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1 Introduction

In this paper, we consider a multiphase system of n+1 componants (k=0 to n). We study the
content of an eulerian (geometric or fixed) volume V (S being the surrounding closed surface of
V ). At a given time t, the total mass of mixture contained in the volume V is m and the mass of
the species l contained in the volume V is ml (m and ml may vary in time).

We will also work at two different scales. The first scale is the scale of the Navier-Stokes
equation, the scale of the continuum that we will also call the « local » scale. The second scale is
a larger scale. It is the scale of the parametrisation in the physic part of the model or the scale
represented by the troncated equations of a numerical model.

In this paper, we only give continuous formulation of the equations. The discretisation problem
should be treated separately. Note also that some terms of the averaged equations will have to be
parameterised in order to be estimated in a numerical model.

2 Definition of the averaging operators

In this section, we define the two averaging operators used to go from the scale of the continuum
to a larger scale (we do not discuss the averaging operation to go from the molecular scale to the
continuum scale. We start from the result of this operation).

2.1 Case of a monophase system

In the case of a monophase system, we can define two types of averaging operator :
– a volumic averaging operator such as, for any variable ψ :

ψ =
1
V

∫
V

ψdv

The departure from the volumic average is defined as : ψ′ = ψ − ψ.
Note that with this definition :

ψ′ =
1
V

∫
V

(ψ − ψ)dv = ψ − ψ = 0

– a mass-weighted averaging operator such as, for any variable ψ :

ψ̂ =
1
m

∫
m

ψdm

with dm = ρdv so that

ψ̂ =
1
m

∫
V

ρψdv

The departure from the mass-weighted average is defined as : ψ′′ = ψ − ψ̂.
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Note that with this definition :

ψ̂′′ =
1
m

∫
V

ρ(ψ − ψ̂)dv = ψ̂ − ψ̂ = 0

By definition also, both ψ and ψ̂ are uniform value in the volume V (a practical consequence
is that they may be taken out of the integral sign in the averaging operators).

We also know that
m =

∫
V

ρdv

hence, using the volumic averaging, we have :

ρ =
1
V

∫
V

ρdv =
m

V
or m = ρV

We can note that :

ψ̂ =
1
ρV

∫
V

ρψdv =
ρψ

ρ
or ρψ = ρψ̂

and (see details in box 1)
ρψη = ρψ̂η̂ + ρψ′′η′′

ρψη =
1
V

∫
V

(ρψη)dv

= ρ
1
m

∫
V

(ρψη)dv

= ρ
1
m

∫
V

ρ([ψ̂ + ψ′′][η̂ + η′′])dv

= ρ
1
m

∫
V

ρ(ψ̂η̂)dv + ρ
1
m

∫
V

ρ(ψ̂η′′)dv + ρ
1
m

∫
V

ρ(ψ′′η̂)dv +
1
V

∫
V

ρ(ψ′′η′′)dv

= ρψ̂η̂ + 0 + 0 + ρψ′′η′′

Box 1:

2.2 Case of a multiphase system

In the case of a multiphase system, we have to introduce an additional discrete (mass-weighted
or barycentric) averaging operator to evaluate the local variables for the mixture :

ψ =
∑

k

ρk

ρ
ψk =

∑
k

qkψk

where
ρ =

∑
k

ρk

and
qk =

ρk

ρ

The local departure between the mixture value and the value of the species l is defined as :

ψ̃l = ψl − ψ
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Note that ∑
k

(ρkψ̃k) = 0

The volumic or mass-weighted operator defined in the previous section may be applied to the
local mixture variables.

The volumic average of any mixture variable ψ is given by :

ψ =
1
V

∫
V

ψdv

But we can also compute the volumic average of the variable ψl characterictic of the species l by :

ψl =
1
V

∫
V

ψldv

Then, the total mass of the parcel is given by :

m =
∫

V

(
∑

k

ρk)dv =
∫

V

ρdv

and the averaged density of the mixture is :

ρ =
1
V

∫
V

(
∑

k

ρk)dv =
m

V

The total mass of the species l in the volume V is given by :

ml =
∫

V

ρldv

and the averaged density of the species l in the volume V is :

ρl =
1
V

∫
V

ρldv =
ml

V

The mass-weighted averaging in the multiphase case may be defined as a mass-weighted ave-
raging with respect to the mixture mass of the parcel such as :

ψ̂ =
1
m

∫
m

ψdm =
1
m

∫
V

ρψdv

with dm = ρdv where ρ =
∑

k ρk.
The departure ψ′′ = ψ − ψ̂ has the nice property of having a mass-weighted averaged value

equal to zero (ψ̂′′ = 0, «centred » variable).
We can also compute the barycentric average of the variable ψl by :

ψ̂l =
1
m

∫
m

ψldm =
1
m

∫
V

ρψldv

The departure ψ′′l = ψl − ψ̂l has also the nice property of having a mass-weighted averaged
value equal to zero (ψ̂′′l = 0).

Usually, we are also interested by the departure between the local variable ψl and the mass
averaged mixture value ψ̂ defined by :

ψl = ψ̂ + ψ′′′l

But, in that case, the departure between the variable ψl and the averaged mixture value ψ̂ has
NOT the nice property of having an averaged mixture value equal to zero. Actually (see box 2),

ψ̂′′′l = ψ̂l − ψ̂ = ̂̃
ψl

This « bad » property of ψ′′′l will have some important consequences on the conservation
equation developped below.
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ψ̂′′′l =
1
m

∫
V

ρψ′′′l dv =
1
m

∫
V

ρ(ψl − ψ̂)dv

=
1
m

∫
V

ρψldv −
1
m

∫
V

ρψ̂dv

= ψ̂l − ψ̂ = ̂ψl − ψ = ̂̃
ψl

Box 2:

3 Equation of state

3.1 Case of a monophase gaz

For a sake of better understanding the problem of the averaging of a non linear diagnostic
equation like the perfect gaz state equation, we will first treat it in the simple case of a mono-
phasic perfect gaz (it will also be valid in the case of a gaz mixture with constant and uniform
concentrations).

At the local scale, the equation of state is written

p = ρRgazT (1)

where Rgaz = R∗/Mgaz, R∗ is the perfect gaz constant (R∗ = 8, 314 J.mol−1.K−1) and Mgaz the
molar mass of the gaz.

Applying the volumic average to this equation, we get :

p = ρRgazT (2)

As, in this context, Rgaz is constant, this equation may be transformed to :

p = RgazρT = RgazρT̂ (3)

The use of the mass-weighted average allows the conservation of the classical form of the perfect
gaz state equation for the averaged state variables p, ρ and T̂ 1

3.2 Case of a multiphase mixture

H1 : In this paper, we do the hypothesis that all the species which are present in the parcel
are instantaneously in local thermic equilibrium, so all the species in the parcel have the
same local temperature : Tk = T for k = 0, n (this hypothesis is not done in Bannon, 2002,
but we do it here INTRODUIRE ICI LA REMARQUE DE JF SUR LA TEMPERATURE
D’EQUILIBRE).

