SURFEX

Arome training course Poiana Brasov – November 2005

Patrick Le Moigne

Part I. Overview of the externalized surface: theoretical background

A. Introduction to SURFEX

- A1. The objectives of SURFEX
- A2. How to reach these objectives?
- A3. Surface energy budget
- A4. Water cycle

B. SURFEX package algorithms

- B1. Initialization of physiographic fields
- B2. Initialization of prognostic fields
- B3. Running surface physical parameterizations

Part I. Overview of the externalized surface: theoretical background

C. Princip of SURFEX

- C1. Setup
- C2. I/O
- C3. Organization of physical computations

Part II. The implementation in Arome and Aladin

D. Coupling with an atmospheric model

- D1. Introduction to coupling
- D2. Explicit coupling
- D3. Implicit coupling
- D4. Type of coupling and model
- D5. Example of coupling

E. Technical aspects

- E1. Main namelist options
- E2. Diagnostics
- E3. Physical options

Part I. Overview of the externalized surface: theoretical background

- A. Introduction to SURFEX
- B. SURFEX package algorithms
- C. Princip of SURFEX

A1. The objectives of SURFEX

- ➤ The role of surface in a NWP model is to simulate the exchanges of momentum, heat, water, carbon dioxyd concentration or chemical species with the atmosphere. These exchanges are performed by the mean of fluxes.
- ► An important issue is to separate the surface schemes from the atmospheric model:
 - ♦ it allows the use of the same surface code in different atmospheric models: meso-NH, Arome, Arpege/Aladin, ...
 - ♦ the switch between surface schemes and options is easy
- ➤ Combines different level of complexity in the proposed schemes
 - ♦ ideal fluxes approach
 - ♦ 2 levels of tiling for surface areas

A2. How to reach these objectives?

► Use dedicated physical parameterizations

Soil and Vegetation	ISBA: Interface Soil Biosphere Atmosphere (Noilhan-Planton 1989, Noilhan-Mahfouf 1996)
Sea and ocean	Prescribed temperature
Town	TEB: Town Energy Balance (Masson 2000)
Lake	Prescribed temperature

A2. How to reach these objectives?

► Use accurate databases for surface parameters

GTOPO30	1km Orography
<u>FAO</u>	10km texture of soil
ECOCLIMAP	1km land surface parameters

A3. Surface energy budget

A3. Surface energy budget

$$R_{N} = (1 - \alpha_{t})R_{G} + \varepsilon(R_{AT} - \sigma T_{S}^{4})$$

Energy absorbed by surface:

$$R_G - \alpha R_G + \epsilon R_{AT}$$

thermodynamics gives:

$$R_{N}=G+H+LE$$

A4. Water cycle

Part I. Overview of the externalized surface: theoretical background

A. Introduction to SURFEX

B. SURFEX package algorithms

C. Princip of SURFEX

▶ PGD facility (~e923) is used to prepare physiographic fields at any scale, including subgrid orography fields at 30" resolution from GTOPO30 database

the user has to define (namelist):

- ♦ a geographic area of interest (at any place of the globe)
- ♦ a projection (between latlon, cartesian, conformal, ...)
- ♦ a grid (resolution, number of points in both directions, ...)

and to specify databases for (namelist):

- ♦ orography
- ♦ soil texture
- ♦ vegetation

► GTOPO30 database

Orography (m) at 1km resolution

40x20 pts over Romania, ~25km mesh

► FAO database (http://www.fao.org)

Soil texture: proportion of sand and clay at 10km resolution

► ECOCLIMAP database

Global database at 1km resolution for surface parameters

```
Depending on soil% sand% claydepth
```

- Depending on vegetation
 fraction of vegetation (veg)
 leaf area index (LAI)
 minimal stomatal resistance (Rsmin)
 roughness length (z0)
- Depending on soil and vegetation albedo emissivity

► ECOCLIMAP database

DEFINING ECOSYSTEMS

► ECOCLIMAP database

NDVI: Normalized Digital Vegetation Index

NDVI = (PIR - VIS) / (PIR + VIS)

PIR : near infra-red reflectance [0.725 microns, 1.0 microns]

VIS: visible reflectance [0.58 microns, 0.68 microns]

