A tribute to Jean-François Geleyn Toulouse, 6 February 2020

Works with Jean-François about the

moist-air thermodynamics

By Pascal MARQUET Météo-France. CNRM-GMAP-Proc

It started in 1990...

- My "FCPLR" internship (1987-90) at LMD-X
- Generalize the APE into the **dry-air exergy**,
- with both **enthalpy** and <u>**entropy**</u>...

POSSIBLE GENERALIZATIONS : MOIST AVAILABLE ENTHALPY ?

- How to generalize dry-air exergy to **moist-air**?
- Jean-François missed my talk at the CRMD-Alma
 but he went to LMD-X ... and gave me an answer: see the paper of Hauf and Höller (JAS, 1987)!

1990

- I have then rapidly done the job : thanks J.-F.!
- I join the ARPEGE-Project in 1990 (Prévi-Num) and prepare a communication for the AMA-90 →

<u>L'exergie de l'atmosphère</u> Définition et propriétés de l'enthalpie utilisable humide.

> Pascal MARQUET Météorologie nationale, SCEM/PREVI/NUM

> > Octobre 1990

$$\theta^* = T\left(\frac{p^0}{p_{00}}\right)^{-R^0/c_p^*} \left(\frac{p^1}{p_{00}}\right)^{-R^1r^t/c_p^*} \exp\left(-\frac{r^2 l_{21} + r^3 l_{31}}{c_p^* T}\right)$$

- with this by-product: a **more** "**symmetric**" <u>entropy</u> <u>potential temperature</u> than in Hauf and Höller (1987)
- and Jean-François loved this quantity!
- because Jean-François loved clean thermodynamics!

then 1992

SUBROUTINE PPWETPOINT (KIDIA, KFDIA, KLON, PAPRS, PT, PQV, PQL, PQI, PWETPOINT)

• Jean-François then used it to compute the <u>wet-bulb potential temperature</u> in ARPEGE (1992), still at used! !**** *PPWETPOINT* CALCUL DU "POINT BLEU".

COMPUTATION OF THE WETPOINT TEMPERATURE.

FULLY GENERAL ROUTINE COMPUTING THE ABOVE-MENTIONED TEMPERATURE FOR WHATEVER ATMOSPHERIC "INPUT" STATE (P,T,QV,QL,QI ARE INDEPENDENT VARIABLES) AND WHETHER OR NOT THE "LNEIGE=.T." OPTION HAS BEEN ACTIVATED.

$$\theta^* = T\left(\frac{p^0}{p_{00}}\right)^{-R^0/c_p^*} \left(\frac{p^1}{p_{00}}\right)^{-R^1r^t/c_p^*} \exp\left(-\frac{r^2 l_{21} + r^3 l_{31}}{c_p^* T}\right) \qquad \qquad \text{AUTHOR.}$$
92-09, J.F. Geleyn.

THREE IMPLICIT EQUATIONS ARE SOLVED BY NEWTON_METHODS : - SEARCH OF THE SATURATION POINT OF EQUAL ENTROPY UNDER A REVERSIBLE TRANSFORM ;

 FOR THE FIRST STEP THE SYMETRIC FORM OF THE MOIST ENTROPY PROPOSED BY P. MARQUET IS USED IN ORDER TO ALLOW A MIX OF LIQUID AND ICE WATER IN THE ATMOSPHERIC STATE ;

then 1992 ... 2009

Then our activities drifted appart

- Jean-François was the head of GMAP (\rightarrow 2003), then PM of ALADIN...
- I joined the Climate-ARPEGE team (Michel Déqué, 1995-2008) and then the "Laboratory of Forecasting" (Patrick Santurette, 2008-2014)

• but Jean-François was against all what was done in the Climate version of ARPEGE...

• one can say that J.-F. was as great at <u>helping</u> <u>his friends</u> as he was at <u>fighting the</u> <u>thoughts of his enemies</u>... sometimes the darker side of J.-F.'s force!

CITATIONS.CO

E CÔTÉ OBSCUR DE LA FORCE, REDOUTER TU DOIS.

Why these fights: the Shallow convection?

Short- and Medium-Range Numerical Weather Prediction Collection of Papers Presented at the WMO/IUGG NWP Symposium, Tokyo, 4-8 August 1986

One of the rare Use of a Modified Richardson Number for Parameterizing the Effect of Shallow Convection

By JF. Geleyn (1987)

Direction de la Météorologie Nationale, EERM/CRMD Paris, France (Manuscript received 4 November 1986, in revised form 3 February 1987)

2. The problem

During the last ten years several parameterizations of the vertical exchange in the planetary boundary layer have been developed that make explicit use of the local Richardson number R_i to compute vertical exchange coefficients K following:

$$K = l^{2}(z) \left| \frac{\partial \vec{u}}{\partial z} \right| f(R_{i}) \tag{1}$$

Even if the cloud is only covering a partial area in the ratio C, the replacement of s by $C_pT + gz + CLq_s$ will also be consistent, but only as long as C remains constant with height.

4. Proposal

All the above mentioned properties are obtained by the following formulation:

 $R_{i}^{*} = \frac{g}{C_{p}T} \frac{\partial s/\partial z + L \cdot \min(0, \partial(q-q_{s})/\partial z)}{|\partial \vec{u}/\partial z|^{2}}$

... january 2010 ...