Even in the case of a multiphase mixture, the « equation of state » is an equation written for
the state of the gaz species only.

The local form of the state equation for dry air (k=0) and wator vapor (k=1) are :

p0 = ρ0R0T

p1 = ρ1R1T

1Using only volumic averages would give :

p = RgazρT = RgazρT + Rgazρ′T ′ (4)

To conserve the classical form of the state equation, we would have to neglect the second term on the right hand
side of this equation.
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Applying the volumic averaging operator to these equations gives :

p0 = ρ0R0T

p1 = ρ1R1T

But, the densities in these equations are not the densitiy of the mixture which is used to define
the mass-weighted operator. However, we can transform a bit these equations to make ρ appear :

p0 = ρq0R0T

p1 = ρq1R1T

From these last two equations, we finally obtain :

p0 = ρq̂0R0T̂ +R0ρq′′0T
′′

p1 = ρq̂1R1T̂ +R1ρq′′1T
′′

H2 : To keep the classical form of the state equation for the averaged variables, we have
to neglect the last terms on the right hand side of these two equations :

p0 = ρq̂0R0T̂

p1 = ρq̂1R1T̂

With such hypothesis, the Dalton’s law is still valid for the mean quantities and then :

p = p0 + p1 = ρ(R0q̂0 +R1q̂1)T̂

EXPLORER LA PROPOSITION DE JF (R NULS POUR LES CONDENSATS)

4 The momentum of a mixture

In this paper, we suppose that the local horizontal wind is the same for all the species which
are present in the mixture. Somehow, we suppose then that all the species are instantaneously in
some kind of local horizontal mechanic equilibrium. Note that this hypothesis is very similar to
the local thermodynamic equilibrium hypothesis we have done previously (section 1.2.2).

Let’s u be the local zonal componant and v the local meridional componant of the horizontal
wind of the mixture. With the mechanic equilibrium hypothesis, u and v are also the horizontal
componant of the local wind of any species l present in the mixture (ul = u and vl = v).

However, if the mixture contains some precipitating species which are falling with different
speeds, the vertical velocities of the different species are not the same.

The local vertical velocity of the mixture w (or local barycentric vertical velocity) is such as :

ρw =
∑

k

ρkwk

where wk is the local vertical velocity of the species k.
w̃k = wk − w is the local departure between the vertical velocity of the species k and the

mixture vertical velocity. Note that : ∑
k

ρkw̃k = 0

The relative (with respect to the barycentric velocity) vertical velocity of the precipitating
species is negative. We define the mean relative velocity of the precipitating species by :

w̃precip =
1

ρprecip

∑
precip

ρkw̃k
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Similarly, we define the relative velocity of the non precipitating species (H4 :we suppose
here that all the non precipitating species have the same relative vertical velocity) by :

w̃np =
1
ρnp

∑
np

ρkw̃k = −ρprecip

ρnp
w̃precip

The relative vertical velocity of the non precipitating species is then positive (relative upward
motion).

The average vertical velocity of the species l is defined as :

ŵl =
1
ρV

∫
V

ρwldv

and the average vertical velocity of the mixture is defined as :

ŵ =
1
ρV

∫
V

ρwdv

We also have :
wl = ŵl + w′′l = ŵ + w′′′l

and
w = ŵ + w′′

We check that :
ŵ′′l = 0

and
ŵ′′ = 0

but
ŵ′′′l = ŵl − ŵ = ̂̃wl

We will see later that ̂̃wl is a function of the fall velocity of the different species and that it is at
the basis of the definition of the precipitation fluxes.

Note also that, for any species l in the mixture, ũl = ṽl = 0

5 The total mass conservation in a multiphase mixture

In this section we are looking for an equation describing the total mass evolution of the mixture
in the Eulerian volume V . The mass of mixture in the volume V varies because of the total
contribution of the different mass flux in/out the volum V and because sources of each of the
species in this volume :

∂m

∂t
=
∂
(∫

V
ρdv
)

∂t
= −

∫
S

∑
k

(ρk~uk.~n)dS +
∫

V

∑
k

ρ̇kdv (5)

where m = ρV =
∫

V
ρdv and ρ̇k is the volumic source of the species k.

We know that in the atmosphere
∑

k ρ̇k = 0, hence :

∂m

∂t
= −

∫
S

∑
k

(ρk~uk.~n)dS (6)

Using the Ostrogradsky theorem for the right hand side, this equation may also be written :

∂m

∂t
=
∫

V

∂ (ρ)
∂t

dv = −
∫

V

div(
∑

k

ρk~uk)dv = −
∫

V

div(ρ~u)dv (7)

6



5.1 Local form of the continuity equation

To obtain the local form of the continuity equation, the classic way is to say that :
– as the volum V is fixed in time, the integral and the time derivative commutes in the left

hand side. After the commutation operation, the volumic integral operator is then « outside
» for each of the terms in this equation ;

– as the « integral » form of the equation is valid for any volume V , it is valid locally everyw-
here.

The local form of the continuity equation in the multiphase case conserves a form we classically
use in the monophase case :

∂ρ

∂t
= −div(ρ~u) (8)

but with ~u =
∑

k qk~uk, the local « barycentric » velocity of the mixture.

5.2 Average form of the continuity equation

The equation 1.7 may also be written as :

∂ρV

∂t
= −

∫
V

div(ρ~u)dv = −V div
(

1
V

∫
V

ρ~udv

)
(9)

Then, the average form of the continuity equation also conserves the classical « Eulerian »
form of the continuity equation :

∂ρ

∂t
= −div(ρ~u) = −div(ρ~̂u) (10)

This equation may also be written in a « barycentric » Lagrangian form (with an advection
by the average velocity of the mixture) :

D̂ρ

Dt
=
∂ρ

∂t
+ ~̂u. ~grad(ρ) = −ρdiv(~̂u) (11)

6 General budget equation in a multiphase system

In the former section, we have done the mass budget in an eulerian volum V . The result of
this mass budget was useful to deduce a local mass equation and an adverage mass equation. A
similar method will be use for the mass of each species l of the mixture, for the total momentum
and for the total energy, but, in this section, we will expose in a more general way the budget of
a specific quantity (quantity by mass unit) ψ.

The quantity ψ associated with the species l is ψl. The quantity of the mixture is defined with
a mass-weighted average such as ρψ =

∑
k ρkψk.

