
 From source code management to
binaries production for

Arpege/Aladin

R. El Khatib Météo-France – CNRM/GMAP October, 2002

 Overview of the situation / solutions

 Code organization at GMAP

 Tools to operate on the code at GMAP

Why to use a source code management
software ?

• Huge software ( 400 000 lines)
=> Organization

• Numerous developers ( 75 to 100 persons)
=> Phasing

• Perpetual changes (innovations, debug, …)
=> Historization

• Multi-purposes (operations, research …)
=> Versioning

Aspects of source code management at
Météo-France

• Continung principle :
– Code partitioning in a database

– Stamped modifications

– More or less automatic merging operations

• Continuing problem :
– The fear of developers !

– Necessity to learn how to use the tool

An investment for the code maintenance

Arising problems with source
code handling

• Externalizations, modularizations :
 : More flexibility and longer life
 : Manual links between object libraries
 : Interdependencies of libraries through inclusion files,

modules and duplicated subroutines

• Programming languages :
 : more structured and more robust

 : Dependencies of modules => hierarchical compilation

Paradoxally …
 It is more and more difficult to make binaries !!!

From compilation to binaries

• Before the use of Fortran 90 modules :
– …There were nothing ! (too easy ?)

• After the Makefile failure :
– Home-made user-friendly sophisticated unified

procedures : now stable 

• With F90 and the dependencies problems :
– Elaboration of a script based on a Makefile

– Quite a failure but we have drawn the lessons !

Arpege/Aladin code :
organization at GMAP

• Original source codes inside a database (ClearCase) : for
viewing or modifying

• Copy of the code for a html browser

• GCO : Copy of source codes, object codes, libraries and
binaries on the supercomputer for
compilations/executions : « packs »

• Developers : virtual « packs » (mainly : links)

Arpege/Aladin « packs » (1)

• Arborescent structures containing :
– bin/ : binaries

– lib/ libraries

– src/ : source and object code

• Below src/ :
– A « ClearCase-view-like » structure of branches (ex :

main/ bf/)

– Below each branch : all the projects
(ex : arp/ ald/ tal/ tfl/ xrd/ odb/ etc …)

– Below each project : a « ClearCase-project-like »
structure of code
(ex : setup/ control/ etc …)

Arpege/Aladin « packs » (2)

• Strict naming conventions for the background packs
Example :

cy24t1_export-bf.01.L9912.x.pack/

• Strict naming conventions for the files in packs

• Strict definitions for object libraries :
– Ordering (ex : ald before arp)

– Content (ex : bf_[n] always included in bf_[n+1]

Leading arpege releaseBranch nameVersion numberCompiler releaseCompilation options

Current operations on source code

• Local code modification

• Local pack elaboration

• Local pack usage

Use ClearCase to make a « branch »

Procedure « gmkpack » to create a user pack

Procedure « cc_pack » to populate the pack from
the Clearcase branch

Procedure « gmkpack » to create a script for
compilation and binary elaboration

gmkpack

• Purpose :
– to compile, make object libraries and binaries in a « pack »

environment

• Specifications :
– Universal (serving anybody working on arpege/aladin)
– Secure (specially : in libraries/compilation ordering)
– Flexible (choice of compiling options, libraries …)
– Users friendly (simple interface, automatic analysis of what

should be recompiled/rebuilt)
– Efficient (fast commands, fully distributed compilation)

… And what about portability ??

Conclusion/perspectives

• Source code manager : seems ok (up to now)

• Source code browser : to be fully re-written soon

• Packs structure : needs further rationalization

• gmkpack :
– Its portability would warranty its long life

– Its transversality (GMAP/GCO) would warranty the
robustness of the whole code management