$O_{m} = \begin{pmatrix} \Theta & e_{xg} \begin{pmatrix} -Lq_{\Theta} \\ g_{uT} \end{pmatrix} & g_{ug} \begin{pmatrix} s_{v} & s_{F} & q_{U} \end{pmatrix} \\ \begin{pmatrix} T \\ Tr \end{pmatrix}^{hqt} \begin{pmatrix} \rho_{r} \\ \rho \end{pmatrix}^{ksqt} \begin{pmatrix} q_{v} \\ q_{r} \end{pmatrix}^{-3qt} \begin{pmatrix} n+mq_{v} \\ 1+mq_{r} \end{pmatrix} \\ \begin{pmatrix} T_{r} & q_{v} \end{pmatrix}^{ksqt} \begin{pmatrix} q_{v} \\ q_{r} \end{pmatrix}^{-3qt} \begin{pmatrix} n+mq_{v} \\ 1+mq_{r} \end{pmatrix} \end{pmatrix}$

2010: me at the LABO & J.-F. not so far...

- I showed him my new results, and he was so enthusiast! (*more than expected:* <u>old 1990 works</u>!
- convinced <u>at once</u> that "entropy = Cste" in PBL!
- he saw this a great news for the **turbulence!**
- and a need to compute C and Ri (moist) for the Turbulent-Shallow convection...

COST-ES0905 / 2010-2014

I was not in this EU program, but Jean-François convinced people to accept me

- Many talks by him about the "application of the moist-air entropy to turbulence"
- Many thanks Jean-François!

Moist thermodynamics and moist turbulence for modelling at the non-hydrostatic scales J.-F. Geleyn and P. Marquet *Météo-France, Toulouse* with thanks to R. Brožková and I. Bašták-Ďurán for their input ECMWF Workshop on 'Non-hydrostatic modelling' Reading. 8/11/2010

Interest of doing clean thermodynamics in models: rules, conditions of their application and a few (present and anticipated) examples

Jean-François GELEYN

CNRM, Météo-France, Toulouse

(many thanks to P. Marquet, B. Catry, R. Brožková, I. Bašták-Ďurán and M. Van Ginderachter)

> COST ES0905 WG1+2 meeting Reading, 14/01/2013

The problem of the 'ideal' moist potential temperature (3/5) Bett's 'moist New proposal conservative' 6 More homogeneity between cloudy Cloud laver and clear air parts in the new case Brac, Croatia, 2010 Unification of thermodynamics Unification steps via thermodynamics ? in fact the presentation will oscillate between the two meanings ... Jean-François GELEYN CNRM, Météo-France, Toulouse (many thanks to P. Marguet, B. Catry, and M. Van Ginderachter) COST ES0905 annual meeting Palma de Mallorca, 20/03/2013

Filtering the condensation/evaporation aspects of moist turbulence parameterisation via an a-priori definition of shallow convection cloudiness and the simplest analytical translation of moist-entropy conservation J.-F. Geleyn, P. Marquet, I. Bašták-Ďurán, F. Váňa and R. Brožková COST ES0905 WG3 meeting, Offenbach/Main, 28-29/11/2011

On the use of moist entropy in the parameterization of the moist turbulence

Pascal MARQUET Laboratory of Forecasting.

Jean-François GELEYN CNRM.

EMS, NWP2 session Łódź, Poland, 13/09/2012

On the possible use of moist entropy gradients in the modelling of turbulent and convective mixing

Introduction of a topic (already touched by Emanuel (1994)), for an open discussion J.-F. Geleyn (Météo-France)

2010 Session of WG3 of the COST ES0905 action, Prague, 18-19/11/10

EMS Annual Meeting Abstracts Vol. 8, EMS2011-613, 2011 11th EMS / 10th ECAM

Enthalpy and entropy:

J.-F. Geleyn and P. Marquet Météo-France, TOULOUSE, France

COST-ES0905 / 2010-2014

I was not in this EU program, **but Jean-François convinced people to accept me**

- Many talks by him about the "application of the moist-air entropy to turbulence"
- Many thanks Jean-François!
- Jean-François **tried to convince people** via workshops and meetings
- while I preferred to write papers: this was a clear difference between us
- and my goals was on all applications of moist entropy:
 surface fluxes, free-air turbulence, PV + moist enthalpy as well, ...

Our last chapter: Marquet & Geleyn / October 2015

P. Marquet, J.-F. Geleyn **(2015-c)**. Formulations of moist thermodynamics for atmospheric modelling. In: R. S. Plant and J.-I. Yano, editors, "Parameterization of Atmospheric Convection", Volume 2: Current Issues and New Theories, chapter 22, pages 221-274. World Scientific, Imperial College Press. Free acces at: http://arxiv.org/abs/1510.03239 http://www.worldscientific.com/doi/abs/10.1142/9781783266913_0026

After 2015 ? My research programs

• I'm so sorry that Jean-François is no longer here, because he dared to ask fundamental questions!

(1) Why setting $K_h = K_w$? (i.e. turbulence acts in the same way for "heat" and "water") Answer: no good reasons, it's just that it's easier!

2) By the way, why using Richardson numbers depending on $\theta_{\rm v}$?

Answer: *a need to make a "<u>back to basic</u>"* a mix of 1990 (exergy) - Obukhov (1947) and 2010 (entropy) - Richardson (1920) →

The Supply of Energy from and to Atmospheric Eddies. By LEWIS F. RICHARDSON. (Communicated by Sir Napier Shaw, F.R.S. Received March 9, 1920.) $\left(\frac{\partial \bar{v}_{x}}{\partial h}\right)^{2} + \left(\frac{\partial \bar{v}_{y}}{\partial h}\right)^{2} > \frac{g}{\gamma_{p}} \frac{\partial \sigma}{\partial h}$ s = entropy !

