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interpolation are allowed along vertical.)

» SLHD (Semi-Lagrangian Horizontal Diffusion)
interpolator selectively combining Lagrangian cubic
interpolation with a product of linear interpolation and
smoother.

» Both previous exist also in QM and QMH alternatives.
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» Attempt to improve SLHD conservative properties by
iIntroduction of more accurate (less diffusive) high order
interpolator.

» Cubic Lagrange polynomial was replaced with more
accurate natural cubic spline (on 4 point stencil).

» It indeed reduced positive MSL pressure bias, but
detrimental effect on other fields was observed.

s In order to understand what is going on, detailed
examination of semi-Lagrangian interpolators followed.
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» linearity with respectto y = (y_1, %o, Y1, ¥2):
F(x,y) = w_i(2)y—1 +wo(z)yo + wi(x)y: + wa(x)ys

» invariance with respect to horizontal mirroring:
F(l _ xay%yl)y()vy—l) — F(xvy—lvy())ylva)
» invariance with respect to vertical shift:
Flx,y+c¢)=F(z,y)+c
» reproducing of values yo, y1:
F(07Y) = Yo
F(LY) = Y1

» reproducing of linear function y = x:
F(x,—1,0,1,2) =«




» when weights w_1, wg, w1, wo are constrained to
polynomials of degree at most 3, an interpolator F' is
restricted to the form:

F(z,y) = w(@)y-1 +v()yo + v(1 — 2)y1 + u(l — z)ys
u(x) = a1z + agx® — (ay + ag)z’
v(z) = 14 (ag — 1)z — (3a1 + 4az)z* + 3(a; + a2)x”
a1,a2 € R

» every decent 4-point cubic interpolator can be
represented by a point in the (a1, a2) plane

» requirement that " reproduces also quadratic function
y = z* (which implies second order accuracy) defines the

straight line: 6a1 - 2as = —1




accuracy measured by weighted MAE
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dimensionless damping rate

A= 10Azx




dimensionless damping rate

— 3 OA:U A= 2.0Azx
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» Interpolators are of at least 2" order of accuracy,
leaving one tunable parameter to control their property.

» Every interpolator F' can be written as weighted
combination of cubic Lagrange polynomial F,, and

quadratic interpolator Faq:
F'= (1= kK)Flag + £Fquad kEeR

» ldentity of some important inhabitants of (a1, as) plane:

ai a2 | name order of accuracy | parameter
0 0 | linear interpolator 1 —
—2 | 3 | quadratic interpolator 2 1
—% | 3 | cubic Lagrange polynomial 3 0
—1 | 1 | quasi-cubic spline 2 —2
—-£ | 2 | natural cubic spline 1 —
i5 | 5




3h adiabatic forecast

kinetic energy spectra
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guadratic interpolator
(k=1)
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s Laplacian smoother S can be applied before
semi-Lagrangian interpolations:
S =1+ e(Az)%0,*

» Finite difference formula for second order derivative at
inner nodes and prescribing it to be zero at outer nodes

gives. /1 0 0 O\ /y_l\
Y0

S(y) =

| Y1
o 00 1) \w
» Explicitly treated diffusion = safety limit on smoother
strength <. Model implementation distinguishes between

eg and ey.
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cubic Lagr. polynomial with
.0

smoother, (xk =0, e =
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» General second order accurate interpolation
(SLHDKMIN € (—2.,6.))

» Two interpolator sets, controlled by SLHDKMIN and
SLHDKMAX (SLHDKMIN < SLHDKMAX),

s LSLHD_STATIC=.true.

s Prognostic quantities belonging to the “SLHDKMAX”
group are selected by activating appropriate LSLHD
key.

s Additionally, for the second group the Laplacian

smoother can be activated. (Specific case:
SLHDKMIN = SLHDKMAX!)
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s Emulation of the “old” SLHD within the new data-flow.
(LSLHD_OLD=.true., SLHDKMIN, SLHDEPSH, SLHDEPSV;
SLHDKMAX has no meaning here)

» New SLHD with all interpolations being 2"¢ order
accurate (SLHDKMIN < SLHDKMAX, SLHDEPSH,
SLHDEPSV)

» Laplacian smoother only as the specific case when
SLHDKMIN = SLHDKMAX. (Beware of the stability for
SLHDEPSV!)




Keys
LSLHD_[x] - Keys to activate SLHD for GMV [X]
STLSLHD - GFL attribute to activate SLHD

LSLHD_STATIC Key for “static” mode (x = const.)

LSLHD_OLD - Old SLHD with linear diffusive interpolato




Keys
LSLHD_[x] - Keys to activate SLHD for GMV [X]
$LSLHD - GFL attribute to activate SLHD
LSLHD_STATIC - Key for “static” mode (x = const.)
LSLHD_OLD - Old SLHD with linear diffusive interpolato

Tuning parameters
SLHDKMIN - property of the basic interpolator
(Optimum seems to be around 0.!)
SLHDKMAX - property of the maximum diffusive limit
(Optimum between 6.-10.)
SLHDEPSH - horizontal Laplacian smoother
SLHDEPSV - Vertical Laplacian smoother



Based on ALADIN/CE (LACE domain, Az=9 km) simulations
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s general improvement of wind speed and MSL
pressure (conservation of mass)

s other dynamics variables are improved in upper
troposphere (above 500 hPa) and above 100 hPa
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s detrimental effects in PBL and lower stratosphere
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Based on ALADIN/CE (LACE domain, Az=9 km) simulations
» Decreasing of SLHDKMIN leads to:

» general improvement of wind speed and MSL
pressure (conservation of mass)

s other dynamics variables are improved in upper
troposphere (above 500 hPa) and above 100 hPa

s iImprovement of prognostic physical variables
s detrimental effects in PBL and lower stratosphere

» Decreased SLHDKMIN needs to be compensated by
iIncreased horizontal and vertical diffusion!

» SLHDEPSH significantly influences KE spectra, weak
effect to model scores; SLHDEPSV nearly no effect to KE
spectra, strong impact to scores and mass conservation
L ALADWS/ HIALAM ASM, Ureoh, Ny 2009-p. 17
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» Fairly more freedom to play with SL(HD) interpolations.
s All fully projected to TL/AD code (since CY35T2).

» SLHD implies only around 2-3% of additional cost
regardless the number of diffused variables.

» Lagrangian cubic seems to perform extremely well in
real atmosphere = difficult to get rid of it.

» Still some space to re-distribute the SL diffusivity from
the basic interpolator toward the stronger (3D acting)
diffusion scheme.

» Natural entry point to real 3D turbulence.
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