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INTRODUCTION (1)

* DAbyFA , a method proposed by a group of MIT scientists and published in
November 2006

* Classical formulations of DA, whether sequential, ensemble-based or
variational,are “amplitude adjustment methods”. Such methods can perform
poorly when forecast locations of weather systems are displaced from
their observations

* Characterization of position errors is complex, yet very important for
forecasting weather of strong and localized phenomena (tropical cyclones,
thunderstorms, squall lines, etc...). Position errors introduce bias between
observations and forecasts

* The issue is not new. For years, “ad-hoc” techniques (“bogussing”) have
been used operationally in Tropical Cyclone Forecasting



INTRODUCTION (1II)

* In the last 20 years different objective methods to tackle this problem have
been proposed and tested.

a) Mariano A.J (1990) : contour analysis and melding fields

b) Hoffman R.N et al (1995,1996): a variational technique accounting
for “distortion errors”, proved on ECMWEF analyses using microwave satellite
data. More recently, Nehrkorn T. et al (2003) on calibration of this method

c) Alexander G.D et. al (1998) : image warping using microwave satellite
data to improve forecasts of mesoscale marine cyclones

d) Brewster K.A (2003): a different field alignment algorithm to the one
that this presentation refers to, tested on storm-scale NWP with simulated
data



INTRODUCTION (III)

« Ravela S etal, at MIT (2000), start off from the Bayesian formulation of
the DA problem, which under a number of hypotheses gives for the inference
of the model state this expression (ignoring the normalizing constant P(Y ) )

P (Xn | YDZFI )

Q P{Y, | X) P (X

/ 1 Forecast Model Error or

1 . Fr
“a posteriori” or “inferred” model state X Forecast Prior

at t=n, conditioned on observations from
0 ton

Data likelihood fot t=n. It implies
the existence of model equivalents to
the observations

« Under further assumptions (Gaussianity,obs op linear) this formulation leads
iImmediately to the 3Dvar (in a deterministic context) or the EnKF (in a
probabilistic context) quadratic equations for the analysis objective J



—
INTRODUCTION (1V) /l”"MCT

« Both schemes, 3DVar and EnKF, can perform bad in the presence of
position errors
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"™ 1-D example built with a 40 members ensemble, perturbed
oces ONly in amplitude. B-matrix shown down left. “Truth”

ooz (lisplaced left about 3*0, where 9 is the width of the “front”.
*s 3DVar analysis and EKF mean analysis appear both distorted.
::; o, is substantially less than o, (about 1/5). The observation

~ density is 1/10.
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« Both schemes, 3DVar and EnKF, can perform bad in the presence of
position errors
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The same 1D-example, but with perturbations in position as well. The “truth” is
displaced to the left about 3*0 , where 0 is the perturbation in position. B-matrix

is computed from the 40 members ensemble. The distortion in the 3DVar and
EKF mean analyses is still important.
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DAbyFA: the method (I)

e The method explicitly represents position errors by introducing in the
analysis control space a displacement vector field q, defined in each

analysis grid point, that gives the deformation necessary to minimize
these position errors

* In the Bayesian framework sketched previously, the inference for the model
state now becomes (ommiting some indexes)

P(X,qlY) a P(Y|x,q>‘ P<><f|q>\ P (q)

4 |

“Data likelihood”. Connects The “amplitude prior”. “displacement prior”,
observations to the displaced Says that the forecast enables the introduction
model state statistics are conditioned  of smoothness

on the displacement constraints on the

field q (e.g. B(q) ) q field
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In the usual assumption of gaussian statistics for these component PDFs, we have:
a) Data Like. P(Y|Xq) aexp-12(Y-HX(P)) R'(Y-HX(p))
where X (p = r — q ) represents X displaced by q

b) Amp. prior  P(X'|q) a |B(q)["* exp-1/2 (X(p) - X' (p) )" B(q)" (X(P)- X (P))

the forecast error is assumed Gaussian in the position corrected space. Note the
dependence of B on q

c) Displa. prior P(g)aexp—-L (g ); where:

L(g)=w,/ 22#[[%; j] [%31 ]T] +w, / 2Z[dfv; j]

jeil

2

This term expresses the smoothness or “regularization” constraints imposed on the
solution for q. The parameters w, and w, are free and weight both terms of the
constraint. This formulation (Tikhonov type formulation) is inspired in the theory of
viscid fluids.
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With these definitions of probabilities, the Field Alignment Cost Function becomes:
o ; T.r T o . L |
2., =(X(P)- X7 (p)) B@'(X(p)-X(p))+
B \r i § T
(Y—HX(p)) R (Y—HX(p)) +2I(q) -
T
In(B(q)|}
The solution of this problem is complicated. It is not clear how to compute B(q) and
the gradients of J_, are not easy to compute either. Ravela et al. present two ways
of overcoming these difficulties by making several approximations.
a) The “one-step algorithm”. An iterative procedure that works with ensembles.
The denomination refers to the fact that in this case the minimun is searched
simultaneously in amplitude and position. This algorithm can be very expensive in

computational terms because it does not scale well with ensemble size.

b) The “sequential solution”. It can be utilized in probabilistic and deterministic
approaches alike.
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In the “sequential solution” or “two-step algorithm’, the idea is to solve the two

equations:
o ;2%-0 (2
oX oq

sequentially. In the first step, X is fixed to X" in (2) and then a solution for q is found.
This smooth and continous deformation is used to correct the position errors in X' . In
the second step, X (q) ( the aligned forecast ) is used to obtain an analysis from (1).

The first step amounts to solving the “alignment equation”
| § | §
w,Ag+w, V(V -q)+
1
(VX’ =) H" R (H X’ (p) —Y)=0

which, due to the dependence of the forcing on q, is hon-linear and has to be solved
iteratively. The forcing term is based on the residual between FG and observations,

modulated by the local gradient of the FG.