The budget of the total quantity of ψ in any Eulerian volume V (volume fixed in time) is :

∂
∫

V

∑
k (ρkψk) dv
∂t︸ ︷︷ ︸
A

= −
∫

S

∑
k

(ρkψk~uk.~n) ds︸ ︷︷ ︸
B

+
∫

V

∑
k

Ṡkdv︸ ︷︷ ︸
C

(12)

where
term A is the eulerian evolution of the budget of the total ψ in the volume V
term B is the budget of the fluxes of ψk through the surrounding surface of the volume V
term C is the budget of the volumic sources Ṡk of ρkψk.
Using the Ostrogradsky theorem, and commuting the time derivative and the volumic integral in
the left hand side, this equation becomes :∫

V

∂ (ρψ)
∂t

dv = −
∫

V

div[
∑

k

(ρkψk~uk)]dv +
∫

V

∑
k

Ṡkdv (13)
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6.1 Equation for the local value of ψ

As this integral form of the equation for ψ is valid for any volum V , it is valid locally for the
integrand. This gives the local form of the equation for ψ :

∂ (ρψ)
∂t

= −div[
∑

k

(ρkψk~uk)] +
∑

k

Ṡk (14)

For each species k, the velocity may be decomposed in ~uk = ~u+ ~̃uk. The former equation becomes :

∂ (ρψ)
∂t

= −div(ρψ~u)− div[
∑

k

(
ρkψk~̃uk

)
] +
∑

k

Ṡk (15)

Using the continuity equation and the hypothesis of horizontal homogeneity for the horizontal
velocity of the different species (H3, see section 1.3), this can also be written as :

ρ
∂ (ψ)
∂t︸ ︷︷ ︸
A

+ ρ~u. ~grad(ψ)︸ ︷︷ ︸
B

= −
∂[
∑

k (ρkψkw̃k)]
∂z︸ ︷︷ ︸
C

+
∑

k

Ṡk︸ ︷︷ ︸
D

(16)

where

term A is the eulerian evolution of ψ

term B is minus the advection of ψ by the local barycentric velocity

term C is the budget of the transports of ψk by the departure with respect to the barycentric
velocity

term D is the budget of the volumic sources of ψk.

6.2 Equation for the average value of ψ

The equation 1.13 is also useful to derive an equation for the averaged value of ψ in a finite
volume V . With a few manipulation (let’s remind that V is a constant in time and space), we get :

∂ ρ
ρV

∫
V

(ρψ) dv

∂t
= −div[

1
V

∫
V

(ρψ~u) dv]− div[
∑

k

1
V

∫
V

(
ρkψk~̃uk

)
dv] +

∑
k

[
1
V

∫
V

Ṡkdv] (17)

Using the definition of the averaging operator of section 1.1, we can write :

∂(ρψ̂)
∂t

= −div(ρψ~u)−
∂[
∑

k ρkψkw̃k]
∂z

+
∑

k

Ṡk (18)

After decomposition of the different variables in the sum of an averaged and a « turbulent »
part, we obtain :

∂(ρψ̂)
∂t

= −div(ρψ̂~̂u)− div(ρψ′′~u′′)

−
∂[
∑

k ρq̂kψ̂k
̂̃wk]

∂z
−
∂[
∑

k q̂kρψ
′′
k w̃

′′
k ]

∂z
−
∂[
∑

k ψ̂kρq′′k w̃
′′
k ]

∂z
−
∂[
∑

k
̂̃wkρq′′kψ

′′
k ]

∂z
−
∂[
∑

k ρq
′′
kψ

′′
k w̃

′′
k ]

∂z

+
∑

k

Ṡk

The second term in the right hand side is the vertical budget of the vertical turbulent fluxes
of ψ. This term is usually computed in the turbulent scheme in a NWP model.
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H5 : Between the 5 terms of the decomposition of the transport by the departures with
respect to the barycentric velocity, we will conserve only the first one (and neglect the four
other ones).

So finally, the average form of the ψ equation is :

∂(ρψ̂)
∂t

= −div(ρψ̂~̂u)− div(ρψ′′~u′′)−
∂[
∑

k ρq̂kψ̂k
̂̃wk]

∂z
+
∑

k

Ṡk (19)

7 The conservation of one of the species in a multiphase
mixture

We are now looking for an equation for the evolution of the mass of one of the species of the
mixture.

For the species l, we can write :

∂ml

∂t
= −

∫
S

ρl~ul.~ndS +
∫

V

ρ̇ldv (20)

with ml = ρlV =
∫

V
ρldv =

∫
V
ρqldv.

Using the Ostrogradsky theorem for the first term on the right hand side of the last equation,
we get :

∂ml

∂t
= −

∫
V

div(ρl~ul)dv +
∫

V

ρ̇ldv (21)

7.1 Local form

Commuting the time derivative and the integral on the left hand side, and generalising the
result to any volum V , we write :

∂ρl

∂t
= −div(ρl~ul) + ρ̇l (22)

The local velocity of the species l is the sum of the barycentric velocity ~u and a departure with
respect to the local barycentric velocity w̃l

~k.
Equation 1.22 becomes :

∂

ρql︷︸︸︷
ρl

∂t
= −div(ρql~u)−

∂ρqlw̃l

∂z
+ ρ̇l (23)

In practice, we rather use an equation for the specific concentration ql (FAIRE AUSSI LA
VERSION RAPPORT DE MELANGE) :

ρ
∂ql
∂t

+ ρ~u. ~gradql = −∂ρqlw̃l

∂z
+ ρ̇l (24)

7.2 Average form

Equation 1.21 may also be written as :

∂ρl

∂t
= − 1

V

∫
V

div(ρl~ul)dv + ρ̇l (25)

= −div
(

1
V

∫
V

ρl~uldv

)
+ ρ̇l (26)
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We already defined :

q̂l =
1
m

∫
V

ρqldv =
1
m

∫
V

ρldv =
ml

m
=
ρl

ρ

and

~ul = ~̂u+ ~u′′′l

ql = q̂l + q′′l

Introducing these definitions in the first right hand side term of equation 1.26, we obtain :

1
V

∫
V

ρl~uldv =
1
V

∫
V

ρ(q̂l + q′′l )(~̂u+ ~u′′′l )dv

=
1
V

∫
V

ρq̂l~̂udv +
1
V

∫
V

ρq̂l~u
′′′
l dv +

1
V

∫
V

ρq′′l ~̂udv +
1
V

∫
V

ρq′′l ~u
′′′
l dv

= ρq̂l~̂u+ q̂l
1
V

∫
V

ρ~u′′′l dv + 0 + ρq′′l ~u
′′′
l

= ρq̂l~̂u+ q̂lρ~̂u′′′l + ρq′′l ~u
′′′
l

= ρq̂l~̂u+ ρq̂l
̂̃
~ul + ρq′′l ~u

′′′
l

So finally, equation 1.26 becomes :

∂ρq̂l
∂t

= −div
(
ρq̂l~̂u

)
− div

(
ρq̂l
̂̃
~ul

)
− div

(
ρq′′l ~u

′′′
l

)
+ ρ̇l (27)

This equation may also be written as :

ρ
D̂q̂l
Dt

= ρ

(
∂q̂l
∂t

+ ~̂u. ~grad(q̂l)
)

= −
∂
(
ρq̂l̂̃wl

)
∂z

−
∂
(
ρq′′l w

′′′
l

)
∂z

+ ρ̇l (28)

The first term on the right hand side of this equation is not present in the monophasic case.
This term is a vertical transport of the species l by the departure between the mean (in the sens
of the « hat » operator) velocity of the species l and the mixture mean vertical velocity. This term
has a different nature compared to the one of the pure diffusion term −∂

(
ρq′′l w

′′′
l

)
/∂z because we

suppose that ŵl is (more or less) solved at the scale of the parametrisation (with some hypothesis
on the fall speed), or at least, these fluxes do not obey the property of the diffusion turbulent
fluxes.

