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ABSTRACT

A new rotated/tilted Mercator geometry is introduced. The associated computations are deve-

lopped. These computations involve formulae for :

- the direct geometric transformation

- the reverse geometric transformation

- the map factor

- the quantities associated to Coriolis force

- the transformation of vectors (so-called "compass").

- the transformation of meteorological equations

Finally, coding and user aspects are shortly discussed.

———————————
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1 Introduction

The rotated/tilted Mercator geometry has the advantage of allowing a focus on any part of the

sphere (polar areas, extra-tropical areas, tropical-areas) with an arbitrarily large domain, in a

single formalism. Moreover, this projection, being a Mercator one, results in a simple form of the

map factor, indeed the simplest form possible for all conformal projections. Especially, since the

map factor is only a fonction of the second coordinate y, a strategy in which the map factor is

taken into account in the semi-implicit scheme becomes easy to apply (this is so-called "LSIDG"

strategy in ARPEGE’s jargon). For Polar-Stereographic or Lambert projections such an approach

is not easily feasible in a spectral framework due to the more complicated expression of the map

factor. This LSIDG strategy may become necessary for large domain extensions as considered

in HIRLAM group for NWP applications, especially in view of using the Euler Equations in a

semi-implicit framework.

The basic characteristics of the geometry described in this paper are as follows :

- A reference point of the projection is chosen and defined by its geographical coordinates

P0 = (λ0, θ0). The reference point of the Mercator projection is the one that is on the

circle of tangence of the projection cylinder and of the sphere, and which is at the opposite

longitude than the one of the cutting line of the cylinder.

- A rotation is applied in order to bring the reference point on the rotated equator, rotating

this point along the meridian defined by λ = λ0. Hence, after the rotation, the reference

point lies in the equator and the local northward direction (at this particular point) is left

unchanged .

- A "tilting" rotation of the sphere around the new origin (i.e. the reference point) with an

angle β is optionally applied, with the result that the true northward direction at P0 makes

an angle β with the tilted meridians.

- A standard Mercator projection is finally applied for the rotated/tilted sphere obtained

after the previous steps, chosing the reference point as origin.

- The LAM domain is taken as symmetric around the reference point in both x and y direc-

tions. As a consequence, the reference point lies at the center of the plane rectangular LAM

domain. This latter is the point where the best focus is desired for the LAM application.

Since the reference point of the projection and the center of the domain are identical, no

clear distinction is made between these two concepts in this paper, except in section 8 when

the comparison with current tilted Lambert projections is discussed.

Finally, we see that the reference point necessarily lies at the center of the rectangular Mercator

domain, and that at this reference point, the northward direction is tilted with an angle β with

the Oy axis (in the most common case β = 0, the northward direction is parallel to the 0y axis

for the reference point).

Remark : In this document, a clear distinction is made between the "rotated" geometry, which

denotes the geometry obtained after the first rotation, and the "rotated/tilted" geometry, which

denoted the geometry obtained after the first rotation and the tilting rotation. Thoughout all

the following, the two terms "rotated" and "rotated/tilted" thus have disctinct meanings, not to

be confused.
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The geographical Northen Pole is denoted NP and the geographical Southern Pole is denoted

SP throughout.

2 Definition of the geometry

The choice of a particular projected LAM domain can be decomposed into two main steps : the

definition of the geometry (i.e. projection), and the definition of the domain boundaries in this

geometry.

2.1 Choice of the projection

As a first step, a reference point must be chosen. This is the point where the focus is desired for

the LAM application. This reference point is defined by its geographical coordinates (λ0, θ0).

As a second step, a tilting angle β ∈ [−π, π] must be specified. The value of β is the angle

between the local geographical northward direction and the Oy axis in the projected plane (see

section 2.6 for the sign convention)

2.2 Particular case θ0 = ±π/2

If the reference point is chosen exactly on one of the two geographical poles (i.e. cos θ0 = 0), the

longitude of the reference point is undetermined. An arbitrary longitude λ0 can then be chosen.

The effect of chosing λ0 6= 0 is simply to rotate the domain around the reference point, then

allowing the reference meridian λ = λ0 to be parallel to the Oy axis of the Mercator map, as

it would be if θ0 was very close, but not equal to ±π/2. It should be noted that in the case

cos θ0 = 0, a similar effect can also be obtained with the "tilting" rotation, since chosing a tilting

angle β 6= 0 provides the same result. As a consequence, when cos θ0 = 0, one of the two degrees

of freedom (λ0, β) is redundant. Such a redundance is not a problem and can be kept in the

code. Therefore, when cos θ0 = 0 is chosen, a reference longitude λ0 must be provided as well

as a tilting angle β, and both parameter are active, in a way to insure the continuity with the

cos θ0 6= 0 case.

2.3 Choice of the domain boundaries

The choice of the domain boundaries is made by specifying the number of points in each of the

Ox and Oy directions, and the uniform resolutions ∆x and ∆y in the projected plane (O,x, y).

The specification of the domain boundaries is not really related to the definition of the geometry,

and is not discussed in more details in this paper.

2.4 First rotation

In this section we essentially use the formulae presented in the ‘Documentation ARPEGE’, Chap-

ter 7 : "La Sphère Transformée". These formulae allow to compute the spherical coordinates of a

point in a rotated frame, for which the pole of spherical coordinates is at the point of geographi-

cal spherical coordinates (λp, θp), and for which the rotated longitude of the geographical North

Pole is zero. We first redefine the formulae as a function of the reference point (λ0, θ0) instead

of (λp, θp), and we show that the resulting formulae are valid for postive and negative values of

θ0. Then the reverse formulae are derived.
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Case θ0 > 0 :

Let (λ0, θ0) be the geographical coordinates of the reference point, noted P0. We first assume that

θ0 is strictly positive, that is, the reference point P0 is in the northern hemisphere. The rotation

that we want to use for our geometry must bring P0 at the equator, and at the origin of longitudes.

The point which will become the "upper" pole after the rotation is noted U ′ (the "upper" pole U ′

is the the pole of the rotated sphere that is encountered first when travelling northward starting

from P0 on the meridian circle passing through P0). The geographical coordinates of U ′ are then

given by (see graphics) :

λp = λ0 + π

θp =
π

2
− θ0

θ0

θ0

NP

P0

U’

Fig. 1 – The various points important for the first rotation when θ0 > 0, as seen (before the first

rotation) from 90◦ of longitude west of P0.

We thus have the following relationships :

sin θp = cos θ0

cos θp = sin θ0

sin(λ− λp) = − sin(λ− λ0)

cos(λ− λp) = − cos(λ− λ0)

Let (λ, θ) be the geographical coordinates of an arbitrary point on the sphere. The coordinates

(λ′, θ′) of this point in the frame which has for "upper" pole the point (λp, θp) and for which

the geographical Northen Pole is on the origin transformed meridian (λ′NP = 0) is given by (cf.