 $NDVI = \{ 0.1 ; 0.6 \}$

► ECOCLIMAP database

CLIMATE MAP (Koeppe et de Lond, 1958)

► ECOCLIMAP database

LAND COVER MAPS (university of Maryland, 1km)

► ECOCLIMAP database

LAND COVER MAPS (Corine land cover, 1km)

► ECOCLIMAP algorithm

Each land cover is represented as a fraction of vegetation types (12 vegetation types):

fraction of woody vegetation, herbaceous vegetation and bare soil for each land cover

landcover	bare soil: bare soil / rocks / permanent snow	woody vegetation: evergreen brodaleaf / deciduous broadleaf / needleleaf	herbaceous: C3 / C4 / irr. crops / natural herbaceous (temperate) / natural herbaceous (tropics) wetland and irr. herbaceous
any forest		100%	
woodland	0-10%	40-50%	50%
wooded grassland	020%	20-30%	50-70%
closed shrubland	20– $30%$	20%	50- $60%$
open shrubland	20- $60%$		4080%
grassland		% variation depends	100%
crops		climate	100%
bare soil; rock, permanent snow	90-100%		0-10%

► ECOCLIMAP algorithm

1. Global repartition of woodland

2. NDVI profiles of wooded grassland

► ECOCLIMAP algorithm: computation of surface parameters

LAI=LAI_{min} + (LAI_{max}-LAI_{min}) * (NDVI-NDVI_{min})/(NDVI_{max}-NDVI_{min})

<u></u>	Y-		٩		
vegetation type	total vegetation fraction	$\begin{array}{c} \text{roughness} \\ \text{length} \\ \text{(m)} \end{array}$	albedo of vegetation	minimal stomatal resistance (sm^{-1})	emissivity of vegetation
bare soil	0	0.013			
rocks	О	0.13			
permanent snow and ice	0	0.0013			
C3 crops	$1 - e^{-0.6LAI}$	$0.13~{ m min}(1,e^{rac{LAI=3.5}{1.3}})$	0.20	40	0.97
C4 and irr. crops	$1 - e^{-0.6LAI}$	$0.13~{ m min}(2.5,e^{rac{LAI=3.5}{1.3}})$	0.20	40	0.97
natural herbaceous (tropics)	0.95	$0.13~rac{LAI}{6}$	0.20	120	0.97
Other herbaceous	0.95	$0.13~rac{LAI}{6}$	0.20	40	0.97
Needleleaf trees	0.95	$0.13\ h$	0.10	150	0.97
Evergreen broadleaf trees	0.99	$0.13 \; h$	0.13	250	0.97
Deciduous broadleaf trees	0.95	$0.13\ h$	0.15	150	0.97

► ECOCLIMAP algorithm: aggregation rules

► ECOCLIMAP results: Leaf Area Index for July

► ECOCLIMAP results: example over Romania (53 covers)

0.6

► ECOCLIMAP results: 3 particular covers

Rivers

Temperate suburban

Duna river

Central Europe crops

Bucarest

B2. Initialization of prognostic fields

▶ PREP facility (~e927) is used to initialize prognostic variables from different atmospheric models like:

ECMWF, ARPEGE, ALADIN, MESO-NH, MOCAGE

usually following variables need to be set up:

- © vertical profiles for temperature, liquid water and ice (nature)
- ⊕ temperatures of road, wall and roof (urban areas)
- © sst and water temperature for respectively seas and lakes
- © interception water content
- © snow water equivalent and other snow prognostic variable (depending on the snow scheme)

Fields computed with PGD will also be written in file generated by PREP application.

B3. Running surface schemes

Atmospheric model

surface

Part I. Overview of the externalized surface: theoretical background

- A. Introduction to SURFEX
- B. SURFEX package algorithms
- C. Princip of SURFEX

▶ <u>tiling</u> is one important feature of the externalized surface: each grid cell is divided into 4 elementary units according to the fraction of covers in the grid cell:

▶ <u>tiling</u> : example

► second level of <u>tiling</u> for vegetation: natural areas of each grid cell may be divided into several peaces called <u>patches</u>.

