Downslope windstorm in High Tatras 19 November 2004

high resolution study

André Simon, Jozef Vivoda SHMÚ

Impact of the 19 November windstorm

- Southern part of High- and Low Tatras: 120 km² of forest destroyed (main turistic centre of Slovakia)
- Measured wind gusts: 30 60 m/s
- Period: 14 19 UTC
- Biggest impact: zone of forest, between 750 1200 m above sea level

Very rare event in such low altitudes (previous storms: 1915, 1919,1941)

Photo: J.Pinterova

Impact of the 19 November windstorm

 Belt of destroyed forest on the southern (lee) side of the High Tatras

Synoptic analysis

Satellite infrared channel, MSLP (hPa) and fronts

Local observations

 Gusty character of wind, hourly average wind speeds almost 20 m/s, gusts over 50 m/s

Station Stará Lesná, Slovak Academy of Sciences Anemogram+barogram

Remarkable pressure oscillations: high turbulence

Microscale features

 Aerial photographs: evidence of strong downslope winds (orientation of fallen trees)

Biggest damage: foots of the slopes, exits of valleys

strong vertical wind shears in thin layer

 generation of extremely high horizontal vorticity
 analogical to flow in travelling microbursts

Success of the operational forecast

ALADIN SLOVAKIA, cycle 25, 9.0 km resolution

Time course of observed and forecasted wind gusts, station "Lomnický Štít" Based: 19/11/2004 00 UTC run

Why to do high resolution modelling ?

- Improved spatial distribution of wind gusts and better localization of the wind speed maxima
- More information about the nature of the event important for the forecasters
- Tool: 2.5 km hydrostatic ALADIN model with physics 2.5 km dynamic adaptation of ALADIN SLOVAKIA 2.5 km non-hydrostatic model (ALADIN NH dynamics+physics, cycle 29)
- We concentrated on short range forecasts of wind and pressure distribution (00h – 24 h range)

2.5 km hydrostatic run with physics

- Areas of predicted max. gusts coincide with the damage observations, better performance for low Tatra region
- Big pressure gradient and strong crossisobaric wind (lee cyclone due to blocking of air)

15 h forecast of wind gusts

15 h forecast of 10m wind and MSLP

2.5 km hydrostatic run with physics

- Extreme wind speeds on the lee side: area of increased static stability and downsloping isotherms of " θ "
- Vertical velocities: effect similar to "hydraulic jump"

2,5 km non- hydrostatic run

- Time shift of the event (max. wind speeds 3 h later)
- main structure of the flow similar to hydrostatic run

Potential vorticity + wind

True vertical velocities (m/s)

Comparison of all runs

15 h forecast of wind gusts: direction + speed (m/s)

Sensitivity tests

10 m wind, wind gusts (shades), MSLP (hPa)

Mesoscale diagnostics

- Theory of downslope windstorms:
- Supercritical flow: Froud number → 1
- Several analytical models an criterions ...

Less stable air

Shallow water hydraulic model: adapted from Holton (1992)

Stable air

Supercritical flow $Fr \rightarrow 1$

turbulent adjustment to subcritical environment

Mesoscale diagnostics

- Increase of stability with height
- Below 3000 m Froud number > 1 (air can flow over mountains)

Variation of the Froud number at 2500 m (Zakopane, 19.11.2004)

Mesoscale diagnostics

Increase of stability on the lee side – indicates a strong downslope wind

Approximate Froud number

Mean Brunt Vaisala frequency

Conclusions: points of view

- NWP Operation: High resolution models, even hydrostatic, enable to forecast such unusual severe event, dynamic adaptation seems to be sufficient
- Forecasting: All HR runs forecast the main characteristics of downslope windstorms (e.g. hydraulic jump)
- NWP Development: A case study necessary to test in new cycles, probably high dependence on physical parameterisation (turbulence scheme ?)
- Science: needs for better analytical model + higher resolution model to simulate microscale effects

Acknowledgements

- to Mária Derková for supervision of the sensitivity experiments
- to all colleagues who helped us and contributed to this study