Documentation ARPEGE, Chapter 7 : "La Sphère Transformée") :

θ′ = arcsin [sin θp sin θ + cos θp cos θ cos(λ− λp)] (1)

cos λ′ =

(

1

cos θ′

)

[cos θp sin θ − sin θp cos θ cos(λ− λp)] (2)

sinλ′ = −

(

1

cos θ′

)

[cos θ sin(λ− λp)] (3)
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which leads, after substitution of the previous relationships, to :

sin θ′ = cos θ0 sin θ − sin θ0 cos θ cos(λ− λ0) (4)

cos θ′ =
√

1 − sin2 θ′ (5)

C ′ ≡ cos θ′ cos λ′ = sin θ0 sin θ + cos θ0 cos θ cos(λ− λ0) (6)

S′ ≡ cos θ′ sinλ′ = cos θ sin(λ− λ0) (7)

These formulae are exactly matching our purpose since in the case where P0 is in the Northen

Hemisphere, we precisely wish that the geographical Northern Pole lies at λ′ = 0, that is, for a

LAM, on the origin meridional axis, in order that it can be represented properly in the LAM

Cartesian domain afterward. This remark is mainly valid when θ0 is close from π/2 (i.e. the

reference point P0 is close from the Northen Pole, but by convenience and continuity, it may be

considered as to apply for any positive values of θ0.

Case θ0 < 0 :

In the case where θ0 < 0, some of the steps in the previous reasoning are modified, and thus the

derivation must be reiterated. However, it will be found that the relationships for this case are

finally the same as for the previous case, thus allowing a single set of relationships for all cases.

If θ0 < 0 (P0 is in the southern hemisphere), the rotation that we want to describe for our

geometry still must bring P0 at the equator, and vanishing longitude. Applying this rotation, the

geographical coordinates of the new "upper" pole will thus be :

λp = λ0

θp =
π

2
+ θ0

We thus have the following relationships :

sin θp = cos θ0

cos θp = − sin θ0

sin(λ− λp) = sin(λ− λ0)

cos(λ− λp) = cos(λ− λ0)

For an arbitrary point on the sphere with geographical coordinates (λ, θ), the coordinates (λ′,

θ′) in the frame which has for "upper" pole the point (λp, θp) and for which the geographical

Northen Pole is on the origin transformed meridian (λ′NP = 0) is still given by (1)-(3) :

which leads, after substitution of the previous relationships, to :

θ′prov = arcsin [cos θ0 sin θ − sin θ0 cos θ cos(λ− λ0)]

cos λ′prov =

(

1

cos θ′prov

)

[− sin θ0 sin θ − cos θ0 cos θ cos(λ− λ0)]

sinλ′prov =

(

1

cos θ′prov

)

[− cos θ sin(λ− λ0)]
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where the subscript "prov" stands for "provisional" as detailed now : we see that compared to

the case θ0 > 0, these formulae formally give identical latitudes θ′, but opposite longitudes λ′.

However, the rotation described by these formulae is not exactly the one that we ideally want

when P0 is in the southern hemisphere : in this case, we would prefer the geographical Southern

Pole to be located on the λ′ = 0 axis, for reasons symmetric to the ones explained above for

θ0 > 0. As a direct consequence, the geographical Northern Pole should be located at the two

edges λ′ = ±π of the longitude domain, while it is located at λ′ = 0 with the formulae (8)-

(8). Therefore for the case θ0 < 0 we have to apply a shift in longitudes, in order to bring the

geographical Southern Pole at the origin of meridional location λ′ = 0. By construction, this

shift in longitudes is defined by :

θ′ = θ′prov

λ′ = −λ′prov

Finally substituting these two latter relationships into (8)-(8) yields :

sin θ′ = cos θ0 sin θ − sin θ0 cos θ cos(λ− λ0)

cos θ′ =
√

1 − sin2 θ′

C ′ ≡ cos θ′ cos λ′ = sin θ0 sin θ + cos θ0 cos θ cos(λ− λ0)

S′ ≡ cos θ′ sinλ′ = cos θ sin(λ− λ0)

which is formally identical to (4)–(7). Therefore, the same set of formulae can be used for θ0 > 0

as well as for θ0 < 0.

Case θ0 = 0 :

If θ0 = 0 (that is if the reference point P0 is on the geographical Equator), then the direct

formulae of the rotation (4)-(7) readily apply and give :

θ′ = θ

λ′ = (λ− λ0)

which is the expected result.

Results with the first rotation

In any of the above cases for θ0, the reference point P0 has its new coordinates given by (λ′ =

0, θ′ = 0).

Here we present in Fig. 2 and Fig. 3, two maps in the modified lat-lon coordinates. The first one

is obtained by specifying (λ0, θ0) = (−68◦,+8◦) (that is, P0 lies in the northern hemisphere),

while the second is for (λ0, θ0) = (−68◦,−8◦) (that is, P0 lies in the southern hemisphere). The

results of the discussion above are clearly seen in these to figures : in any case, the geographical

pole which lies at the meridional origin λ′ = 0 is the one which is in the same hemisphere as P0,

as desired.
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Fig. 2 – Map in lat-lon obtained with the rotation described in the text, for (λ0, θ0) = (−68◦,+8◦).

Remark : The coordinates (λ′, θ′) are fully defined by (4)–(7) except when cos θ′ = 0 ; in

this latter case, λ′ is undetermined (and becomes irrelevant). However, it will be seen in next

subsections that only the products C ′ and S′ are needed to define the transformation. This is why

these quantities have been isolated in the left hand side of the above equations. As a consequence,

the case cos θ′ = 0, though particular by nature, does not require any particular care in practice.

2.5 Justifications for a "tilting" rotation

A tilting of the geometry is now introduced. This tilting consists in a rotation around the origin

of the previously obtained rotated sphere (λ′ = 0, θ′ = 0). It should be outlined that usually,

such a tilting is not required, especially if domains with an aspect ratio close to 1 are to be used.

However, for some very elongated countries or interest areas, it may be wishable to also have an

elongated LAM domain, and if the elongation direction is close to the y direction of the projection,

then the non-tilted strategy is not optimal because it implies unnecessarily large variations of

the map factor. In such cases a tilting of the sphere before the Mercator projection allows to

bring the elongated direction of the domain along the Equator of the rotated/tilted sphere and

therefore, allows to minimize the variations of the map factor for the projected domain. A good

example of this situation is the case of Chile, as depicted in Fig. 4 below.

The tilting could also be required and justified by more physical reasons, e.g. in order to avoid

the appearance of undesired high mountains near the corners of the domain, or to make the

left edge of the domain (in the northen hemisphere) more perpendicular to the main advecting

eastward flux .