2: rocks

3: permanent snow

4: deciduous forest

5: conifer forest

6: mixt forest

7: C3 crops

8: C4 crops

9: irrigated crops

10: woodland

11: tropical grassland

12: garden and parks

initialization of masks.

In order to optimize physical computations, a mask is associated to each tile (each patch as well if more than one patch has been defined) and the physical parameterizations are performed on physical points only (town-tile is treated only with the town scheme).

The size of the masks are computed by counting the number of grid cells which have a non-zero fraction of the tile in the domain of interest.

The definition of the masks are based on fortran routines PACK and UNPACK:

➤ initialization of **masks**: example

Particular case where each grid box is represented with only one tile (pure pixel, while in reality each tile may be present in the box)

The grid is composed of 12 grid cells organized as follows:

In this case the fraction of each tile is $X_{NATURE} = 5/12$, $X_{TOWN} = 3/12$, $X_{SEA} = 3/12$ and $X_{WATER} = 1/12$ and the dimensions of the masks are respectively 5, 3, 3 and 1

C1. SURFEX setup

initialization of **masks**: example

Once the fraction and the size of the mask of each tile is computed, it becomes possible to pack the variables over each tile to deduce effective mask (1D vector):

repartition of each tile over the grid

XP NATURE $(3) = X(NATURE\ MASK(3)) = X(6)$

C1. SURFEX setup

princip of fluxes aggregation:

once all masks have been set up, physical computations can be done over each of them:

C1. SURFEX setup

initialization of data from cover fields

information from PGD file is read and then for each cover (1 to 255) some parameters are initialized like for example:

fractions of sea, nature, town and lakes

temporal cycle of LAI fraction, root and ground depth of each vegetation type

albedo, emissivity, heat capacities, ... of artificial areas

▶ prognostic variables are read from initial file (PREP)

C2. I/O

- ► I/O belong to the model that calls SURFEX.

 Reading and writing orders are done using the same generic subroutine, called respectively read_surf and write surf.
- ➤ According to the atmospheric model (AROME or Meso-NH), different subroutines are then called:

```
read_surfxx_mnh write_surf_mnh meso-nh read_surfxx_aro write_surfxx_aro arome read_surfxx_ol write_surfxx_ol off-line read_surfxx_asc write_surfxx_asc off-line
```

xx is the type of the variable to be read or written

- reading and writing orders are distributed over processors
- necessary link with I/O library

► ISBA : Interaction between Soil, Biosphere and Atmosphere

there are 2 main options to treat the transfer of water and heat in the soil:

- Force restore method (Noilhan-Planton 1989):

2 or 3 layers for temperature, liquid water and ice

- Diffusion method (Boone 1999):

n-layers for temperature, liquid water and ice

► ISBA : Interaction between Soil, Biosphere and Atmosphere

► ISBA : basic equations

Temperature:

$$\frac{\partial T_s}{\partial t} = C_T |G| - \frac{2\pi}{\tau} |T_s - T_2| \tag{1}$$

$$\frac{\partial T_2}{\partial t} = \frac{1}{\tau} \left(T_s - T_2 \right) \tag{2}$$

CT thermal capacity for soil-vegetation-snow

- τ day duration
- G ground heat flux

without ice:

$$C_V = 2.10^{-5} [kg.m^2.J^{-1}]$$

$$\frac{1}{C_T} = \frac{1 - veg}{C_G} + \frac{veg}{C_V}$$

$$C_G = C_{Gsat} \left(\frac{w_{sat}}{w_2} \right)^{b/2\ln(10)}$$

► ISBA : basic equations

Water content:

$$\frac{\partial w_g}{\partial t} = \frac{C_1}{\rho_w d_1} \left(P_g - E_g \right) - \frac{C_2}{\tau} \left(w_g - w_{geq} \right)$$

$$P_g = \left(1 - veg \right) P + R_r - Q_r$$
(3)

P total precipitation rate

Eg bare ground evaporation

wgeq balance water content (gravity/capillarity)

Rr interception runoff

Qr surface runoff

surface runoff Qr occurs over saturated area

► ISBA : basic equations

Water content:

$$\frac{\partial w_2}{\partial t} = \frac{1}{\rho_w d_2} \left(P_g - E_g - E_{tr} \right) - D_{rI} - D_{fI} \tag{4}$$

