Latest development related to the 3D-VAR ALADIN at HMS

Roger Randriamampianina

Contributors: Gergely Bölöni, Michal Májek, Alena Trojáková and Zoltán Juhász

Acknowledgement: Thibaut Montmerle, Philippe Marguinaud, Christophe Payan

Mária Putsay and Ildikó Szenyán LACE, János Bolyai Research Scholarship of the HAS

the Hungarian National Scientific Foundation (OTKA

Outline of the presentation

- Assimilation of the AMV data
- A posteriori diagnostics and tuning of background errors
- Assimilation of the Seviri data
- Comparison of the M1QN3 and CONGRAD minimization algorithms

Assimilation of the AMV in the ALADIN/HU 3D-VAR

The model configurations

Configuration of the model (CY28T3)

Main Characteristics

- 12 km horizontal resolution
- 37 vertical levels
- 6 hour cycle
- 3D-VAR for the upper air fields
- substitution of the surface fields by the ARPEGE ones
- B matrix: NMC method
- LBC: long cut-off ARPEGE analysis
- 3 hour coupling frequency
- 48 hour production forecast twice a day

The quality of the data

- → AMV and quality indicator (QI)?
- Using data with different QIs

23-26 April 2007 ALADI

data with QI ≥ 30%
data with QI ≥ 70%

- data over sea with QI ≥ 70%
- data over land also with QI ≥

The tested configurations

a) [used over sea only			
WDEF	P>800hPa	800-350hPa	P<350hPa	
HRV	QI>85%	not used	not used	
IR	QI>85%	not used	QI>85%	
CWV	QI>85%	not used	QI>85%	

b)	used over sea only			
W80P	P>800hPa	800-350hPa	P<350hPa	
HRV	QI>80%	not used	not used	
IR	QI>80%	not used	QI>80%	
CWV	QI>80%	not used	QI>80%	

c)	used over land also			
WLAN	P>800hPa	800-350hPa	P<350hPa	
HRV	QI>85%	not used	not used	
IR	QI>85%	not used	QI>85%	
CWV	QI>85%	not used	QI>85%	

WDEF- the default settings (QI ≥ 85%)

W80P- using data with QI \geq 80%

WLAN- using data over land also with QI ≥ 85%

→Impact of the AMV

Comparison against analyses

observations

Comparison against the analyses

The impact study / 1 Comparison against

Over Carpathian basin

23-26 April 2007 ALADIN/HIRLAM

Over Hungary

Impact of the AMV on the forecast of precipitation (12 UTC runs)

Over the whole ALADIN/HU

Over Carpathian basin

Over Hungary

24-h cumulated precipitation valid for the same verif. time 22 Aug. 2005 at 12 UTC

Conclusions

→ Over the whole ALADIN/HU domain comparison against long cut-off ARPEGE

analyses showed slightly positive impact of the AMV on geopotential, wind

→ Zooming of Verroutitarget areas, we observed a remarkable positive impact of

the AMV data

→ We observed a significant positive impact of the AMV on the precipitation over

our areas of interest

- → This is true especially for "extreme" weather conditions
- → This leads to the use of the AMV data in operation at HMS

Possible future work:

We think revision of the quality control in the pre-processing is needed to make the analysis system able to use more good data

A posteriori diagnostics and tuning of background errors

A posteriori diagnostics and tuning of background errors

$$\hat{\sigma}_b^2 = \frac{1}{P} \sum_{i=1}^P d_{bi}^a d_{bi}^o$$
 —— replace **B** variances

(Desroziers et al, 2005)

 $d_{bi}^a = H(x_a)_i - H(x_b)_i$ i=1...P: loop over the obs points

 $d_{bi}^{o} = y_i - H(x_b)_i$

- ☐ Tuned ensemble B matrix gives better results than the presently operational NMC B matrix (figures on the right)
- The ensemble B has to be recomputed with the most recent model version (CY30T1), more periods to bet tested → goal is an operational use
- ☐ More complex tunings to be tried (variable and height dependent) both for sigmao and sigmab

TES2: OPER with NMC B

ENSE: Tuned Ensemble B

Humidity RMSE

Wind speed RMSE

Investigation of the Seviri data

The model configurations

Configuration of the model (CY30T1)

Main Characteristics

- 8 km horizontal resolution
- 49 vertical levels
- 6 hour cycle
- 3D-VAR for the upper air fields
- substitution of the surface fields by the ARPEGE ones
- B matrix: NMC method
- LBC: long cut-off ARPEGE analysis
- 3 hour coupling frequency
- 48 hour production forecast from 00 UTC

The data pre-processing and data usage

- → We use the same pre-processing technique as at Météo-France
- → Local bias correction (Harris and Kelly, 2001)
- → 8 channels are read but only 5 of them are assimilated
- > For more details about the pre-processing, please read Trojáková and Májek' s report, available on LACE webpage
 - → or see our poster

The impact study

→ We presumed a "disbalance" between the observation and background

errors statistics

- > The MNC and the tuned ensemble B were tested
- \rightarrow There was also a tuning of the observation errors stat. (σ_0)

s tuning you will see

Comparison against ARPEGE analyses

NMC B vs Ens B

both runs with Seviri 23-26 April 2007 ALADIN/HIRLAM

data

Ens. B: Impact of Seviri data using the default σ_0

Ens. B: Impact of Seviri data

Ens. B: Impact of ATOVS

Ens. B: Impact of Seviri data on top of TEMP and SYNOP only

23-26 April 200 Dynamical Adaptation vs 3D-VAR

The remaining problem, conclusions and future work

Ens. B: Impact of Seviri data using tuned σ_0

Conclusions

- We observed small impact of the Seviri data when comparing the analyses and forecasts against the observations;
- The impact of the Seviri data in our system was found to be similar to that of ATOVS data (AMSU-A or AMSU-B) assimilated in high resolution;
- We found different impact of the Seviri data depending on the parameters and model levels;
- A remaining negative impact near the surface needs further investigations.

Future plans

- ☐ To perform additional experiments using the water vapor channels only;
- ☐ Testing the use of more surface measurements (eg. 2-m humidity and/or 2-m temperature) together with the Seviri data;

Comparison of the M1QN3 and CONGRAD minimization algorithms

Comparison of the M1QN3 and CONGRAD minimization algorithms

- □ CONGRAD is more costly than M1QN3 in CPU/iteration
- CONGRAD needs less iterations than M1QN3 to reach the same minimum
- Depending on the required minimum both methods can be more efficient than

 23-26 April 2007 ALADIN/HIRLAM
 the other

The O elections and dues similar analysis from metapalacical acint of view

Thank you for your attention!