2.6 Definition of the "tilting" rotation

The tilting rotation is defined by an angle β ∈ [−π, π]. The angle of the tilting rotation is counted

positively counter-clockwise when looking to the rotated origin (λ′ = 0, θ′ = 0) from the sky.
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Fig. 3 – Map in lat-lon obtained with the rotation described in the text, for (λ0, θ0) = (−68◦,−8◦).

The tilting rotation can be mathematically expressed in a similar way as for the first rotation, by

simply examining the point UP ′′ which will be brought at the upper pole of the rotated/tilted

sphere. The coordinates of UP ′′ in the rotated geometry are given by :

λ′p = +π/2 , θ′p = (π/2 − β) if β > 0 (8)

λ′p = −π/2 , θ′p = (π/2 + β) if β < 0 (9)

Case β > 0 :

Applying (1)-(3) to (8), the coordinates (in the rotated/tilted geometry) of a point which has

coordinates (λ′, θ′) in the rotated geometry will be, after the tilting :

θ′′ = arcsin
[

cos β sin θ′ + sinβ cos θ′ sinλ′
]

cos λ′′prov =
1

cos θ′′
[

sin β sin θ′ − cos β cos θ′ sinλ′
]

sinλ′′prov =
1

cos θ′′
[

cos θ′ cos λ′
]

The subscript "prov" is to indicate that the result is not yet exactely the desired one, since

this transformation brings the upper pole of the rotated sphere UP ′ on the origin meridian of

the rotated/tilted sphere (λ′′ = 0), although after the tilting it should be located at longitude

λ′′ = −π/2. As a consequence, a shift of −π/2 must be applied to λ′′prov in order to find the final

value λ′′ :

λ′′ = λ′′prov − π/2

and we have :
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Fig. 4 – A possible effect of tilting the sphere (by β = 88◦ here) before projection. This strategy allows

a minimization of the elongation of the domain along the y direction for elongated countries or areas of

interest.

cos λ′′ = sinλ′′prov

sinλ′′ = − cos λ′′prov

The coordinate of the point (λ′, θ′) thus become after the tilting :

θ′′ = arcsin
[

cos β sin θ′ + sin β cos θ′ sinλ′
]

cos λ′′ =
1

cos θ′′
[

cos θ′ cos λ′
]

sinλ′′ = −
1

cos θ′′
[

sin β sin θ′ − cos β cos θ′ sinλ′
]

This can be rewritten using C ′ and S′ defined above :

θ′′ = arcsin
[

cos β sin θ′ + sin βS′
]

cos λ′′ =
1

cos θ′′
[

C ′
]

sinλ′′ = −
1

cos θ′′
[

sinβ sin θ′ − cos βS′
]

Case β < 0 :

Applying (1)-(3) to (9), the coordinates (in the rotated/tilted geometry) of a point which has

coordinates (λ′, θ′) in the rotated geometry will be, after the tilting :
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θ′′ = arcsin
[

cos β sin θ′ + sinβ cos θ′ sinλ′
]

cos λ′′prov =
1

cos θ′′
[

− sin β sin θ′ + cos β cos θ′ sinλ′
]

sinλ′′prov = −
1

cos θ′′
[

cos θ′ cosλ′
]

The subscript "prov" is to indicate that the result is not yet exactely the desired one, since

this transformation brings the upper pole of the rotated sphere on the origin meridian of the

rotated/tilted sphere (λ′′ = 0), although after the tilting it should be located at longitude

λ′′ = +π/2. As a consequence, a shift of π/2 must be applied to λ′′prov in order to find the final

value λ′′ :

λ′′ = λ′′prov + π/2

and we have :

cos λ′′ = − sinλ′′prov

sinλ′′ = cos λ′′prov

The coordinate of the point (λ′, θ′) thus become after the tilting :

θ′′ = arcsin
[

cos β sin θ′ + sin βS′
]

(10)

cos λ′′ =
1

cos θ′′
[

C ′
]

(11)

sinλ′′ = −
1

cos θ′′
[

sinβ sin θ′ − cos βS′
]

(12)

For both values of the sign of β, the expressions of (λ′′, θ′′) are finally identical. For β = 0 (which

should in practice be the most usual case), the formulae also apply and provide λ′′ = λ′ and

θ′′ = θ′.

2.7 Safeguards and remarks for the second rotation

N.B.1 : For the explicit determination of θ′′, from (10) the ‘arcsin’ function is sufficient to

uniquely determine θ′′, provided that the image of [-1,1] by ‘arcsin’ is [- π/2, π/2], which is

usually the case for standard built-in functions of arithmetic packages.

N.B.2 : The rotated longitude λ′′ is readily determined from (11) and (12) through :

λ′′ = Arg(cos λ′′ + i sinλ′′) (13)

The FORTRAN function ATAN2 is acting exactly in such a way (returning a value in the interval

] − π, π]).
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N.B.3 : It can be noticed that θ′′ has a rather simple expression as a function of the geographical

coordinates :

sin θ′′ = cos β [cos θ0 sin θ − sin θ0 cos θ cos(λ− λ0)] + sinβ cos θ sin(λ− λ0) (14)

This equation will be useful for the computation of the Northward direction.

Safeguard : For cos θ′′ = 0 (that is for the two points which are brought to the two poles of

the rotated/tilted sphere, formulae (11)–(12) have to be ignored, and the rotated longitude λ′′

has to be defined conventionally (e.g. λ′′ = 0). This conventional definition has no impact on the

results of subsequent geometric transformations. Moreover, in practical (NWP) applications, the

computational being bounded, the case cos θ′′ = 0 should not occur, as outlined below.

2.8 Mercator projection

Now that we have a single formulation to describe the rotation which brings P0 at the equator

with the desired properties in longitude and tilting, we are ready for applying the classical

Mercator projection to this rotated sphere.

Let (x, y) be the coordinates in the projected plane of the point which has the geographical co-

ordinates (λ, θ) and the coordinates (λ′′, θ′′) in the rotated/tilted geometry. Since the projection

is the Mercator’s one, we have :

x = aλ′′

y = −a ln

[

tan

(

π

4
−
θ′′

2

)]

≡ a ln

[

tan

(

π

4
+
θ′′

2

)]

Therefore, we are able to compute the coordinates (x, y) of any point on the sphere with geo-

graphical coordinates (λ, θ), except, of course for the two poles of the rotated/tilted sphere

(cos θ′′ = 0).

Safeguard : The LAM domain should be defined in such a way that it does not contains the

poles of the rotated/tilted sphere. In other words the domain must not be unbounded in the y

direction. In practice, for applications such as Aladin, this condition is fulfilled by nature since

the size of the domain in the y direction is ultimately defined through a real machine-number,

which by nature cannot be unbounded.