Etr evapotranspiration of plant

Dr1 root layer drainage

Df1 diffusion between w2 and w3 layers

$$D_{fI} = \frac{C_4}{\tau} \left(w_2 - w_3 \right)$$

► ISBA : basic equations

Water content:

$$\frac{\partial w_{3}}{\partial t} = \frac{d_{2}}{d_{3} - d_{2}} \left(D_{rI} + D_{fI} \right) - D_{r2}$$
 (5)

Dr2: deep layer drainage

$$D_r = -\frac{C_3}{\tau} \frac{1}{d} \max \left[e_b, \left(w - w_{fc} \right) \right]$$

► ISBA : basic equations

Available water:

► ISBA : basic equations

Interception reservoir:

$$\frac{\partial W_r}{\partial t} = veg(P) - E_r \tag{6}$$

► ISBA : basic equations

summary:

$$\frac{\partial T_{s}}{\partial t} = C_{r}(G) - \frac{2\pi}{\tau} (T_{s} - T_{2})$$

$$\frac{\partial T_{2}}{\partial t} = \frac{1}{\tau} (T_{s} - T_{2})$$

$$\frac{\partial w_g}{\partial t} = \frac{C_1}{\rho_w d_1} \left(P_g - \underbrace{E_g} - \frac{C_2}{\tau} \left(w_g - w_{geq} \right) \right)$$

$$\frac{\partial w_2}{\partial t} = \frac{1}{\rho_w d_2} \left(P_g - E_{tr} \right) - D_{rl} - D_{fl}$$

$$\frac{\partial w_3}{\partial t} = \frac{d_2}{d_3 - d_2} \left(D_{rl} + D_{fl} \right) - D_{r2}$$

$$\frac{\partial W_r}{\partial t} = veg(P) + (E_r)$$

- fct of precipitation and runoff
- fct of water contents, soil texture
- terms of the energy balance: ground flux and evaporation

G = Rn-H-LE

=> parameterizations for sensible heat flux H and latent heat flux LE

► ISBA : basic equations

sensible heat flux: following Louis 1979

$$H = \rho_a C_p C_H V_a (T_S - T_a)$$

Cp air specific heat

Ch turbulent exchange coefficient

Va wind speed

► ISBA : basic equations

latent heat flux:

$$\begin{split} E &= E_g + E_r + E_{tr} + E_s \\ E_g &= (1 - veg) \rho_a C_H V_a h_u q_{sat} (T_s) - q_a) \\ E_r &= veg \ \rho_a \frac{\delta}{R_a} \left(q_{sat} (T_s) - q_a \right) \\ E_{tr} &= veg \ \rho_a \frac{1 - \delta}{R_a + R_s} \left(q_{sat} (T_s) - q_a \right) \\ E_s &= p_n \rho_a C_H V_a \left(q_{sat} (T_s) - q_a \right) \end{split}$$

Relative humidity on surface

Fraction of foliage covered by intercepted water

Minimum stomatal resistance of vegetation:

- (i) Jarvis formulation (1976)
- (ii) Isba-A-gs: Rs depends on CO2 concentration and of the capability of plants to assimilate it

► ISBA : basic equations

A-gs approach: the role of stomatal control

► ISBA : basic equations

A-gs approach:

- ◆ The active biomass is a reservoir fed by the net CO2 uptake by leaves (ie An = photosynthesis leaf respiration)
- ◆ LAI is computed by the model

► ISBA : basic equations

snow: 3 schemes available in SURFEX

- Douville 95: 1 layer albedo, density and swe
- Boone and Etchevers 2000: 3 layers albedo, density and heat flux at the interface soil-snow
- Bogatchev and Bazile 2005: 1 layer albedo and swe

► ISBA Explicit Snow

Prognostic variables:

thickness of each snow layer (D) snow density snowpack heat content (Hs)

Diagnostic variables:

snow water equivalent snowpack liquid water (Wl) snow layer temperature (T)

$$D_s = P_n \frac{\Delta t}{\rho_{new}}$$

$$D_{s1} = a_1 D_s + b_1$$

$$D_{s2} = a_2 D_s + b_2$$

 $\frac{\partial W_n}{\partial t} = P_n + p_n P_l - E_n - E_{melting}$

Ds is recomputed when snow cover is modified (fresh snowfall, compaction or melting)