DAbyFA: Implementation of the method (I)

* It is not hard to solve the “alignment equation”. For “natural boundary conditions”
(g,= 0)on arectangle, it is found that a very convenient way of solving it is by

using spectral methods on an extended domain (2x2)

* We reflect the increment field through the horizontal and vertical central axes of the
extended domain and get in this way even periodic functions. The forcing terms
are the product of this increment field and the gradients, therefore they are odd
functions along the corresponding direction (i.e.,along the x direction for F, and

along the y direction for F, ) and even along the other direction

F F,
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DAbyFA: Implementation of the method (II) AMet

Agencia Estatal de Meteorologia

 Functions like these satisfy the q,=0 lateral boundary condition. Therefore, if the

symmetry properties of the PDE are such that the solutions have the same
symmetries as the forcing terms, solutions with the required LBCs are readily found

* And this is the case. The PDE diagonalized in (k,l) space has the simple form:

C, (k) Q k) + Stkl) Q, (k) = F, (K1) C. (k1) , S(k,) real and
Ci ('k’/) = Ci (k"l) = C/ ('k"l) = Ci (k’l)
F, (k) | S(-kl) = S(k-l) = -S(-k-l) = - S(k,)

S(tkl) QK1) + C, (k1) Q, (k)

After some elementary algebra we find that for:

Re[F, (kD)]=0; Im[F, (kD)]=-Im[F_ (-k,])]; Im[F, (k,])]=1Im[F,(k,-l)]
and
Re[F, (k,N)]=0; Im [F, (k,)]= Im [F, -k,)]; Im [F, (k,)]=-1Im [F, (k,-1) ]

The Q, (k,l) and the Q, (k,I) satisfy the same symmetries

* In addition, the use of the extended zone allows to get solutions with < q > /=0 in
the area of interest in spite of the fact that the above equation is not invertible for
k=1=0
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DAbyFA: Testing the Method Imer

Agencia Estatal de Meteorologia

* This scheme has been tested using HARMONIE 36h1.3 (2.5Km,60L) fields as
surrogates of FGs and observations.

* The testing exercise comprises so far a single case with some weather activity
over the Western Mediterranean off the Iberian coast. The exercise consists
of three runs of the HARMONIE 3Dvar (no surface ass) + NH + AROME physics
NWP system

LBCs (ECMWF FCSTs) : Same for all three experiments, 3 H refreshing gycle

/ \V»

ECMWF FCST VT: 01/28 00 UTC +12 H HARMONIE FCST
>

ECMWF FCST VT: 01/27 21 UTC + 3DVAR(*)

>
ECMWF FCST VT: 01/27 21 UTC + + 3DVAR(*)

(*) Observations for the 3DVar analyses are “bogus obs”. They are read off the fields
used as initial conditions (i.e. the ECMWF FCST VT: 01/28 00 UTC)
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Testing the Method

DAbyFA
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DAbyFA: Testing the Method AEMEL

Agencia Estatal de Meteorologia

e The scheme is a two-step one. After the correction in position, a correction in
Amplitude is still required. To include this step in this test, a fairly dense network
Of in-situ observations over the area of interest was defined and the value of
the ps, T, u, v and g parameters read off the initial conditions fields acting

Here as “truth” ﬁ

Each position contains: Ps observations plus

ten levels (up to 200 hPa approx. ) of u, v, g and T.

In total, 816 observations were assimilated.

Some “ad-hoc” quality constrains currently implemented

in the system (i.e., reduction zone) were removed. I

e No observation (in either run) was screened
out by the QC module, that is, all fell within
Tolerance limits. The distribution of obs
Increments, particularly for the FG inc., looks
however quite different in both cases.

The same calibration parameters were used in

both cases
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Evaluation of Results

* The results of the two experiments: “shifted” and “aligned” have been
compared with the control run in order to gauge the impact of the alignment

* The results are very positive. During the first hours of the integration the
impact on important parameters like precipitation and wind near the surface
is apparent. This impact dilutes afterwards, in this case after 4-5 hours in the
wind field and 2-3 hours in the precipitation field

* This result, “short-range impact”, which is well documented in other
“‘comparable” impact studies (e.g., assimilation and/or blending with radar
data), is enhanced in this study due to its own specific characteristics, namely,
the proximity of the low dominating the meteorological situation to the border
of the domain. It is clear that after a few hours, the LBCs take over control

of the run












Aligned

~
Q.
P
()
_
-
c
O
~—
—
®)
pued
—
L
~
=
o
98]
©
~—
0
L
L
o
)
o
=
=
O
)
&
L
n

e X

<

b




o

™
=

&«bdcﬁ’

.

B - ~T

TV Py PP

-

480 14







Shifted SIM Z (@30m) Error( cntl - exp)




Shifted SIM Z (@30m) Error (cntl - exp)




Shifted SIM Z (@30m) Error (cntl - exp)




CONCLUSIONS

e A new method for correction of position errors in weather analyses
has been tested with the HARMONIE NWP system. The test however
was done in an ideal setting and only for one case. This case was not
one of hazardous or extireme weather.

* The results are good. The impact on the weather forecasts for wind
and precipitation is clear. No “shocks” or rejection problems were found
in the only case considered in this work. The multivariate aspect

of the issue (having patterns for some parameters but not for others)
was however not addressed here.

* There are, of course, many pieces still missing before an eventual
explotation of this, or equivalent, method can be a readlity.

* The first one clearly is the lack of observations required. The extension
of this method to indirect measurements (radar, satellite) conceptually
presents no problem

* There are too quite a number of “Al” related issues like “detection” and
‘correspondence” that would have to be sorted out.
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