The results of all this section are useful for plotting a map in the plane starting from geographical

data, however, they do not allow to solve the meteorological equations in the plane since solving

these equations rather needs the knowledge of the geographical position (λ, θ) for a given point

(x, y) in the plane, which is the reverse problem (see section 3 below).

2.9 Summary for the direct transformation (λ, θ) −→ (x, y)

The direct transformation is summarised as follows :
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sin θ′ = cos θ0 sin θ − sin θ0 cos θ cos(λ− λ0) (15)

cos θ′ =
√

1 − sin2 θ′ (16)

C ′ ≡ cos θ′ cos λ′ = sin θ0 sin θ + cos θ0 cos θ cos(λ− λ0) (17)

S′ ≡ cos θ′ sinλ′ = cos θ sin(λ− λ0) (18)

θ′′ = arcsin
[

cos β sin θ′ + sin β S′
]

(19)

cos λ′′ =
C ′

cos θ′′
(20)

sinλ′′ = −
1

cos θ′′
[

sin β sin θ′ − cos β S′
]

(21)

x = aλ′′ (22)

y = −a ln

[

tan

(

π

4
−
θ′′

2

)]

≡ a ln

[

tan

(

π

4
+
θ′′

2

)]

(23)

3 reverse problem

In this section we seek the geographical coordinates (λ, θ) of a point which is defined by its

Cartesian coordinates (x, y).

Inverting (22)-(23) leads to :

λ′′ =
x

a
(24)

θ′′ =
π

2
− 2 arctan

[

exp
(

−
y

a

)]

(25)

This gives the rotated/tilted spherical coordinates (λ′′, θ′′) of the considered point.

It can be noticed that :

sin θ′′ =
1 − exp (−2y/a)

1 + exp (−2y/a)

The reverse transform of the tilting has then to be applied. Hence we have to invert (19)-(21).

We first apply cosβ × sin(19) − sin β cos θ′′ × (21), which leads to :

sin θ′ = cos β sin θ′′ − sin β cos θ′′ sinλ′′ (26)

Then the inversion of (20), and the substitution of sin θ′ from (26) into (21) readily give the

useful trigonometric lines of λ′.

C ′ ≡ cos θ′ cos λ′ = cos θ′′ cos λ′′

S′ ≡ cos θ′ sinλ′ = sin β sin θ′′ + cos β cos θ′′ sinλ′′
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The geographical coordinates are then obtained by directly inverting (4)-(7) in a similar way,

which yields :

θ = arcsin
[

cos θ0 sin θ′ + sin θ0 S
′
]

cos(λ− λ0) =

(

1

cos θ

)

[

− sin θ0 sin θ′ + cos θ0 C
′
]

sin(λ− λ0) =

(

S′

cos θ

)

Safeguards : Similar safeguards as for the direct transform have to be set, but now for cos θ = 0 :

in this case, the previous formulae for λ has to be ignored and λ must be defined conventionally

(still without practical consequences). It should be noticed that this safeguard may be active

since a geographical pole can perfectly be included in the LAM domain (see e.g. Fig. 4, and by

chance could coincide wity one of the LAM grid-points.

3.1 Summary for the reverse transformation (x, y) −→ (λ, θ)

The reverse transformation is summarised as follows :

λ′′ =
x

a
(27)

θ′′ =
π

2
− 2 arctan

[

exp
(

−
y

a

)]

(28)

sin θ′′ =
1 − exp (−2y/a)

1 + exp (−2y/a)
(29)

sin θ′ = cos β sin θ′′ − sin β cos θ′′ sinλ′′ (30)

cos θ′ =
√

1 − sin2 θ′ (31)

C ′ ≡ cos θ′ cos λ′ = cos θ′′ cos λ′′ (32)

S′ ≡ cos θ′ sinλ′ = sin β sin θ′′ + cos β cos θ′′ sinλ′′ (33)

θ = arcsin
[

cos θ0 sin θ′ + sin θ0 C
′
]

(34)

cos(λ− λ0) =

(

1

cos θ

)

[

− sin θ0 sin θ′ + cos θ0 C
′
]

(35)

sin(λ− λ0) =

(

S′

cos θ

)

(36)

and obviously :

cos λ = cos λ0 cos(λ− λ0) − sinλ0 sin(λ− λ0) (37)

sinλ = sinλ0 cos(λ− λ0) + cos λ0 sin(λ− λ0) (38)
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4 map factor

4.1 Map factor in (λ′′,θ′′)

For a Mercator projection, the map factor m simply writes :

m = 1/ cos θ′′ (39)

4.2 Map factor in (x,y)

Starting from (28), we have :

θ′′ =
π

2
− 2 arctanψ

with ψ = exp(−y/a). Hence m = cos(π/2 − 2 arctanψ) = sin(2 arctanψ). We use the ‘half-

tangent’ formula :

sin(2t) =
2 tan t

1 + tan2 t

Substituting in (39) then leads, after some simple manipulations, to :

m = cosh
(y

a

)

(40)

5 Transformation for the vectors

In the transformed (rotated/tilted/projected) frame, we need to know the direction of the geo-

graphical North, which will denoted by the unit vector jg in the local projected frame (the unit

vector ig is similarly defined as pointing towards the geographical eastward direction in this

frame). We denote (i′′, j′′) the unit vectors of the local transformed frame in the rotated/tilted

Mercator geometry (that is, respectively pointing toward x > 0 and y > 0). We write :

(

ig

jg

)

=

(

cosα − sinα

sinα cosα

)(

i′′

j′′

)

(41)

Consequently, α represents the angle between the direction of the geographical North jg and

and the ordinate axis j′′. The angle α is referred to as "the compass" in the Aladin jargon. By

construction of the above matrix (and in the Aladin code), α is thus counted positively clockwise

as depicted in Fig.5.

It should be first noticed that the Mercator projection does not modify the angles with respect

to the y > 0 axis. This is because the meridians are parallel to the y > 0 axis and the Mercator

projection is a conformal one. As a consequence, α is equal to α′, the angle between the Northward

direction and the direction of meridians in the rotated/tilted (but not projected) geometry, in

the local tangent-plane frame. In other words, Fig. 5 can be viewed as being also valid for the

local tangent-plane in the rotated/tilted geometry. In this case j′′ is the unit vector pointing

along the θ′′ > 0 direction, and i′′ is the unit vector pointing along the λ′′ > 0 direction. In

the following, we thus restrict ourselves to the computation of α′ (instead of α), but due to the

identity between α and α′ we drop the prime of α′.
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j"

i"

jgα>0

Fig. 5 – Convention for the definition of α.