► TEB : Town Energy Balance

Urban Canyon concept:

- TEB: Town Energy Balance
 - ♦ Radiative perturbations
 - shading effect on walls and roads

- ► TEB : Town Energy Balance
 - ♦ Radiative perturbations:
 - shading effect on walls and roads
 - radiative trapping inside the canyon

- ► TEB : Town Energy Balance
 - ♦ Radiative perturbations
 - ♦ Thermal perturbations
 - specific properties of materials
 - lot of available surface

→ Strong heat storage

- ► TEB : Town Energy Balance
 - ♦ Radiative perturbations
 - ♦ Thermal perturbations
 - ♦ Anthopogenic emissions
 - metabolism
 - road traffic
 - heating and cooling domestic systems
 - industrial areas

- ► TEB : Town Energy Balance
 - ♦ Radiative perturbations
 - ♦ Thermal perturbations
 - ♦ Anthopogenic emissions
 - ♦ Hydrological perturbations
 - sewer network
 - waterproof surfaces

→ Strong runoff and weak evaporation

► TEB : Town Energy Balance

Urban canopy energy balance:

$$Q^* + Q_F = Q_H + Q_E + \Delta Q_S + \Delta Q_A$$

net radiation

anthropogenic flux

sensible heat flux

: latent heat flux

 $Q^* \\ Q_F \\ Q_H \\ Q_E \\ \Delta Q_S \\ \Delta Q_A$: heat storage flux

: heat advection net flux

Oke et al., 1999

► TEB : Town Energy Balance

 Urban canopy model: Parameterization of the exchanges of water and energy between canopy and the atmosphere

- Exclusive treatment of built surfaces
- ✓ Idealized geometry:

Computations are made on a mean urban canyon representative of all roads of the area of interest.

✓ Use of 3 elementary surfaces : 1 roof, 2 identical walls and 1 road

- ► TEB : Town Energy Balance
- 1. Computation of the energy budget of each surface:

incoming shortwave and longwave radiationfraction of absorbed radiation

- ► TEB : Town Energy Balance
- 1. Computation of the energy budget of each surface:
 - incoming shortwave and longwave radiationfraction of absorbed radiation
- 2. Computation of the surface temperatures as well as the temperatures of each material layer

- ► TEB : Town Energy Balance
- 1. Computation of the energy budget of each surface:
 - incoming shortwave and longwave radiation
 - fraction of absorbed radiation
- 2. Computation of the surface temperatures as well as the temperatures of each material layer
- 3. Computation for each surface of the exchanges of energy with an aerodynamical resistance network

- ➤ TEB : Town Energy Balance
- 1. Computation of the energy budget of each surface:
 - incoming shortwave and longwave radiation
 - fraction of absorbed radiation
- 2. Computation of the surface temperatures as well as the temperatures of each material layer
- 3. Computation for each surface of the exchanges of energy with an aerodynamical resistance network
- 4. Computation of air temperature and humidity inside the canyon

► TEB : Town Energy Balance

Arome forecast valid for 18th of November 2005 midnight

Urban heat Island around Lyon and Toulouse cities

► SEA - LAKE :

no specific model yet

surface temperature is prescribed

use of Charnock formulation to compute Z₀ over sea:

 $Z_0 = 0.015 \text{ (u*)}^2 / \text{G in order to compute turbulent exchange}$ coefficients and then fluxes

Part II. The implementation in Arome and Aladin

D. Coupling with an atmospheric model

E. Technical aspects

D1. Introduction to coupling

- ▶ Both explicit and implicit coupling are possible within SURFEX
 - explicit coupling implies that the old atmospheric conditions are used to compute the new surface variables: the asumption is that the variation of the atmospheric forcing during time step is small
 - => well adapted to short time step
 - implicit coupling implies that new atmospheric conditions are used to compute the new surface variables:
 - => longer time-steps
 - => more stable scheme
- ➤ SURFEX follows the set of equations proposed by Best et al. (2004)

