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Motivation

SLHD scheme implements non-linear diffusion by exploiting diffusive
properties of semi-Lagrangian interpolators

in current scheme diffusivity is controlled by mixing more accurate
high order interpolator with strongly diffusive and less accurate linear
one

undesired side effect of such approach is reduced accuracy in regions
with strong diffusion, resulting in loss of mass conservation (seen
as positive MSLP bias)

replacement of cubic Lagrange polynomial by more accurate natural
cubic spline was tried, which indeed improved mass conservation in
SLHD scheme

however, it increased temperature and geopotential bias in some
parts of troposphere

is there any workaround this problem?



Central problem: diffusivity versus accuracy

it is intuitive to expect that more diffusive interpolator will be
necessarily less accurate

is this always the case?

how strongly tied is diffusivity of interpolator to its accuracy?

when high accuracy is required, is there any maneuvering space left
for changing diffusivity?

in order to answer these questions, suitable family of interpolators
must be found, together with way how to measure their diffusivity
and accuracy



Part I — bit of theory



Global versus local interpolators

global interpolators

Lagrange polynomial

————— natural cubic spline



Global versus local interpolators

global interpolators

local 4-point interpolators
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Multi-dimensional case

e high order 2D interpolators in ALADIN are composed of 3 high order
and 2 low order 1D interpolators

e this approach leads to 12-point stencil:
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e Similar approach is used in 3D case, employing 32-point stencil
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Requirements on decent 4-point interpolator

. linearity with respect toy = (y_1,v0,v1,¥2):
F(z,y) = w_1(z)y—1 + wo(x)yo + wi(z)y1 + wa(x)y>
. invariace with respect to horizontal mirroring:

F(1—-z,92,91,90,Y-1) = F(x,y-1,Y0,Y1,Y2)

. invariace with respect to vertical shift:

F(x,y +c) =F(z,y) +c¢

. reproducing of values yq, y1:

F(0,y) =vo
F(l,y)=w1

. reproducing of linear function y = x:

F(x,—1,0,1,2) =«



Family of cubic 4-point interpolators

e when weights w_1,wqg,wqi,wo are constrained to polynomials of
degree at most 3, interpolator F' is restricted to the form:

F(z,y) =u(z)y—1+ v(x)yo + v(1 — z)y1 + u(l — z)y2
w(z) = arx + asx? — (a1 + as)z>
v(z) =14 (az — 1)z — (3a; + 4a2)z? + 3(a1 + ap)z>

ai,a2 € R

e every decent 4-point cubic interpolator can be represented by point
in (a1,ao) plane

e requirement that F' reproduces also quadratic function y = 2

(which implies second order accuracy) defines straight line:

6bai + 2a» = —1



How to measure accuracy?

accuracy of (ai,an) interpolators was evaluated on sample of
harmonic test functions:

ym(x) = sin(2rmx/N) x € [0, N] m=1,2,...,M

source grid had N = 100 intervals, linear truncation with M = 49
was chosen

each test function was interpolated onto 20 times finer target grid

overall accuracy of interpolator was measured by MAE weighted by
function exp(—pm/M)

parameter 38 was used to control significance of shortest waves



AcCcuracy maps

accuracy measured by weighted MAE

weight function exp(—25m/M) weight function exp(—m/M)
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How to measure diffusivity?

advection of harmonic wave

amplitude evolution for
wave with A = 3.7Azx
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ivity?

How to measure diffus

advection of harmonic wave

wave after 100 timesteps, QM case

amplitude evolution for

dominated by A = 9.1Az, 33.3Ax

wave with A = 3.7Ax
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Diffusivity maps (1)

dimensionless damping rate
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Part II — 2D experiments
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Cold and warm bubble test

neutrally stratified

resting background state
in domain 1 x 1 km,

Axr = Az=10m

SL2TL ICI scheme with
advection of w, At =5s

cubic Lagrange SL

interpolator, no other

source of damping
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Performance of various SL interpolators (1)
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Performance of various SL interpolators (3)
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Conclusions

there exists l-parametric class of second order accurate 4-point
cubic interpolators with diffusivity tunable in wide range

2D bubble tests showed clear superiority of this class when compared
to current solution used in SLHD scheme, which is only first order
accurate

slight instability of natural cubic splines might further contribute to
the problem in regions where SLHD is not active

implementation in ALADIN (general case with irregular nodes) and
3D real case tests should follow

if successful, recoding of semi-Lagrangian TL/AD will be necessary

19



Additional info

More details can be found in stay report on RC LACE web page:

WWW.rclace.eu
— Research areas
— Dynamics and Coupling
— Reports
— 2006
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