For any given point P = (x, y) in the Cartesian domain, we can find its rotated/tilted coordinates

(λ′′, θ′′) through (28)-(27), and its geographical coordinates (λ, θ) by the reverse transforms

formulae (30)-(33) and (34)-(36).

There are several possibilities to compute α. The most straightforward conceptually would

be to choose a point located just Northward of P , with a latitude shifted by dθ, that is,

P2 = (λ2, θ2) = (λ, θ + dθ), and then to seek the Cartesian coordinates (λ′′2 , θ
′′

2) of P2 in the

rotated/tilted geometry. this method works well and is conceptually simple, but leads to rather

complicated expressions for α. A better method is presented in Clochard (1989). This method

uses the fact that the two rotations involved to pass from (λ, θ) to (λ′′, θ′′) are always direct isome-

tries. As a consequence, the geographical Northward direction is also always the direction which

is directly orthogonal to the Eastward direction, in whatever of the rotated or rotated/tilted

geometries. The idea is therefore to use the rather simple formula (14) and to differentiate this

equation along the Northward and the Eastward directions respectively, for a unit-length diffe-

rential element.

The length elements for Northward and Eastward small angular displacements are given by :

δNorthward = adθ (42)

δEastward = a cos θ dλ (43)

By differentiating (14) for dθ at constant λ, we find the corresponding displacement of θ′′ in the

rotated/tilted geometry, that we note dθ′′dθ :

cos θ′′dθ′′dθ = {cos β [cos θ0 cos θ + sin θ0 sin θ cos(λ− λ0)] − sinβ sin θ sin(λ− λ0)} dθ (44)

The physical lengths displacements associated to the previous angular displacements are just

given by multiplying the latter equation by a. A unit length displacement adθ = 1 corresponds

to a displacement equal to jg, hence aθ′′dθ also represent the component of jg along j′′ in the frame

(i′′, j′′), that is, cosα. Finally, we have :

cosα =

(

1

cos θ′′

)

{cos β [cos θ0 cos θ + sin θ0 sin θ cos(λ− λ0)] − sin β sin θ sin(λ− λ0)}

A similar method is employed to find sinα. By differentiating (14) for dλ at constant θ, we find

the corresponding displacement of θ′′ in the rotated/tilted geometry, that we note dθ′′dλ :

cos θ′′dθ′′dλ = [cos β sin θ0 sin(λ− λ0) + sin β cos(λ− λ0)] cos θdλ (45)
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The physical lengths displacements associated to the previous angular displacements are just

given by multiplying the latter equation by a. A unit length displacement a cos θdλ = 1 corres-

ponds to a displacement equal to ig, hence aθ′′dλ also represent the component of ig along j′′ in

the frame (i′′, j′′), that is, (− sinα). Finally, we have :

sinα = −

(

1

cos θ′′

)

[cos β sin θ0 sin(λ− λ0) + sin β cos(λ− λ0)]

To summarize, the trigonometric lines of the local "compass" are :

cosα =

(

1

cos θ′′

)

{cos β [cos θ0 cos θ + sin θ0 sin θ cos(λ− λ0)] − sin β sin θ sin(λ− λ0)} (46)

sinα = −

(

1

cos θ′′

)

[cos β sin θ0 sin(λ− λ0) + sinβ cos(λ− λ0)] (47)

Beware that in the ARPEGE and Aladin codes, the trigonometric lines of α are stored as :

GNORDL = sinα

GNORDM = cosα

We see that (GNORDL, GNORDM) are the components of the northward unit vector jg in the (i′′, j′′)

frame. It should be noted that all these results are valid for both θ0 ≥ 0 or θ0 < 0.

We have :

(

ug

vg

)

=

(

cosα − sinα

sinα cosα

)(

u

v

)

(48)

where (ug, vg) are the physical components of the wind in the geographical frame, and (u, v) are

the physical components of the wind in the projected frame. At a given point M we write in

matrix form :

(

ugM

vgM

)

= ΓM .

(

uM

vM

)

(49)

6 Coriolis parameter and associated computations

6.1 Coriolis Parameter

The computation of the Coriolis factor sin θ for a point of coordinates (x, y) is detailed here.

The spherical coordinates (λ′′, θ′′) of the point in the rotated/tilted geometry are given by (27)-

(28). Then the spherical coordinates (λ′, θ′) of this point in the rotated geometry are given by

(33)-(30). Then, the Coriolis factor sin θ is given by (34) :

sin θ = cos θ0 sin θ′ + sin θ0 cos θ′ cos λ′ (50)
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6.2 Computation of (2Ω ∧ r) in Rochas’ SL formulation

The quantity (2Ω∧r) is needed when the Rochas’ "Lagrangian" formulation of the Coriolis force

is used. In the geographical frame, the expression of this term is :

(2Ω ∧ r)|geo = (2aΩ cos θ , 0) (51)

This means that this vector is always pointing towards the local geographical east. In the pro-

jected frame, the components of this vector are therefore (see Fig. 5)

(2Ω ∧ r)|proj = (2aΩ cos θ cosα , −2aΩ cos θ sinα) (52)

This quantity is initialised in SUEBIG for Aladin, and used for SL computations in ELARCHE. No

specific modification of the code is needed since the expression is not specific to the geometry,

once grid-points arrays have been initialised properly in the geometric package.

7 Use of the new geometry for meteorological equations

7.1 Rotated and projected meteorological equations

For a non-rotating spherical planet, the general equations for the Fluid Mechanics on a sphere are

valid for any system of spherical coordinates (λ, θ) (rotated or non-rotated) due to the invariance

principle. In the case of semi-Lagrangian discretisations, the computation of origin points and the

transport of the wind-vector involves a "wind-displacement matrix" ΛDA between the departure

and arrival points (see Staniforth et al., 2009 ; and Wood et al., 2009). This matrix, under the

assumption of a shallow-atmosphere approximation is given by (51)–(53) in Staniforth et al.,

2009. This matrix involves in turn the knowledge of geographical coordinates of the departure

point of semi-Lagrangian trajectories. For this computation, a transport of the wind vector along

the great-circle tangent to the wind vector itself is assumed.

Using the matrix formalism of Staniforth et al. 2009, we have :

(

ugA

vgA

)

=

(

p q

−q p

)(

ugD

vgD

)

= ΛDA.

(

ugD

vgD

)

(53)

where (ugA, vgA) denotes the geographical (zonal, meridional) components of the wind at the

arrival point (and similarly at departure point with subscript D). The expressions for p and q

are :

p =
cos θA cos θD + (1 + sin θA sin θD) cos δλ

1 + sin θA sin θD + cos θA cos θD cos δλ
(54)

q =
(sin θA + sin θD) sin δλ

1 + sin θA sin θD + cos θA cos θD cos δλ
(55)

where δλ = (λA − λD).

