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Nonlinear balance equation ~/
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Subscript p: horizontal derivatives at constant pressure.

Tangent linear version, with rotational winds instead of stream-

function:
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The horizontal bar means the ’linearization point’ (first guess).
This gives flow dependency to the resulting increments.
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Note flow dependency and similarity to @®/-equation.

Hopefully, increments consistent with these equations will be less

modified by the digital filter initialization.
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Vertical coordinate

Let n be HIRLAM’s hybrid vertical coordinate.
For any scalar field a(x,y,n), for s =z, y:

(5:),= (56),~ a0 (e = (52~ ooy (o0
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Let m = 8p/8n and drop n subscript on horizontal derivatives.
Then

1 da

Vpa=Va——FV
p G 4 man v
For any vector field b(x,y,n):
1 8b
Vp-b=V.b—— .V

SO

10 10 16
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“Direct” inversion N7

When discretized, the equations reduce to linear systems of equa-
tions of the form

Axr =b.

With some care (e.g., zero increments on boundaries), it is pos-
sible to ensure that A is symmetric and positive definite in both
cases (d and w). Given the size and complexity of A it is also
natural to look for methods only requiring products of A with a
vector, and no knowledge of its coefficient structure. Such meth-
ods are iterative, and usually variants of the conjugate gradients
algorithm.

But ¢ and w are not prognostic variables in HIRLAM. To go
from geopotential increments to temperature increments we may
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e.g. use the hypsometric equation (discretized):

o =Ry [T+ (- DD,
Ds p

To go from omega increments to divergence increments we may
use the continuity equation. But this is not as simple on hybrid
levels as on pressure levels:

Vp-v!=V-v’—iﬁ-Vp= _i@_w"

™m On m On
Ideally, a new system of equations must be solved for the wind in-
crements. As an approximation, in the “terrain correction term”
we may use only the rotational wind and move this term to the

right hand side. The effect of this is unknown.
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“Direct” inversion (2) ‘/

Direct inversion of the equations has some disadvantages:

e To compute the gradient of the cost function, adjoint equa-
tions must also be solved. And unless both the forward and
adjoint equations are solved accurately, the gradient of the
cost function becomes inaccurate.

e Alternatively, we could program the exact adjoint of the for-
ward solution procedure. But in case of conjugate gradients,
this procedure is nonlinear. This means that all the iteration
steps must be saved before the adjoint computations. It also
destroys the quadratic form of the cost function.

The variational algorithm is already iterative. Can we exploit
this?
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Weak constraints

Define the residual:

_|re | | bo— ApdP | _
r(ém)—[m]—[bw_Awaw]—Lém

Add a new penalty term to the cost function:

J(éa:) = Jb+ Jo + Jbﬁ?

where

1 1
Jpe = 5 r T Wr = 5 sx ' LTWL bz.

So far the weighting matrix W has been diagonal, but the resid-
uals rq and r, have been scaled to have similar magnitude.

The quadratic form of the cost function is kept.
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Weak constraints (2)

The advantage of weak constraints is that no explicit inversion
is needed, this is done implicitly along with the minimization of
the cost function. Only forward computations of d$ and éw are
needed, by the standard Hirlam procedure. The adjoint operator
LT must be coded, but this is not difficult.

The disadvantage is that the amount of balance depends on the
weighting of the J,, term. A high weight destroys the effect of
the preconditioning inherent in the transformation to the control
variable that diagonalizes the background term:

x = Udz.
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If we want to avoid the explicit weighting of the constraint term,
we can pose the assimilation problem as a constrained minimiza-
tion problem:

Strong constraints

minimize J(x)
subject to Cx =0,

where ¢ = U~ 1L. Define the Lagrangian:
LO6N) =J0) +ATCx

A constrained minimizer for J must be a stationary point of L:

Vil =VyJ+CTA=0
VA£=CX=O

The Hessian of the Lagrangian is not positive definite.