8 The equation for the total momentum of a mixture

The total momentum in the Eulerian volume V containing a multiphase mixture is varying
because of momentum fluxes of the different species and because of forces acting on the mixture.
We usually distinguish two type of forces, the volumic (or massic) forces which are proportionnal
to the mass of material (gravity, Coriolis) and the « surfacic » forces which are molecular scale
interaction (momentum transferts of molecular scale) at the border of the parcel (pressure and
viscous forces).

H6 : The possible momentum transfert which occur during shocks and interactions between
drops, ice cristals etc at the border of the parcel are neglected here.

The budget of the componant α of the total momentum in the volume V may then be written
as :

∂
(∫

V
(
∑

k ρku
α
k ) dv

)
∂t

= −
∫

S

(∑
k

ρku
α
k~uk

)
.~nds (29)
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+
∫

V

(∑
k

ρkg
α

)
dv +

∫
V

(∑
k

ρk[2~Ω ∧ ~uk]α
)
dv +

∫
S

[
⇒
τ s .~n]αds︸ ︷︷ ︸

sources

where the first term on the right hand side is the budget of input/output of momentum across the
surface around the volume V , the second term is the gravity, the third term is the Coriolis force
and the last term is the contribution of the stress tensor.

The stess tensor is defined such as
⇒
τ s .~nds is the surfacic force acting on a surface element ds

perpendicular to the unit vector ~n ([
⇒
τ s .~n]α is the componant along the α axis of this force).

H7 : We suppose here that
⇒
τ s may be written as the sum of two tensors :

⇒
τ s= −p

⇒
δ +

⇒
σ

where
⇒
δ is the « identity » tensor, p is the total pressure of the gaz present in the mixture

(p = p0 + p1) and
⇒
σ is a symetric tensor called the viscous stess tensor (usually this term

is neglected in meteorology, except if the turbulence is closed with a TKE equation. In that
case, this term may be parameterised through the energy cascade in the TKE equation).

With this hypothesis, equation 1.29 becomes :∫
V

[
∂ (
∑

k ρku
α
k )

∂t

]
dv = −

∫
V

div

(∑
k

ρku
α
k~uk

)
dv (30)

+
∫

V

(∑
k

ρkg
α

)
dv +

∫
V

(∑
k

ρk[2~Ω ∧ ~uk]α
)
dv −

∫
V

[ ~grad(p)]αdv +
∫

V

div[
⇒
σ

α

s ]dv

Finally, this equation can also be written as :∫
V

[
∂ (ρuα)
∂t

]
dv = −

∫
V

div

(∑
k

ρku
α
k~uk

)
dv (31)

+
∫

V

(ρgα) dv +
∫

V

(
ρ[2~Ω ∧ ~u]α

)
dv −

∫
V

[ ~grad(p)]αdv +
∫

V

div[
⇒
σ

α

s ]dv

To go further, we will treat separatly the horizontal and the vertical componants of the wind.

8.1 Horizontal momentum conservation

In order to simplify the notations, we adopt the reduced expression of the Coriolis form valid
with the « thin shell » approximation. In that case, the equation 1.31 for α = 1 becomes :∫

V

[
∂ (ρu)
∂t

]
dv = −

∫
V

div

(∑
k

ρkuk~uk

)
dv+

∫
V

[2ρΩ sin(ϕ)v] dv−
∫

V

[
∂(p)
∂x

]dv+
∫

V

[div(σu)] dv

(32)
With the hypothesis of horizontal mechanic equilibrium, the first term on the right hand side

simplifies :

−
∫

V

div

(∑
k

ρku~uk

)
dv =

∫
V

div

(
(
∑

k

ρk~uk)u

)
dv

=
∫

V

div(ρ~uu)dv

11



8.1.1 Local horizontal momentum equations

As the equation 1.32 is valid for any eulerian volum V , then :

∂ (ρu)
∂t

= −div(ρu~u) + 2ρΩ sin(ϕ)v − ∂p

∂x
+ divσu (33)

or, after combination with the local continuity equation :

ρ

[
∂ (u)
∂t

+ ~u. ~grad(u)
]

= 2ρΩ sin(ϕ)v − ∂p

∂x
+ divσu (34)

With a similar way, we obtain an equation for the local meridional componant :

ρ

[
∂ (v)
∂t

+ ~u. ~grad(v)
]

= −2ρΩ sin(ϕ)u− ∂p

∂y
+ divσv (35)

8.1.2 Average horizontal momentum equations

From equation 1.32, we can also obtain an equation for the averaged zonal momentum :

∂
(∫

V
[ρu)

]
dv

∂t
= −div

(∫
V

ρu~udv

)
+2Ω sin(ϕ)

∫
V

(ρv) dv−
∂
(∫

V
(p)dv

)
∂x

+div
(∫

V

(σu)dv
)

(36)

Using the average operators definition, we get :

∂(ρû)
∂t

= −div
(
ρû~̂u

)
− div

(
ρu′′~u′′

)
+ 2ρΩ sin(ϕ)v̂ − ∂p

∂x
+ div(σu) (37)

or also :

ρ
D̂û

Dt
= ρ[

∂û

∂t
+ ~̂u. ~grad(û)] = −div

(
ρ~u′′u′′

)
+ 2ρΩ sin(ϕ)v̂ − ∂p

∂x
+ divσu (38)

where −~̂u. ~grad(û) is the advection of the average zonal wind of the mixture by the average 3D
wind of the mixture.

8.2 Vertical momentum conservation

The form of the vertical momentum equation depends on the size of the scale of the parame-
trisation. For parametrisation scale such as the horizontal scale is much larger than the vertical
scale, we can do the hydrostatic approximation, but for horizontal scale smaller than the vertical
one, we need a pronostic equation for the vertical velocity. This equation has a more complex form
when the parcel is a mixture with precipitating species.

8.2.1 The hydrostatic case

In the hydrostatic case, the vertical momentum equation is reduced to the equilibrium between
the gravity and the vertical componant of the pressure force budget.