The only potentially problematic term for a rotating planet is the Coriolis term which appears

then, since it refers to a fixed absolute direction and may therefore not be invariant through

a change of spherical coordinates. However, the Coriolis force for the horizontal wind is just a

rotation of the wind vector by π/2 and a multiplication by the local Coriolis parameter f . As a

consequence, the Coriolis force expressed for the components of the wind in the rotated/tilted
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geometry are unchanged with respect to its form in the geographical geometry. In other words,

the form of the Coriolis force is invariant by the transformation (48).

The next step is the projection of equations on the plane. This step leads to different problems ac-

cording to wether Eulerian or semi-Lagrangian forms are used. The changes due to the projection

of equations are described in the next subsections.

7.2 Projection of equations in the Eulerian case

For scalar variables, the projection does not induce any formal change, but for vectorial variables,

the expression of projected meteorological equations on the plane (stereo-Lambert or Mercator)

brings some changes compared to their original form in spherical geometry. This is due to the

space-dependency of the local geographical unit-vectors components, when expressed in the local

frame of the projected map. In our case, this change occurs only for the equation of horizontal

momentum. This results in the appearance of additional "curvature terms" in the equations.

In the case of the Eulerian form of time derivatives, the advective transport of the wind field

induces the appearance of curvature terms proportional to the local curvature factors (the so-

called RATATX and RATATH in the Aladin code). For more details, see Joly (1992b, comments after

Eqs. (10) and (22)).

A possible expression for these curvature factors is :

RATATX = ∂m/∂x

RATATH = ∂m/∂y

It can be shown that this expression for the curvature factors is formally identical for any Mer-

cator projection (normal or rotated/tilted) and for Stéréo-Lambert projections. In other terms,

these factors are expressed from the local map factor through derivatives in the (x, y) space.

Consequently, once the field of the local map-factor is correctly initialized, the computation of

these two factors is independant of the type of projection subsequently used. Therefore, no spe-

cial modification is required in the code for the computation of these factors in the rotated/tilted

Mercator projection.

7.3 Semi-Lagrangian form of the equations

Here we restrict to the case of a shallow-atmosphere (as opposed to deep-atmosphere). In the

semi-Lagrangian case, the projection of equations brings some specificities. Three aspects are

examined here : research of origin-point, Coriolis terms, and transport of the wind vector. Due to

the shallow-atmosphere approximation, the transport of the wind vectors reduces to the transport

of the horizontal wind vectors (the transport of the vertical velocity becomes a separated problem

only involving a scalar field).

Research of Origin point :

In all Aladin projected geometries, as in the global ARPEGE, the research of origin points

is performed by actually using the average of physical wind at both origin and arrival points

of the trajectory. An equation as (4) of Wood et al., 2003 is therefore used. This means that

no special assumption is made on the shape of the trajectory (straight line, or great circle, or

whatever). Technically, the origin point is sought by using the local components of the physical
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wind (u, v), and the local distorsion of distances on the map is properly handled by multiplying

the trajectory length by the map factor to obtain the indices of the origin point. However, the

variations of the map factor along the trajectory are neglected, consistently with the hypothesis

of a high-resolution model (which in turn implies relatively short time-steps and trajecty lengths).

Consistently with the shallow-atmosphere approximation, the curvature of the trajectory in the

direction of the earth-radius is neglected, in the sense discussed in section 4.2 of Staniforth et

al., 2003.

All this being said, the important point for this document is that the research of trajectory

origins is done in term of geographical coordinates, as in ARPEGE, with a similar algorithm.

Finally, the research of origin points, being not specific to the rotated/tilted Mercator pro-

jection, is not discussed in more details here.

Coriolis terms :

The computation of Coriolis terms involves the knowledge of geographic coordinates of the origin

point only in the case of the so-called Rochas formulation (see section 6.2). Therefore, a specific

computation of (52) must be performed in the SL part of the code, as mentioned in section 6.2.

Transport of vectors (winds) :

The last specific feature of the projected equations for SL scheme is the transport of the wind

vector in the momentum equation. This requires computations which are indirectly specific to

the chosen projection (see section 7.4 below).

Other use of origin point coordinates :

Except for these three specific features, the spherical coordinates of the origin point are not

needed in ALADIN, even for physical computations. This is due to the fact that the computation

of physics sources at the origin point is not made by evaluating the physical sources at the origin

point, but by computing the physical sources on the grid, then interpolating them at origin

points, as any other source term. in this process, the origin point is simply defined in terms of

projected coordinates (x, y) and interpolations are made in the projected plane framework.

7.4 Semi-Lagrangian transport of vectors (winds)

The transport of wind vectors by the SL scheme needs some particular care. The above-mentioned

matrix ΛDA gives the geographical components of the wind at arrival point knowing the geogra-

phical components at the departure point. Since the wind we are working with is decomposed

along the (x, y) directions of the projected plane instead of the north-south directions, the "com-

pass" rotation from the (ig, jg) frame to the (i′′, j′′) (and vice versa) must be applied.

For the determination of the new wind at the final point from the wind at the origin point, using

this shallow-atmosphere approximation, three steps can be defined :

- Determine the geographical components (ugD, vgD) of the wind at the departure point from

the cartesian components (uD, vD), thus using "compass" rotation at the departure point

ΓD.

- Determine the geographical components (ugA, vgA) of the transported wind at the arrival

point using the wind displacement matrix between the departure and arrival points ΛDA.

- Determine the cartesian components (uA, vA) of the wind at the arrival point from its

geographical components (ugA, vgA), using the "compass" rotation at the arrival point ΓA.
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We can therefore write :

(

uA

vA

)

= Γ−1
A . ΛDA . ΓD

(

uD

vD

)

+ SV (56)

where SV represents all the other sources than the transport. In the aladin model, the product of

the two rightmost matrices (those depending on the position of the origin points) is computed in

the first part of SL computations (ELARCHE), while the application to the wind and the product

with the leftmost matrix are done in the second part (LAPINEB).

7.5 Winds to work with

Throughout almost all the integration model (except some particular parts of the physics),

the computations are performed in the projected geometry. This means that all the dynamical

equations are cast as function of x and y, and that the wind used in the model is always the

wind in the frame of the projected geometry (u, v). Two variants are used for this wind in the

projected geometry :

- Physical wind in the frame of the projected geometry V = (u, v). This variant is used in

all the grid-point computations.

- "Wind on the map" in the frame of the projected geometry V′ = (u′, v′) (also called

"reduced wind" – note that the "prime" symbol used here must not be confused with the

one used for quantities related to the rotated geometry as e.g. θ′ ). This variant of the wind

is used in all spectral computations.

Since V = mV′, the transformation between these two types of wind is straightforward, and

needs not to be changed in the Aladin code for the implementation of the new geometry.

