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Scalability of the spectral transforms

n Spectral transforms require data-rich global communications

n As long as bandwidth is maintained throughout the HPC,
scalability should be really good

Zheng & Marguinaud (2018)

n However, practical tests show far-from perfect scalability:

Michalakes et al. (2015)
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The semi-implicit system

n (Simplifying a bit,) the semi-implicit timestepping in
ALADIN-NH requires to solve the following problem:

D − δtRaT
∗∇2 [(G∗ − 1)q̂ −G∗(T/T ∗)− (π′s/π

∗
s )
]

= D̃

d− δt
(
− g2

RaT ∗e
L∗q̂

)
= d̃

T ′ + δt
RT ∗

Cva
(D + d) = T̃

q̂ − δt
[
S∗D − Cpa

Cva
(D + d)

]
= ˜̂q

π′s + δtπ∗sN
∗D = π̃s

n Whether this system is solved using spectral transforms or not
doesn’t affect the rest of the ALADIN/HIRLAM model!

n Since all coefficients and operators are constant in space and
time, this system can be reduced to a single 3D Helmholtz
problem in D:(

I− δt2∇2B∗D
)
D = D••
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The spectral solver

n The existing spectral solver takes the following steps:

1 spectral transforms of prognostic variables D, d, T ′, q̂, π′s

2 calculation of RHS term D•• of the Helmholtz equation in
spectral space

3 projection on eigenvectors of B∗D

4 solution of 2D Helmholtz equation for each vertical eigenmode
in spectral space

(1− c2`δt
2∇2)ψ` = RHS`

5 inverse eigenmode projection to get D

6 back-substitution to get d, T ′, q̂, π′s

7 inverse spectral transforms
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A non-spectral solver

n A non-spectral solver takes the following steps:

1 spectral transforms of prognostic variables D, d, T ′, q̂, π′s

2 calculation of RHS term D•• of the Helmholtz equation in
spectral gridpoint space

3 projection on eigenvectors of B∗D

4 solution of 2D Helmholtz equation for each vertical eigenmode
in spectral gridpoint space

(1− c2`δt
2∇2)ψ` = RHS`

5 inverse eigenmode projection to get D

6 back-substitution to get d, T ′, q̂, π′s

7 inverse spectral transforms
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A non-spectral solver

n So, in order to provide a non-spectral alternative for the
spectral Helmholtz solver in ALADIN/HIRLAM, all we need is a
solver for a 2D Helmholtz problem.

n This is a pretty common numerical problem, which is often
solved by iterative solvers.

n What makes our application special are the tight operational
constraints: we can’t risk to have delayed forecasts due to
unpredictable convergence speed.

n However, for our constant-coefficient problem and a given
solver/preconditioner, one can show that the convergence
speed is guaranteed! Moreover, it can be determined
(semi-)analytically.
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Convergence speed of iterative methods

n The Richardson solver solves a general linear problem Ax = b
as follows:

x(k+1) = x(k) + r(k)

with r(k) = b−Ax(k) the residual vector.

n One can easily show that

r(k+1) = (I−A)r(k)

so the convergence is determined by the maximum absolute
eigenvalue |λ|max of I−A.

n When using a preconditioner to transform the problem into
P−1Ax = P−1b, the convergence speed is determined by the
maximum absolute eigenvalue of I−AP−1.

n For Krylov methods, the convergence speed is determined by
the spectral radius λmax/λmin.
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Advantage of a constant-coefficient system

n For our constant-coefficient Helmholtz problem, the matrix
A = 1− c2`δt2∇2 does not depend on the weather situation!
So its eigenvalues (and the convergence speed of an iterative
solver) are predictable!

n The Helmholtz problem is entirely determined by a single
parameter: the wave Courant number c`δt/∆x.

n For a LAM geometry and a multigrid preconditioner, the
eigenvalues of AP−1 do not even depend on the grid
dimensions, and can be determined semi-analytically with a
low-dimensional Rayleigh-Ritz method
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Predicted convergence speed

n Comparison of predicted and measured convergence speed:
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Choice of preconditioner

n The choice of a preconditioner is commonly regarded to be
difficult task

n Thanks to the predictable convergence rates, it is possible to
pick the optimal preconditioner parameters
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n It’s even possible to use optimal parameters for each vertical
eigenmode separately.

This allows for a reduction in communication volume by a
factor 5!
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Weak scalability

n Weak scalability tests on ECMWF’s Cray:
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Important note: only scalability of Helmholtz solver!
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Conclusions and future work

n Scalability of the spectral transforms seems problematic, albeit
not in the immediate future for our domains.

n The development of an alternative non-spectral solver seems
feasible. As it turns out, specific properties of our NH dynamics
can be used to greatly improve the performance of iterative
solvers:

u constant-coefficient semi-implicit

⇒ predictable convergence = robustness

u vertical decoupling

⇒ optimal preconditioner parameters = efficiency

n The scalability of the preconditioned iterative solvers is really
good!
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Thank you
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