At the local scale, the hydrostatic equation is :

0 = −ρg − ∂p

∂z

The averaged form of this equation is :

0 = −ρg − ∂p

∂z

12



8.2.2 The non hydrostatic case

In the non hydrostatic case, we have to develop the complete form of the vertical momentum
equation.

The local form of the NH vertical momentum equation is derived from equation 1.31 in the
case α = 3 :∫

V

[
∂ (ρw)
∂t

]
dv = −

∫
V

div

(∑
k

ρkwk~uk

)
dv −

∫
V

(ρg) dv −
∫

V

[
∂(p)
∂z

]dv +
∫

V

div(σw)dv (39)

The local form becomes, after simplification :

∂ (ρw)
∂t

= −div(ρw~u)−
∂ (
∑

k ρkw̃kw̃k)
∂z

− ρg − ∂(p)
∂z

+ div(σw) (40)

The average form of the NH equation may be derived from equation 1.39 :

∂
(∫

V
ρwdv

)
∂t

= −div

(∫
V

∑
k

ρkwk~ukdv

)
− g

∫
V

ρdv −
∂(
∫

V
pdv)

∂z
+ div(

∫
V

σwdv) (41)

Using the definition of the averaging operators, we get :

∂ (ρŵ)
∂t

= −div
(
ρŵ~̂u

)
− div

(
ρw′′~u′′

)
−
∂
(∑

k ρkw̃2
k

)
∂z

− ρg − ∂p

∂z
+ div(σw) (42)

or also :

ρ
∂ (ŵ)
∂t

+ ρ~̂u. ~grad(ŵ) = −div
(
ρw′′~u′′

)
−
∂
(∑

k ρkw̃2
k

)
∂z

− ρg − ∂p

∂z
+ div(σw) (43)

The second term on the right hand side of this last equation may be decomposed in :

−
∂
(∑

k ρkw̃2
k

)
∂z

= −
∂
(∑

k ρqkw̃
2
k

)
∂z

= −
∂
(∑

k ρq̂k
̂̃w2

k

)
∂z

−
∂
(∑

k ρq
′′
k
̂̃w2

k

)
∂z

− 2
∂
(∑

k ρq̂k
̂̃wkw̃

′′
k

)
∂z

−2
∂
(∑

k ρq
′′
k
̂̃wkw̃

′′
k

)
∂z

−
∂
(∑

k ρq
′′
k (w̃′′k)2

)
∂z

We will usually keep only the first term of this development. The average NH equation for the
vertical velocity is then finally :

ρ
∂ (ŵ)
∂t

+ ρ~̂u. ~grad(ŵ) = −div
(
ρw′′~u′′

)
−
∂
(∑

k ρq̂k
̂̃w2

k

)
∂z

− ρg − ∂p

∂z
+ div(σw) (44)

9 The internal energy and the enthalpy of a mixture

9.1 Case of a monophase perfect gas system

Let ei be the local internal energy of the monophase system. If the system is a mixture of
perfect gases only, ei = cvT .

The specific enthalpy of a monophasic system is defined as h = ei +p/ρ. In the case of a perfect
gas, h is a function of the temperature only :

h = h◦ + cpT

13



where h◦ is a reference enthalpy and cp is the massic heat (both h◦ and cp are supposed constant).
Note that

∂h

∂T
= cp

The average specific enthalpy is logicaly defined by :

ĥ =
1
ρV

∫
V

ρhdv

Using the detailed expression of h, we get :

ĥ =
1
ρV

∫
V

ρ(h◦ + cpT )dv = h◦ + cpT̂

where
T̂ =

1
ρV

∫
V

ρTdv

9.2 Case of a multiphase system

With hypothesis H1, we suppose that all the species in the parcel have the same local tem-
perature : Tk = T for k = 0, n.

The local internal energy of the mixture is :

ei =
∑

k

qkeik

where eik is the specific local internal energy of the species k.

H9 : In this paper, we suppose that the liquid and solid phases do not contribute to the
local pressure.

In that case, the enthalpy of each species l may be written as :

hl = eil + pl/ρl

where pl = 0 for the liquid and solid species.
By definition, the local enthalpy of the mixture as the mass-weighted value is :

ρh =
∑

k

ρkhk

then :
h =

1
ρ

∑
k

[ρkeik + pk] = ei +
p

ρ

H10 : If we neglect the pressure dependency of the enthalpy of the liquid and solid phases,
we can also write the local specic enthalpy of any species l as :

hl = hl
◦ + cplT

where hl
◦ is a reference specific enthalpy for the species l and cpl is the massic heat of the

species l (the hl
◦ and cpl are supposed to be constant).

The local enthalpy of the mixture is also written as :

h =
∑

k

qkhk =

(∑
k

qkhk
◦

)
+

(∑
k

qkcpk

)
T = h◦ + cpT

14



but, in this case, h◦ =
∑

k qkhk
◦ and cp =

∑
k qkcpk are not constant because the composition of

the mixture may vary (the ql are pronostic variables).
The average value of the enthalpy of the mixture is then :

ĥ =
1
m

∫
V

ρ

(∑
k

hkqk

)
dv =

1
m

∫
V

ρhdv = ĥ◦ + ĉpT

where ĥ◦ =
∑

k q̂khk
◦

Rigorously, this last equation should be written :

ĥ = ĥ◦ + ĉpT̂ +
1
ρ
ρc′′pT

′′

where ĉp =
∑

k q̂kcpk

H11 : But, in the following, we will neglect the last term on the right hand side in order
to conserve the classical thermodynamic relationships :

∂ĥ

∂T̂
= ĉp

10 Thermodynamic equation

The classical method to deduce the thermodynamic equation is to substract the equation for
the kinetic energy from the equation for the total energy (kinetic energy + internal energy). It is
much simpler to do this operation at the local scale, and to apply the average operator in a second
step, directly on the thermodynamic equation.

10.1 Case with hydrostatic approximation

In the hydrostatic case, the contribution of the vertical velocity in the kinetic energy is neglec-
ted. Locally, the mixture specific kinetic energy is then :

ec =
1
2

(u2 + v2)

(Let’s remind that the local values of u and v are the same for all the species thanks to the
hypothesis of local horizontal mechanic equilibrium).

Note that in the following, the Coriolis force will be simplified as it is usually done when we
adopt the « thin shell » approximation (z << a).