7.6 Coordinates to be stored

The parts of the model which use a description in the geographical frame or geographic winds are

restricted to "peripheric" tasks like the post-processing or the comparison with observations (and

of course also the geometry package). For these parts, the knowledge of the relationship between

the Cartesian LAM frame and the geographical frame is sufficient for any purpose, and they use

these transformations formulae in a transparent way. As a consequence, in all the LAM system,

only the transformation (x, y) → (λ, θ) needs to be stored in the setup part of the model ; that

is, we need to store only (λ, θ) on the grid, and we never need to store (λ′′, θ′′). This features is

thus compatible with the existing code, in which only one set of spherical coordinates is stored.

7.7 Coriolis terms in 4D-VAR

The Coriolis parameter f is used in the balance equation for the computation of the background

error cost function JB in the 4D-VAR configuration. For this purpose (as for the dynamics) the

Coriolis parameter is directly read from the array RCORI, computed in the setup and the form of

the balance equation as a function of f is unchanged compared to the other existing geometries.

As a consequence, it is sufficient to modify the filling of the array RCORI, and no modification of

the form of the Coriolis terms in the model equations is needed.
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Remark : The balance equation being non-linear, it is computed in spectral space through

a spectral product with a low-order fitted value of the Coriolis parameter (currently with a

N = 15 spectral truncation). However, for sake of simplicity, the current fit it performed along

the y direction only, in an hard-coded manner. This limitation is of course not well-adapted to

the case of a tilted geometry, for which the iso-f curves are tilted by construction. In the case of

the Fig. 4 for instance, the only variations of f are along the x axis, and the spectral fit along

y would therefore give nothing better than a fit by a constant ! Moreover, this limitation of the

spectral fit of f for the balance equation of JB is also already present in the current Lambert

geometry, which allows a tilting when λ0 6= λc as in the domain depicted in the right part of Fig.

6. When the Lambert geometry is tilted, the iso-f can be strongly tilted with respect to the y

axis, and the abovementionned limitation also acts in a similar manner.

This discussion shows that in the current state,the balance equation of the JB cannot be used

with strongly tilted geometries (tilted/Lambert or rotated/tilted Mercator). This seems to plead

more for a revision of the fitting algorithm of f in JB than for a restriction of the tilting of LAM

geometries. This point is not urgent but must be kept in mind for the day we will want to use a

strongly tilted geometry together with a 4D-VAR LAM.

7.8 Full-Pos

The change of geometry should be transparent for the post-processing Full-Pos, provided the

"compass" arrays are correctly filled.

7.9 File handling

Provided that the ascending compatibility is guaranteed, and that the "frame/header" (the so-

called "CADRE" in the file-software package) of the files is not modified, this should not rise any

specific problem.

8 Comparison with existing geometries (EGGX and EGGPACK pa-

ckages)

The old EGGX package originally contained an optional rotation of the area of interest to the

equator of the rotated sphere, and the possibility of having a Mercator projection (the possibility

of a tilting was not implemented for the rotated Mercator projection in EGGX), as proposed here.

However, this package also retained the possibility for various geometries (e.g. rotated lat-lon on

the sphere, rotated stereo-Lambert) which made it rather complicated. Here, only the simplest

case of projected rotated geometry (the Mercator one) is included, leading to a rather simple

problem.

The more recent EGGPACK package has eliminated the possibility of applying a rotation of the

area of interest to the Equator before the projection, and thus restricts itself to conventional

Stero-Lambert and Mercator projections. The type of projection is automatically deduced from

the latitude of the reference point of the projection.

The major difference between the EGGX and EGGPACK packages comes however from the nature of

the free parameters. In EGGX, many options were implemented :

- the type of projection (or spherical lat-lon) can be imposed, or automatically chosen to

minimize the variations of the map factor in the domain.
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- the (integer) dimensions of the grid-arrays are free paremeters

- at least the SW corner is imposed as a free parameter

- the NE corner can be fully specified, or modified in order to fulfil a constraint of isotropic

resolution.

- the reference point of the projection can be specified, or automatically computed

This strategy was very flexible and allows many types of projection/domain specifications, but

is, on the other hand, quite complicated. The aim of the EGGPACK package was to eliminate the

less used capabilities and to allow a more intuitive specification of the free parameters.

In EGGPACK, the strategy for the specification of free parameters is as follows :

- the reference point P0 = (λ0, θ0) for the projection is provided.

- the type of projection is automatically chosen to have a projection tangent at the reference

point (moreover, spherical lat-lon and rotated projections are eliminated).

- the (integer) dimensions of the grid-arrays are free paremeters

- the center of the LAM domain Pc = (λc, θc) is specified

- the (uniform) resolutions in x and y are specified.

m=1 m=
1

P0
Pc

Pc

Fig. 6 – Effect of having Pc = P0 (domain at centre) and Pc 6= P0 (domain at right) in the case of a

Lambert projection.

It should be noted that the reference point P0 of the projection (the place where m = 1 and

the geographical North is along the y direction) can be taken not at the center of the domain

Pc in EGGPACK. Chosing Pc outside of the line m = 1 would be detrimental since in this case,

the variations of the map factor ar not minimized in the LAM domain. Hence we assume that

whenever different from P0, Pc always lies on the line m = 1 in this discussion, and therefore,

the only degree of freedom is the longitude λc of the domain’s center (i.e. θc must be equal to

θ0). This degree of freedom λc 6= λ0 results, in the case of a Lambert projection, in a "tilting"
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effect similar to the one obtained through β presented in this document : the circle m = 1 is

tilted with respect to the case where P0 = Pc (see figure 6).

A similar method could be used for obtaining a tilting effect in the rotated Mercator projection.

In this case we would choose a reference point P0 for the projection, and choose the center of the

domain Pc elsewhere. Since choosing Pc away from the equator of the rotated geometry would be

detrimental for the map factor, we have to choose Pc in such a way that θ′c = 0, i.e. λ′c is the only

degree of freedom. Similarly to the conventional Lambert projection, this determines a unique

degree of freedom for the couple (λc, θc), which has to travel only on a great circle on the earth.

Therefore, this degree of freedom could be restricted to the choice of λc (with the disadvantage

of needing some special case when the latter curve is a meridional great circle, as it occurs if

cos(θ0) = 0).

However this methods possesses the disadvantage of being not very intuitive : a trial and error

process is most often necessary in order to obtain a given desired domain. This process can be

avoided by writing a small program which computes the mysterious needed value of λc as a

function of some specified parameters, but the interest of such a complication is questionable if

a more intuitive and simple approach is possible. Moreover, choosing Pc far away from P0 may

result in undesired complications if the domain is large : in this case the domain may no longer

be a connex piece of the original "plane ribbon", because it goes beyond the lateral edges of the

global projected domain. Then special safeguards would probably have to be installed in order

to maintain the operativeness of the computations.