D2. Explicit coupling

➤ Time step loop: surface called before turbulence

D3. Implicit coupling

➤ Time step loop: surface is called in the middle of the vertical diffusion

D3. Implicit coupling

 \triangleright The surface variable (u, v, θ , q) evolution is done during resolution of atmospheric vertical diffusion.

$$\frac{X_{i}^{+} - X_{i}^{-}}{\Delta t} = \frac{F_{X,i}^{+} - F_{X,i-1}^{+}}{\Delta_{i}} \qquad \qquad F_{X,i} = \frac{k_{i}}{\delta_{i}} (X_{i+1} - X_{i}) \qquad \Longrightarrow \qquad X_{i}^{+} = A_{X,i}^{-} X_{i-1}^{+} + B_{X,i}^{-}$$

$$F_{X,i} = \frac{k_i}{\delta_i} (X_{i+1} - X_i)$$

$$X_{i}^{+} = A_{X,i}^{-} X_{i-1}^{+} + B_{X,i}^{-}$$

D3. Implicit coupling

➤ Vertical diffusion and Neuman closure

D4. Type of coupling and model

In case of explicit coupling: AROME, MESONH or OFF-LINE

$$A_{\theta} = A_{w} = A_{q} = 0$$

$$B_{\theta} = \theta_{A}$$

$$B_{q} = q_{A}$$

 $Bw^2 = (uA^2 + vA^2)$

In case of implicit coupling: ARPEGE / ALADIN or OFF-LINE

Ax,N is a function of Ax,N-1 and the atmospheric diffusion coefficients between levels N-1 and N

Bx,N is a function of the atmospheric diffusion coefficients between levels N-1 and N and also of XN-1

D5. Example of implicit coupling

D5. Example of implicit coupling

with TSTEP > 600s, the explicit mode is unstable for this case.

Part II. The implementation in Arome and Aladin

D. Coupling with an atmospheric model

E. Technical aspects

E1. Main namelist options

► PGD

```
&NAM PGDFILE
                        CPGDFILE = 'PGDFILE'
MAM FRAC
                        LECOCLIMAP = T
NAM PGD GRID
                        CGRID = 'LONLAT REG'
&NAM CONF PROJ
                        XLAT0 = -90.
                        XLONO =
                        XRPK =
                                 -1.
                        XBETA =
&NAM CONF PROJ GRID
                        NIMAX
                                    200
                        XAMCN
                                    200
                        XLATCEN =
                                    -90.
                        XLONCEN =
                                      Θ.
                        XDX
                                = 25000.
                        XDY
                                = 25000.
NAM LONLAT REG
                        XLONMIN = 1.3
                        XLONMAX = 1.7
                        XLATMIN = 43.4
                        XLATMAX = 43.7
                        NLON
                                = 40
                        NLAT
                                = 32
&NAM PGD SCHEMES
                        CNATURE = 'ISBA
                        CSEA
                                = 'SEAFLX'
                        CTOWN
                                = 'TEB
                        CWATER = 'WATFLX'
&NAM COVER
                        YCOVER
                                  = 'ecoclimats v2
                        YFILETYPE = 'DIRECT'
&NAM ZS
                        YZS
                                  = 'gtopo30'
                        YFILETYPE = 'DIRECT'
&NAM ISBA
                        YCLAY
                                      = 'clay fao'
                        YCLAYFILETYPE = 'DIRECT'
                        YSAND
                                      = 'sand fao'
                        YSANDFILETYPE = 'DIRECT'
                        XUNIF RUNOFFB = 0.5
                        CISBA
                                      = '3-L'
                        CPHOTO
                                      = 'NON'
                        NPATCH
                        NGROUND LAYER = 3
```

E1. Main namelist options

► PREP

```
&NAM PREPFILE
                      CPREPFILE = 'PREP.txt'
&NAM PREP SURF ATM
                      CFILE
                                   = 'arpifs.AN.20041025.06',
                      CFILETYPE
                                   = 'GRIB '
&NAM PREP TEB
                                   = 'arpifs.AN.20041025.06',
                      CFILE TEB
                                   = 'GRIB '
                      CTYPE
&NAM PREP SEAFLUX
                      CFILE SEAFLX = 'arpifs.AN.20041025.06',
                      CTYPE
                                   = 'GRIB '
&NAM PREP WATFLUX
                      CFILE_WATFLX = 'arpifs.AN.20041025.06',
                      CTYPE
                                   = 'GRIB '
&NAM PREP ISBA
                      CFILE ISBA
                                   = 'arpifs.AN.20041025.06',
                      CTYPE
                                   = 'GRIB '
&NAM_PREP_ISBA_SNOW
                      CSNOW = '3-L'
```

