRN (equal to 1): reference values used in the semi-implicit scheme.

VESL, XIDT.

NSITER, NCURRENT_ITER, LRHDI_LASTITERPC (predictor-corrector scheme).
SIDELP (AIT*), SIRDEL (1/AII*), SILNPR (5*), SIALPH (a*).

SITLAF and SITLAH (full-level and half-level reference hydrostatic pressure).
SIDPHI (A®™).

SIB (matrix B in Helmholtz equation).

SIVP (eigenvalues a; of B ), SIMI (Q = eigenvectors of B ), SIMO (Q~%).

SIFAC (matricial operator for NH model only, i.e. I — B2At*C*(T*/Ty)(1/H*)L*)
SIFACI: inverse of SIFAC.

SIHEG:

* Hydrostatic model or 2D shallow-water model: for m > 0 contains the non-zero diagonals of LU
decomposition of (VL2 — B2At?a; M?); for m = 0, contains the non-zero diagonals of L of the
LU decomposition of (I — ﬂQAtQalV/2M2).

* NH-PDVD 3D model: for m > 0 contains the non-zero diagonals of LU decomposition of
(Vl_2 — ﬁQAtQale); for m = 0 contains the non-zero diagonals of L of the LU decomposition
of (I — B2Aa,M?V'?).

STHEG2:

* Hydrostatic model or 2D shallow-water model: for m = 0 contains the non-zero diagonals of U
of the LU decomposition of (I — B2At2a,V 2 M?).

+ NH-PDVD 3D model: for m = 0 contains the non-zero diagonals of U of the LU decomposition
of (I — B2At2a,M?V'?).
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— SIHEGB for NH-PDVD 3D model: for m > 0 contains the non-zero diagonals of LU decomposition
of (V/_Q - ,BQAtQCMZ); for m = 0 contains the non-zero diagonals of L of the LU decomposition of
(I - B2ALV2CM?).
— SIHEGB2 for NH-PDVD 3D model: for m = 0 contains the non-zero diagonals of U of the LU
decomposition of (I — BzAtQV/QCMQ)
Some of these variables are in namelist NAMDYN.

YOMRIP (date and timestep related variables). The following variables are attributes of YRRIP. Some
of these variables are in namelist NAMRIP.

— TSTEP, TDT (timestep).

YEMDYN (LAM model dynamics): LESIDG, RTHRESIDG. RTHRESIDG is in namelist NEMDYN.

YOMMPO and YOMMP (distributed memory environment, see documentation (IDDM) for more
details).

YOMSP and YOMSPS5 (spectral arrays).
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