10.1.1 Local kinetic energy equation

The equation for the local value of ec is obtained after multiplication of 1.34 by u, multiplication
of 1.35 by v and addition of the results of these two operations. We get :

ρ
Dec

Dt
= ρ

[
∂ (ec)
∂t

+ ~u. ~grad(ec)
]

= −~uh. ~gradhp+ udivσu + vdivσv (45)

10.1.2 Local total energy equation

In the hydrostatic case, the local specific total energy is et = ei+ec = 1/ρ
∑

k(ρkeik)+1/2(u2+
v2) (see section 1.8).
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The application of the first principe of thermodynamics for any volume V gives :

∂
∫

V

∑
k ρketkdv

∂t
=
∂
∫

V
ρetdv

∂t
= −

∫
V

div

(∑
k

ρketk~uk

)
dv︸ ︷︷ ︸

A

+ Ẇ︸︷︷︸
B

+ Q̇︸︷︷︸
C

where
– term A is the budget of 3D local transport of total energy of the different species ;
– term B is the work by time unit (power) of the external forces applied to the volum V ;
– term C is the heat exchanged by the volum V with the environment.

A = −
∫

V

div

(∑
k

ρketk~uk

)
dv = −

∫
V

div

(∑
k

ρkeik~uk

)
dv −

∫
V

div

(∑
k

ρkec~uk

)
dv

= −
∫

V

div

[
∑

k

ρkeik]︸ ︷︷ ︸
ρei

~u

dv −
∫

V

div

(∑
k

ρkeik~̃uk

)
dv −

∫
V

div

[
∑

k

ρk~uk]︸ ︷︷ ︸
ρ~u

ec

dv

= −
∫

V

div(ρ(ei + ec)~u)dv −
∫

V

div

(∑
k

ρkeik~̃uk

)
dv

= −
∫

V

div(ρet~u)dv −
∫

V

∂ (
∑

k ρkeikw̃k)
∂z

dv

The work (by time unit) of the gravity is −ρgw. In the hydrostatic case, this term is balanced
by the work of the Archimed force :

∂p

∂z
w = −ρgw (46)

The work budget of the pressure forces around the surface S is :∫
S

∑
k

[(−pk~n).~uk]ds =
∫

V

div

(∑
k

[−pk~uk]

)
dv (47)

where the pk are supposed to be zero for the liquid and solid species (but we will keep this complete
form which allows an easier expression for the enthalpy equation).

The work of the Coriolis force is zero (the Coriolis force is always orthogonal to the velovity).
The work of the viscous force may be written as :∫

S

(
⇒
σ .~n).~uds =

∫
V

div(
⇒
σ .~u)dv (48)

The heat exchanged at the border S of the volume V with the environment is due to conduction
and radiation. Let be ~JQ the vector of total heat flux density. Then :

C =
∫

S

~JQ.~nds =
∫

V

div( ~JQ)dv

So, finally, the evolution of the local specific total energy is :∫
V

(
∂ρet

∂t

)
dv = −

∫
V

div(ρet~u)dv −
∫

V

∂ (
∑

k ρkeikw̃k)
∂z

dv (49)

−
∫

V

ρgw +
∫

V

div

[∑
k

(−pk~uk)

]
dv +

∫
V

div(
⇒
σ .~u)dv +

∫
V

div( ~JQ)
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As this is valid for any volume V , we can also write :(
∂ρet

∂t

)
= −div(ρet~u)−

∂ (
∑

k ρkeikw̃k)
∂z

−ρgw+div

[∑
k

(−pk~uk)

]
+div(

⇒
σ .~u)+div( ~JQ) (50)

10.1.3 Local thermodynamic equation

Substracting equation 1.45 [ + the vertical contribution 1.46) from equation 1.50 ], we obtain
the evolution equation for the local internal energy :

ρ

[
∂ (ei)
∂t

+ ~u. ~grad(ei)
]

= −
∂ (
∑

k(ρkeik + pk)w̃k)
∂z

− pdiv(~u) + ε+ div( ~JQ) (51)

where we note ε the dissipation of the internal energy by the viscous stress (ε = div(
⇒
σ .~u) −

udivσu − vdivσv).
This last equation is easily transformed in an equation for the local enthalpy of the mixture

h = ei + p
ρ (see section 1.8) :

ρ

[
∂ (h)
∂t

+ ~u. ~grad(h)
]

=
Dp

Dt
−
∂ (
∑

k ρkhkw̃k)
∂z

+ ε+ div( ~JQ) (52)

Using the continuity equation, this equation may also be written as :

∂ (ρh)
∂t

+ div(ρh~u) =
Dp

Dt
−
∂ (
∑

k ρkhkw̃k)
∂z

+ ε+ div( ~JQ) (53)

This last equation can be transformed in an equation for the local temperature T or for the
variable ρcpT . With such a manipulation, we show explicitly the phase change terms in the ter-
modynamics equation.

The specific enthalpy of the mixture is h =
∑

k qk(h◦k + cpkT ) = h◦ + cpT . Replacing h by
this expression in equation 1.53, we obtain :

∂ (ρcpT )
∂t

+div(ρcpT~u) =
Dp

Dt
−
∂ (
∑

k ρkhkw̃k)
∂z

+ ε+div( ~JQ)−
∑

k

h◦k[
∂ρqk
∂t

+div(ρqk~u)] (54)

From equation 1.22, the last term on the right hand side may be transform and the equation
becomes :

∂ (ρcpT )
∂t

+ div(ρcpT~u) =
Dp

Dt
−
∂ (
∑

k ρkhkw̃k)
∂z

+ ε+ div( ~JQ)−
∑

k

h◦k[−∂(ρkw̃k)
∂z

+ ρ̇k] (55)

But this equation simplifies because the terms in h◦kρ̇k may be combined in a way such as two
latent heats at T=0 K appear :

∂ (ρcpT )
∂t

+ div(ρcpT~u) =
Dp

Dt
−
∂ (
∑

k ρkh
◦
kw̃k)

∂z︸ ︷︷ ︸
A

−
∂
(∑

k ρkcpkTw̃k

)
∂z

(56)

+ε+ div( ~JQ)−
∑

k

h◦k[−∂(ρkw̃k)
∂z

]︸ ︷︷ ︸
B

+Lv(T = 0)ρ̇l + Li(T = 0)ρ̇i

where ρ̇l is the global source/sink of the liquid species and ρ̇i is the global source/sink of the solid
species.