E1. Main namelist options

► OFF-LINE

DIAG

PHYS

```
&NAM IO OFFLINE
                       YPROGRAM = 'ASCII',
                       YCOUPLING = 'E'
SNAM DIAG SURFn
                       LSURF BUDGET = T
                       N2M
                                     = 1
SNAM DIAG SURF ATMn
                                     = T
                       LFRAC
&NAM DIAG ISBAn
                       LPGD
                                          = T ,
                       LSURF EVAP BUDGET = T ,
                       LSURF_MISC_BUDGET = T,
                       LSURF BUDGETC
SNAM DIAG TEBn
                       LSURF_MISC_BUDGET = T
&NAM ISBAn
                       CROUGH
                                   = "Z04D"
                       CRUNOFF
                                   = "WSAT"
                       CSCOND
                                   = "NP89"
                       CALBED0
                                   = "DRY"
                       CC1DRY
                                   = 'DEF '
                       CSOILFRZ
                                   = 'DEF'
                       CDIFSFCOND = 'DEF '
                       CCPSURF
                                   'HUM'
                       CSNOWRES
                                   = 'DEF'
&NAM CH ISBAn
                       CCH DRY DEP = "WES89 "
&NAM SEAFLUXn
                       CSEA ALB = "TA96"
&NAM CH SEAFLUXn
                       CCH DRY DEP = "WES89 "
&NAM CH WATFLUXn
                       CCH DRY DEP = "WES89 "
&NAM CH TEBn
                       CCH DRY DEP = "WES89 "
```

E2. Diagnostics

➤ SURFEX produces several diagnostics:

N2M=1 or 2 temperature, humidity at 2m and wind 10m

LSURF_BUDGET=T net radiation, heat, water vapour and conduction fluxes

LSURF_EVAP_BUDGET=T all ISBA fluxes (evaporation of vegetation, bare ground, sublimation over snow and ice, ...)

LSURF_MISC_BUDGET=T possibility to diagnose specific quantities in ISBA or TEB (roughness length over urban area, halstead coefficient, ...)

E3. Physical options

CROUGH:

type of orographic roughness length:

Z01D: orographic roughness length does not depend on wind direction

Z04D: orographic roughness length depends on wind direction

► CRUNOFF:

type of subgrid runoff:

WSAT: runoff occurs only when saturation is reached

DT92: Dumenil and Todini (1992) subgrid runoff

CSCOND:

type of thermal conductivity:

NP89: Noilhan and Planton (1989) formula

PL98: Peters-Lidar et al. (1998) formula

E3. Physical options (isba only)

► CALBEDO:

type of bare soil albedo:

DRY: dry bare soil albedo WET: wet bare soil albedo

MEAN: albedo of bare soil half dry, half wet

EVOL: albedo of bare soil evolving with soil moisture

CC1DRY:

type of C1 formulation for bar soils:

DEF: Giard and Bazile formulation

GB93: Giordani and Braud (1993) propose a gaussian formulation

for C1 force restore coefficient

E3. Physical options (isba only)

CSOILFRZ:

type of soil freezing physics option:

DEF: Boone et al. (2000), Giard and Bazile (2000) LWT: phase changes as above, but relation between unfrozenwater and temperature is considered

► CDIFSFCOND:

type of mulch effect:

DEF : no mulch effect

MLCH: include the insulating effect of litter/mulch on the surface thermal conductivity (decreasing of thermal conductivity)

E3. Physical options (isba only)

CCPSURF:

type of specific heat at surface:

DRY: specific heat does not depend on surface specific humudity surface HUM: specific heat depends on surface specific humudity surface

CSNOWRES:

type of turbulent exchange over snow:

DEF: Louis (1979)

RIL: maximum Richardson number limit for stable conditions