This is why in this document, the tilting is directly applied before the projection, and in the

form of a pure spherical tilting rotation , in order to allow a much more intuitive actual tilting

effect for the rotated Mercator projection. In this case, the distinction between P0 and Pc is no

longer needed, and therefore Pc is not a free parameter, the only one being P0.

The possibility of a rotated/tilted Mercator geometry can therefore be inserted in the new

EGGPACK package, provided that the degree of freedom Pc 6= P0 is replaced by the specifica-

tion of β. The free parameter λc must be replaced by (or acquire the signification of) β.

8.1 Example of typical distorsion compared to Lambert

At the vicinity of the reference point of the projection, the tilted-Lambert and rotated-tilted-

Mercator projections are very close together. This is due to the fact that the Mercator projection

cylinder and the Lambert projection cone are mutually tangent on the straight line defined by

θ′′ = θ′′0 . Fig 7 shows an example of what would be the typical distorsions for a domain centred

in Toulouse (France) with fairly large extension. The maps are plotted with Mercator (left) and

Lambert (right) projections, for domains about 6600 km wide (∆λ′′ = ∆θ′′ = 60◦ in the Mercator

case). Some distorsion appears in the Mercator map compared to the Lambert map when getting

away from the centre of the figure. The meridians are not straight lines in the Mercator map, as

seen in particular at the northest part of the 0 and +30 E meridians. The geographical limits of

the two domains slightly depart also. It is indeed impossible to adjust the boudaries of Mercator

and Lambert domains in such a way that they coincide together.
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Fig. 7 – Comparison of Mercator (left) and Lambert (right) projections with common parameters :

λ0 = 1.5 E, θ0 = 43.5 N, β = 30◦, ∆θ′′ = ∆λ′′ = 60◦.

9 Coding and user aspects

9.1 Coding aspects

The ALADIN code related to this new geometry exactly follows the computations presented in

section 2–7, except some very specific points which are mostly due to the application to finite-

precision computers. The differences between the exact formulae in 2–7 and the practical code

are listed below :

- The Arcsin and Arcos function have needed to be armoured against arguments with

magnitude larger than one. Formally these functions must therefore been thought as e.g.

arcsin(x) = arcsin(max[min[x, 1],−1]) (57)

This modification was required since in some cases, the finite-precision magnitude of the

argument was experienced to very slightly exceed one.

- The "safeguards" against cos θ = 0 and cos θ′′ = 0 have been applied in EGGPACK routines,

in ELARCHE and in associated TL/AD routines. In practice, the safeguard is then applied

for cos θ < ǫ where ǫ is a pre-determined small value (typically 10−10).

9.2 User aspects

After some discussions inside the group, choice was made to implement the tilting functionality

through a direct tilting angle β instead of an approach using a "tilting-like" longitude, because it

leads to a more friendly and intuitive definition of the geometry and domain (see also discussion

in section 8 above). In the case where θ0 = ±90◦, it is important to note that both λ0 and

β continue to play their normal role, although the role of these two free-parameters is totally

redundant in this case. This redundancy was left in order to allow a continuity of the domain

variations when the value θ0 = ±90◦ is reached continuously.
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From the point of view of the user, a call of the new geometry functionality is needed only the

case where the one of the three following configurations is used :

- E923 (making a LAM climatology file)

- E927 (making a LAM initial/coupling file from a global historical file)

- EE927 (making a LAM initial/coupling file from a bigger LAM historical file)

For a forecast (configuration 001), the geometry is read in the "cadre" of the initial file and hence

the geometry of the domain does not need to be re-specified.

The new geometry is inserted as a new functionality of the existing code EGGPACK. Hence the ac-

tivation of the new geometry is done through a switch in the existing package. The rotated/tilted

geometry is conventionally activated by setting LMRT=.TRUE. in the namelist NEMGEO. In the E927

and EE927 configurations, the parameter LFPMRT has to be set to LFPMRT=.TRUE. in the namelist

NAMFPG. This has to consequence to set the value of the "cadre" parameter NROTEQ to −2 (the

value NROTEQ = −1 is for nonrotated Stereo-Lambert and Mercator projections, while positive

values are used for even older geometries).

Here are the name of the free-parameters to specify in the namelist NEMGEO for obtaining a given

geometry and domain :

LMRT : activation or not of the Mercator Rotated/Tilted geometry

ELONC : longitude of the center of the domain (λ0 in the present documentation).

ELATC : latitude of the center of the domain (θ0 in the present documentation)..

ELON0 : tilting angle (β in the present documentation).

EDELX : resolution (in meters) on the map in the x direction.

EDELY : resolution (in meters) on the map in the y direction.

Notes :

- All angles are to be specified in degrees

- Although the tilting angle β is specified in a free-parameter which looks like a "reference

longitude", this name is purely conventional and β actually has the meaning which has been

defined in the present paper, as discussed in the first paragraph of this sub-section.

- The parameter ELAT0 in the namelist NEMGEO is ignored for the rotated/tilted Mercator geome-

try, but has to be set to zero.

- By construction the resolution taken on the map is uniform in a given direction x or y (it is

however non uniform in the geographical space, since increasing from the rotated/tilted equator

toward the rotated/tilted poles). In practice, the uniform resolution to be specified is the geogra-

phical resolution which is wished at the center of the domain, since these two concepts coincide

there, because the map factor is equal to one.

9.3 Costs

The cost of forecast made with Lambert and rotated/tilted Mercator projection is found to be

very close. The involved piece of code here is ELARCHE. Once the trigonometric lines of (λ′′, θ′′)

are completed, the computations of the trigonometric lines of (λ, θ) only requires linear algebra

floating-point operations. Although the rotated/tilted Mercator projection is more complicated

than Lambert one on the paper, the computations needed for a forecast finally do not amount to
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more calls to trigonometric or non-linear algebraic functions. The only exception to this rule is

the computations of cos θ′ and cos θ from the sine of the correponding angle, which is apparently

compensated by some specific non-linear algebraic computations in the Lambert case. Hence,

finally, a (small) computational advantage is often found for the rotated/tilted Mercator case,

compared to the lambert case.

10 Conclusions

A rotated/tilted Mercator geometry for Aladin has been described :

- The fields derived from the geometry itself can be quite easily computed, even if a bit more

trigonometry is needed compared to the standard Mercator projection. This step is done

in the setup part of the model, and the change of geometry should not result in overcosts

in the time-loop or in the 4D-VAR.

- The new geometry is inserted as a new functionality of the existing code EGGPACK.

- Finally, the meteorological dynamical equations in the Cartesian LAM plane do not need

to be substantially modified.
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