The combination of term A and B of this equation gives :
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−
∂ (
∑

k ρkh
◦
kw̃k)

∂z
+
∑

k

h◦k[−∂(ρkw̃k)
∂z

] = −
∑

k

ρkw̃k
∂h◦k

∂z︸ ︷︷ ︸
=0

= 0

Then, the final form of the thermodynamic equation is :

∂ (ρcpT )
∂t

+div(ρcpT~u) =
Dp

Dt

{
−
∂
(∑

k ρkcpkTw̃k

)
∂z

}
+ ε+div( ~JQ)+Lv(T = 0)ρ̇l +Li(T = 0)ρ̇i

(57)
An other equivalent form of this equation is :

ρcp
∂T

∂t
+ ρcp~u. ~gradT =

Dp

Dt
−
∂ (
∑

k ρkhkw̃k)
∂z

+ ε+ div( ~JQ)−
∑

k

hk[−∂(ρkw̃k)
∂z

+ ρ̇k] (58)

The hkρ̇k terms may be combined in a way that two latent heats (we choose here Lv and Li)
appear in this equation (see box ?? for details) :

ρcp
∂T

∂t
+ ρcp~u. ~gradT =

Dp

Dt

−
∑

k

ρkw̃k
∂hk

∂z︸ ︷︷ ︸
∂(cpkT )/∂z


+ ε+ div( ~JQ) + Lv(T )ρ̇l + Li(T )ρ̇i

(59)

10.1.4 Averaged thermodynamic equation

We now apply the (volumic) average operator to the local thermodynamic equation. For this
operation, we chose the more linear form 1.57 of the thermodynamic equation :

1
V

∫
V

[
∂ (ρcpT )

∂t

]
dv︸ ︷︷ ︸

A

+
1
V

∫
V

[div(ρcpT~u)] dv︸ ︷︷ ︸
B

=
1
V

∫
V

[
Dp

Dt

]
dv︸ ︷︷ ︸

C

(60)

− 1
V

∫
V

[
∂
(∑

k ρkcpkTw̃k

)
∂z

]
dv︸ ︷︷ ︸

D

+
1
V

∫
V

εdv︸ ︷︷ ︸
E

+
1
V

∫
V

[
div( ~JQ)

]
dv︸ ︷︷ ︸

F

+
1
V

∫
V

[Lv(T = 0)ρ̇l + Li(T = 0)ρ̇i] dv︸ ︷︷ ︸
G

In a first stage, we will express rigorously each of the terms of this equation, and then, we will
do some necessary approximation.
term A :

1
V

∫
V

∂ (ρcpT )
∂t

=
∂ρĉpT̂

∂t
+
∂ρc′′pT

′′

∂t

term B :

1
V

∫
V

div(ρcpT~u)dv = div[ρĉpT̂ ~̂u+ ρc′′pT
′′~u′′ + ρc′′pT

′′~̂u+ ĉpρT ′′~u′′ + T̂ ρc′′p~u
′′]
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term C :

1
V

∫
V

[
Dp

Dt

]
dv =

∂p

∂t
+ ~̂u. ~gradp︸ ︷︷ ︸

D̂p
Dt

+

ρ′~u′′ρ︷︸︸︷
~u′′ . ~gradp+ ~u′′. ~gradp′︸ ︷︷ ︸

presso−correlation

term D :

1
V

∫
V

[
∂
(∑

k ρkcpkTw̃k

)
∂z

]
dv =

∑
k

cpk

∂
[
ρq̂kT̂ ̂̃wk + ρq′′kT

′′w̃′′k + ρq′′kT
′′ ̂̃wk + q̂kρT ′′w̃′′k + T̂ ρq′′k w̃

′′
k

]
∂z

term E :

1
V

∫
V

εdv = ε

term F :

1
V

∫
V

[
div( ~JQ)

]
dv = div( ~JQ)

term G :

1
V

∫
V

[Lv(T = 0)ρ̇l + Li(T = 0)ρ̇i] dv = Lv(T = 0)ρ̇l + Li(T = 0)ρ̇i

Neglecting all the term with a perturbation of cp or a perturbation of w̃k and the presso-
correlations, we finally get the following averaged thermodynamic equation :

∂ρĉpT̂

∂t
+ div

(
ρĉpT̂ ~̂u

)
= div(ĉpρT ′′~u′′) +

∂p

∂t
+ ~̂u. ~gradp (61)

−
∂
[∑

k

(
ρcpk q̂kT̂

̂̃wk

)]
∂z

+ ε+ div( ~JQ) + Lv(T = 0)ρ̇l + Li(T = 0)ρ̇i

Remarque : Cette equation peut très facilement etre transformée pour obtenir l’équation 20 du
papier de Bart.

Pour cela, on écrit en utilisant les équations pour la concentration des différentes especes que :

ρ̇l

ρ
= g

∂

∂p
(P ′

l − P ′′′
l )

ρ̇i

ρ
= g

∂

∂p
(P ′

i − P ′′′
i )

On utilise ensuite le fait que :

Pl = −ρr
̂̃wr

Pi = −ρs
̂̃ws

et que, avec les approximations déja mentionnées (on néglige les correlations qui font intervenir
les w̃k) : ∑

k

ρk
̂̃wk = 0

Donc la vitesse des espèces non precipitantes (qu’on suppose identiques pour toute les espèces
non precipitantes) est : ̂̃wnp =

(Pl + Pi)∑
np ρk

=
(Pl + Pi)
ρ− ρr − ρs
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En reportant tous ces résultats dans l’équation 1.61, on retrouve l’équation 20 de Bart.
The equation 1.61 can be re-arranged in order to obtain the averaged form corresponding to

equation 1.59. The term on the left hand side of equation 1.61 may also be written as :

∂ρĉpT̂

∂t
+ div

(
ρĉpT̂ ~̂u

)
= ρ

D̂ĉpT̂

Dt

= ρĉp
D̂T̂

Dt
+ ρT̂

D̂ĉp
Dt

= ρĉp
D̂T̂

Dt
+ ρT̂

D̂
(∑

k q̂kcpk

)
Dt

= ρĉp
D̂T̂

Dt
+
∑

k

[
ρcpkT̂

D̂q̂k
Dt

]

Using equation 1.28, the second term of this expression becomes :

∑
k

[
ρcpkT̂

D̂q̂k
Dt

]
=
∑

k

cpkT̂

−∂
(
ρq̂l̂̃wl

)
∂z

−
∂
(
ρq′′l w

′′′
l

)
∂z

+ ρ̇l

 (62)

The fourth term on the right hand side of equation 1.61 can be splitted in two parts :

−
∂
[∑

k

(
ρcpk q̂kT̂

̂̃wk

)]
∂z

= −
∑

k

(
ρk
̂̃wk

∂cpkT̂

∂z

)
−
∑

k

(
cpkT̂

∂ρk
̂̃wk

∂z

)

After simplification, an other form of equation 1.61 is :

ρĉp
D̂T̂

Dt
= div(ĉpρT ′′~u′′) +

D̂p

Dt
+ ε+ div( ~JQ)−

∑
k

(
ρk
̂̃wk

∂cpkT̂

∂z

)
+ Lv(T )ρ̇l + Li(T )ρ̇i (63)

10.2 Non hydrostatic case

In the non hydrostatic case, the contribution of the vertical velocity has to be taken into
account in the kinetic energy. Locally, the mixture specific « barycentric » kinetic energy is then :

ec =
1
2

(u2 + v2 + w2)

(Let’s remind that the local values of u and v are the same for all the species thanks to the
hypothesis of local horizontal equilibrium).