Norwegian Meteorological Institute



o

Strong constraints (2)

Define the merit function (quadratic with sym.pos.def. Hessian):

1
m(x, ) = 5 (vxz:Tvxz: +v,L£Tv ,\z:) .
Then we may apply a standard unconstrained minimization method
(e.g. conjugate gradients) to m(y, A).

However, the constraints are not satisfied exactly by this method,
we again depend on the scaling of the two gradient terms. Also,
the method requires two evaluations of the cost function at each
iteration, instead of one. It therefore appeared to be even more
expensive than the weak constraints method.
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Some results ﬁ

Single obs. experiment, one T increment of -5 °C at 925 hPa, 7/1-2005
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Increments of T, wind, ps

Statistical balance, Joe = 0 Weak constraints, Jbe weight = 10.

3 iterations 109 iterations

inc MIND.PIL E.29 (+0)y 2005-01-07 12 UTC inc MIND.PIL E.29 (+0) 2005-01-07 12 UTC
inc (T E.35 (+0) 2005-01-07 12 UTC

in T { BE.inc T E.35 (+01 2005-01-07 12 UTC 7 i ’ i)
SBincfPS (+0) 2005-01-07 12 UTC ! BE.inc/PS (+0) 2005-01-07 12 UTC Ww) s s
s e i ol S
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Vertical crossection of T increments

Statistical balance
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Increments of T, wind, ps

Weak constraints, weight = 10. Weak constraints, weight = 1.

109 iterations 48 iterations

inc FIND PIL €29 (+0) 2005-01-07 12 UTC
inc T E.35 (+0) 2005-01-07 12 UTC
c/P5 [+0) 2005-01-07 12 UTC
. S
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Increments of T, wind, ps

Weak constraints, weight = 10. Weak constraints, dp/dx = dp/dy = 0.

109 iterations 24 iterations

4 I's I'd

inc FIND PIL €29 (+0) 2005-01-07 12 UTC N . R ; g . EE.ps16 YIND PIL E.29 (+0) 2005-01-07 12 UTC

inc T E.35 (+0) 2005-01-07 12 UTC ) { EEps16 T E.35 (+0) 2005-01-07 12 UTC
c/P5 [+0) 2005-01-07 12 UTC > EE.ps16 S (+0) 2005-01-07 12 UTC
- s . ER T
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Ps incr. with a full set of observations, 7/1-05 12@)

Statistical balance, 22 iterations Weak constraints, weight 10., 112 iter.

Jo = 13226 Jo = 13877
Jb = 1442 Jb =1146, Jbe =121
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Conclusions and further plans >

The balance term in the cost function destroys the
effect of the preconditioning of the background
term. We may need to develop preconditioning
also on the Jbe term. If so, the circle is closed,
such methods all rely on some form of
approximate inversion.

Do an impact study to see if this path is worth
pursuing further. It turned out to be more
complicated than originally anticipated.
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Thank you for your attention!
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HIRVDA cost function, incremental formulation: ﬁ

J(6x) = %&cTB_léx + %(y —h(xp) — Héx) TR~ 1(y — h(x;) — Héx)

h (nonlinear) observation operator (may include model).
H Jacobian of h (may include tangent-linear model).

B is preconditioned by a linear transformation of variables:
x = Uédx
Invertible transformation (6x = U~1lx) that diagonalizes B
(and B~ 1)
UBUT =1=(u-1)TB-1lyu-!
Thus
700 = ;xTx+ 5(d—HU ) TR-1(d - HU 1x)

Norwegian Meteorological Institute



Discrete p-level gradient (Tartu):

— 1]
1 (6:0)Dyp”
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vl W i1k
Discrete p-level divergence:
— zn
1 —@ hy m(&nﬂ)éﬂ:p
D-v),:p.. = — |0p(h, u) —
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To compute Ad = %21:1::

SUBROUTINE DEL2P(PHI,APHT)

CALL HALOSWAP(PHI)
CALL GRADP(PHI,GX,GY)
CALL HALOSWAP(GX)
CALL HALOSWAP(GY)
CALL DIVP(GX,GY,APHI)
END
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