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Scalability of the spectral transforms

B Spectral transforms require data-rich global communications

Introduction

B As long as bandwidth is maintained throughout the HPC,
scalability should be really good
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Scalability of the spectral transforms

B Spectral transforms require data-rich global communications

Introduction

B As long as bandwidth is maintained throughout the HPC,
scalability should be really good

B However, practical tests show far-from perfect scalability:
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The semi-implicit system

B (Simplifying a bit,) the semi-implicit timestepping in
ALADIN-NH requires to solve the following problem:

Sl system D — §tR,T*V? [(G* — 1) — G*(T/T*) — (nl/n%)] = D
Non-spectral solver 2
‘ 9 1%a 7
Scalabilit d—ot| — L =d
Conclusions ( RGTS* q)
T'+5t]2T (D+d)=T
~ * Cpa =
G— 46t |S*™D — (D+d)| =4

w4+ 6tniN*D = 7,

B Whether this system is solved using spectral transforms or not
doesn't affect the rest of the ALADIN/HIRLAM model!

B Since all coefficients and operators are constant in space and
time, this system can be reduced to a single 3D Helmholtz
problem in D:

(I1-6t°V’Bp) D = D**°
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The spectral solver

Introduction B The existing spectral solver takes the following steps:

Sl system

spectral transforms of prognostic variables D, d, T’, g, 71'.’g

SeeiEbliy calculation of RHS term D*®® of the Helmholtz equation in
Conclusions spectral space

@

. . . *
projection on eigenvectors of BT,

A solution of 2D Helmholtz equation for each vertical eigenmode
in spectral space

(1 —c76t>V?)yy = RHS,
inverse eigenmode projection to get D

@ back-substitution to get d, T”, g, 7

inverse spectral transforms
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A non-spectral solver

Introduction B A non-spectral solver takes the following steps:

Sl system

calculation of RHS term D*®® of the Helmholtz equation in
Gomelst speetral gridpoint space

_— . «
projection on eigenvectors of BT,

A solution of 2D Helmholtz equation for each vertical eigenmode

in speetral gridpoint space
(1 —c76t>V?)yy = RHS,
inverse eigenmode projection to get D

@ back-substitution to get d, T”, g, 7

H inverse spectral transforms
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A non-spectral solver

B So, in order to provide a non-spectral alternative for the
spectral Helmholtz solver in ALADIN/HIRLAM, all we need is a
solver for a 2D Helmholtz problem.

Non-spectral solver

S B This is a pretty common numerical problem, which is often
solved by iterative solvers.

B \What makes our application special are the tight operational
constraints: we can't risk to have delayed forecasts due to
unpredictable convergence speed.
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A non-spectral solver

B So, in order to provide a non-spectral alternative for the
spectral Helmholtz solver in ALADIN/HIRLAM, all we need is a
solver for a 2D Helmholtz problem.

Non-spectral solver

B This is a pretty common numerical problem, which is often
solved by iterative solvers.

B \What makes our application special are the tight operational
constraints: we can't risk to have delayed forecasts due to
unpredictable convergence speed.

B However, for our constant-coefficient problem and a given
solver /preconditioner, one can show that the convergence
speed is guaranteed! Moreover, it can be determined
(semi-)analytically.
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Convergence speed of iterative methods

B The Richardson solver solves a general linear problem Ax =b
as follows:

Non-spectral solver X(’H—l) — x(k) + r(k)

Conclusions with 7 = b — Ax*) the residual vector.
® One can easily show that
) = (I— A)r(lC>

so the convergence is determined by the maximum absolute
eigenvalue |A|mae of I — A.
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Convergence speed of iterative methods

B The Richardson solver solves a general linear problem Ax =b
as follows:

Non-spectral solver X(’H—l) — x(k) + r(k)

Conclusions with r®) = b — Ax® the residual vector.

® One can easily show that
) = (I— A)r(lC>

so the convergence is determined by the maximum absolute
eigenvalue |A|mae of I — A.

® When using a preconditioner to transform the problem into
P~ !Ax =P~ 'b, the convergence speed is determined by the
maximum absolute eigenvalue of I — AP1.
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Convergence speed of iterative methods

B The Richardson solver solves a general linear problem Ax =b
as follows:

Non-spectral solver X(’H—l) — x(k) + r(k)

Conclusions with r®) = b — Ax® the residual vector.

® One can easily show that
) = (I— A)r(lC>

so the convergence is determined by the maximum absolute
eigenvalue |A|mae of I — A.

® When using a preconditioner to transform the problem into
P~ !Ax =P~ 'b, the convergence speed is determined by the
maximum absolute eigenvalue of I — AP1.

B For Krylov methods, the convergence speed is determined by
the spectral radius Amaz/Amin-
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Advantage of a constant-coefficient system

B For our constant-coefficient Helmholtz problem, the matrix
A =1 —c25tV? does not depend on the weather situation!
So its eigenvalues (and the convergence speed of an iterative
solver) are predictable!

Non-spectral solver

B The Helmholtz problem is entirely determined by a single
parameter: the wave Courant number ¢ 0t/Ax.
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Advantage of a constant-coefficient system

B For our constant-coefficient Helmholtz problem, the matrix
A =1 —c25tV? does not depend on the weather situation!
So its eigenvalues (and the convergence speed of an iterative
solver) are predictable!

Non-spectral solver

B The Helmholtz problem is entirely determined by a single
parameter: the wave Courant number ¢,0t/Ax.

B For a LAM geometry and a multigrid preconditioner, the
eigenvalues of AP~! do not even depend on the grid
dimensions, and can be determined semi-analytically with a
low-dimensional Rayleigh-Ritz method
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Predicted convergence speed

B Comparison of predicted and measured convergence speed:
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Choice of preconditioner

B The choice of a preconditioner is commonly regarded to be
Introduction difficult task

B Thanks to the predictable convergence rates, it is possible to
pick the optimal preconditioner parameters

Non-spectral solver
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Choice of preconditioner

B The choice of a preconditioner is commonly regarded to be
difficult task

B Thanks to the predictable convergence rates, it is possible to
pick the optimal preconditioner parameters

Non-spectral solver

Sedls e B |t's even possible to use optimal parameters for each vertical
eigenmode separately.
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This allows for a reduction in communication volume by a
factor 5!
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Weak scalability

B Weak scalability tests on ECMWEF's Cray:
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Important note: only scalability of Helmholtz solver!
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Conclusions and future work

B Scalability of the spectral transforms seems problematic, albeit
not in the immediate future for our domains.

B The development of an alternative non-spectral solver seems

Conclusions feasible. As it turns out, specific properties of our NH dynamics
can be used to greatly improve the performance of iterative
solvers:

¢ constant-coefficient semi-implicit
= predictable convergence = robustness
+ vertical decoupling

= optimal preconditioner parameters = efficiency

B The scalability of the preconditioned iterative solvers is really
good!
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Conclusions

Thank you
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