But, be careful : ∑
k

ρkeck = ρec +
∑

k

(
ρk

2
w̃2

k)

The residual term on the right hand side is not zero when there is precipitating species. In the
following, we will use the notation :

ρẽc =
∑

k

(
ρk

2
w̃2

k)

Note that in the following, the Coriolis force will be simplified as it is usually done when we
adopt the « thin shell » approximation (z << a).
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10.2.1 The local form of the NH « barycentric » kinetic energy equation

The equation of the local « barycentric » kinetic energy is obtain after multiplication of 1.34
by u, multiplication of 1.35 by v, multiplication of 1.40 by w and addition of the results of these
three operations. We get :

ρ
Dec

Dt
= ρ

[
∂ (ec)
∂t

+ ~u. ~grad(ec)
]

= −w
∂
(∑

k ρkw̃
2
k

)
∂z

−~u. ~gradp−ρgw+udivσu+vdivσv +wdivσw

(64)

10.2.2 The local form of the NH total energy equation

In the non hydrostatic case, the local « barycentric » specific total energy is et = ei + ec =
1/ρ(

∑
k eik) + 1/2(u2 + v2 + w2). But the local specific total energy is

1
ρ

∑
k

ρketk = et + ẽc

As in the hydrostatic case, the application of the first principle of thermodynamics for any
volume V gives :

∂
∫

V

∑
k ρketkdv

∂t
=
∂
∫

V
ρ(et + ẽc)dv
∂t

= −
∫

V

div

(∑
k

ρketk~uk

)
dv︸ ︷︷ ︸

A

+ Ẇ︸︷︷︸
B

+ Q̇︸︷︷︸
C

In the right hand side, only the term A shows a difference when compared with the hydrostatic
equation. Actually :

A = −
∫

V

div

(∑
k

ρketk~uk

)
dv = −

∫
V

div

(∑
k

ρkeik~uk

)
dv −

∫
V

div

(∑
k

ρkeck~uk

)
dv

= −
∫

V

div

[
∑

k

ρkeik]︸ ︷︷ ︸
ρei

~u

dv −
∫

V

div

(∑
k

ρkeik~̃uk

)
dv −

∫
V

div

[
∑

k

ρkeck]︸ ︷︷ ︸
ρ(ec+ẽc)

~u

dv −
∫

V

div

(∑
k

ρkeck~̃uk

)

= −
∫

V

div(ρ(ei + ec)~u)dv −
∫

V

div(ρẽc~u)dv −
∫

V

div

(∑
k

ρk(eik + eck)~̃uk

)
dv

= −
∫

V

div(ρet~u)dv −
∫

V

div(ρẽc~u)dv −
∫

V

∂ (
∑

k ρk(eik + eck)w̃k)
∂z

dv

The local equation for the local total energy becomes :(
∂ρ(et + ẽc)

∂t

)
= −div(ρ(et + ẽc)~u)−

∂ (
∑

k ρk(eik + eck)w̃k)
∂z

−ρgw−div

(
(
∑

k

(−pk~uk)

)
)+div(

⇒
σ .~u)+div( ~JQ)

(65)

10.2.3 Local NH thermodynamic equation

Substracting equation 1.64 from equation 1.65, we obtain the evolution equation for the local
internal energy + barycentric departure kinetic energy :

ρ

[
∂ (ei + ẽc)

∂t
+ ~u. ~grad(ei + ẽc)

]
= −

∂ (
∑

k(ρkeik + pk)w̃k)
∂z

(66)

[−
∂ (
∑

k(ρkeck)w̃k)
∂z

− w
∂
(∑

k ρkw̃
2
k

)
∂z

]

−pdiv(~u) + ε+ div( ~JQ)
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where we note ε the dissipation of the internal energy by the viscous stess (ε = div(
⇒
σ .~u)−udivσu−

vdivσv − wdivσw). The terms in brakets may be combined :

[−
∂ (
∑

k(ρkeck)w̃k)
∂z

− w
∂
(∑

k ρkw̃
2
k

)
∂z

] = −
∂
(∑

k

(
ρk

2 (w2 + w̃2
k + 2ww̃k)

)
w̃k

)
∂z

− w
∂
(∑

k ρkw̃
2
k

)
∂z

= −
∂
(∑

k

(
ρk

2 (w̃2
k + 2ww̃k)

)
w̃k

)
∂z

− w
∂
(∑

k ρkw̃
2
k

)
∂z

= −
∂
(∑

k

(
ρk

2 w̃
3
k

))
∂z

− ∂(w)
∂z

[
∑

k

ρkw̃
2
k]

= −
∂
(∑

k

(
ρk

2 w̃
3
k

))
∂z

− ρẽc
∂(w)
∂z

In practice, we will (at least) neglect the triple correlations of w̃k, but we may keep in the ther-
modynamic equation the last term on the right hand side ( ?).

Pour la suite, je ne sais pas trop quoi faire du terme d’évolution de ẽc. Peut etre qu’a ce moment
là il faut faire intervenir des hypothèses faites sur les vitesses de chute, genre stationnarité ?

11 Reference averaged equation sets

In this sets of equations, we are doing the « thin shell » approximation.

11.1 The hydrostatic case

p = ρ(R0q̂0 +R1q̂1)T̂ (67)

D̂ρ

Dt
= −ρdiv(~̂u) (68)

ρ
D̂q̂l
Dt

= −
∂
(
ρq̂l̂̃wl

)
∂z

−
∂
(
ρq′′l w

′′′
l

)
∂z

+ ρ̇l (69)

ρ
D̂û

Dt
= −div

(
ρ~u′′u′′

)
+ ρfv̂ − ∂p

∂x
+ divσu (70)

ρ
D̂v̂

Dt
= −div

(
ρ~u′′v′′

)
− ρfû− ∂p

∂y
+ divσv (71)

∂p

∂z
= −ρg (72)

ρ
D̂ĉpT̂

Dt
= div(ĉpρT ′′~u′′) +

∂p

∂t
+ ~̂u. ~gradp (73)

−
∂
[∑

k

(
ρcpk q̂kT̂

̂̃wk

)]
∂z

+ ε+ div( ~JQ) + Lv(T = 0)ρ̇l + Li(T = 0)ρ̇i

11.2 The non hydrostatic case

In the NH case, both the « vertical momentum » equation 1.72 and the thermodynamic
equation 1.73 have a different expression :

ρ
D̂ŵ

Dt
= −div

(
ρw′′~u′′

)
−
∂
(∑

k ρq̂k
̂̃w2

k

)
∂z

− ρg − ∂p

∂z
+ div(σw) (74)
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ρ

[
∂ (ei + ẽc)

∂t
+ ~u. ~grad(ei + ẽc)

]
= −

∂ (
∑

k(ρkeik + pk)w̃k)
∂z

(75)

−ρẽc
∂(w)
∂z

−pdiv(~u) + ε+ div( ~JQ)
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