Contribution of RC LACE into development of HY and NH dynamical core

J. Vivoda, P. Smolikova

Dynamics Working Day Toulouse, 28th of May 2019

< □ > < □ > < □</p>

28th of May 2019

1/28

Flexible iterative scheme

RC LACE

Implementation of alternative vertical velocity variables

・ロト ・回 ト ・目 ト ・目

Flexible iterative scheme

Implementation of alternative vertical velocity variables

・ロト・日本・日本・日本・ 日本・ クタの

28th of May 2019 3 / 28

Main idea

Detect some global norm during model integration and choose either SI time step or PC scheme according actual value of that norm.

Norm

some kind of CFL, some measure of non-hydrostaticity, some measure of NL residual change

< □ > < □ > < □ > < □ >

Choice of norm

We implemented norm

NL residual

$$\mu=1-\frac{|R^t-R^{t-\delta t}|}{|R^t|+|R^{t-\delta t}|},$$
 if $\mu\approx 1$ then SI scheme, else PC scheme

with R being nonlinear residual of some prognostic quantity.

Figure : percentage of points for each vertical level where PC scheme is required because $\mu < 1$. Computed for small domain with dx = 1km. Horizontal axis is model time step, vertical axis is model level. Computed from NL residual of U wind component, T, PD, VD and 3D part of continuity equation.

Condition

If $\mu \approx 1$ in more that > 90% of grid points (upper atmosphere excluded) for \hat{q} , we switch to SETTLS scheme with NSITER=0, otherwise PC NESC with NSITER=1.

Figure : The percentage of points where $\mu < 1$. When global average < 10% we turn on SI SETTLS scheme. 3h integration is shown, computed with $\delta t = 60s$ for domain with dx = 1km. In total 26 time steps were SI SETTLS in this simulation and approx. 5 - 10% of CPU was saved.

Idea

After one time step of SI SETTLS, balances were canceled and we have to stabilize next time steps with PC NESC scheme.

IDEA :keep extrapolation of NL residual as consistent as possible in SI and PC scheme, but try to profit from better stability of NESC approach.

Combined extrapolation scheme

$$R_M^{t+\frac{\delta t}{2}} \approx \frac{1}{2} \left(R_A^t + R_D^t \right) + \frac{\beta}{2} \left(R_D^t - R_D^{t-\delta t} \right) \tag{1}$$

< □ > < □ > < □ > < □ >

 β may change arbitrarily from 0 to 1. NESC scheme for $\beta = 0$ and SETTLS scheme for $\beta = 1$.

Unification of NESC and SETTLS

We analyzed stability of equation

$$\frac{df(t,x)}{dt} = R(t,x) = (\lambda + i\omega)f(t,x)$$

discretized in the form

$$\frac{f_A^{t+\delta t} - f_D^t}{\delta t} = \frac{1}{2} \left(R_A^t + R_D^t \right) + \frac{\beta}{2} \left(R_D^t - R_D^{t-\delta t} \right)$$

We analyze single Fourier component advected with constant wind U

$$f(n\delta t, jdx) = A^n e^{ijUk\delta t}$$

Stability reached when
$$|A| \leq 1$$
. Figures, x-axes $\lambda \delta t$, y-axes $\omega \delta t$. $\beta = 1(SETTLS)$ $\beta = 1/2$ $\beta = 1/100$ $\beta = 0(NESC)$

Combined PC CHEAP scheme evaluation

t = 600s and NESC

t = 600s and SETTLS

G551 2017 Jul 11 09:07:48 orperiment: 8E70

t = 900s and NESC

t = 900s and SETTLS

イロト イロト イヨト イ

G551 2017 Jul 11 09:07:54 experiment: 8ET0

2017 Jul 11 09:09:24 experiment: 8E71

2017 Jul 11 09:09:18 experiment: 8071

Flexible iterative scheme

2 Implementation of alternative vertical velocity variables

3 VFE

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ < □ ♪ < □ ♪ 28th of May 2019 10/28

Work based on proposal of Fabrice to ensure consistency of BBCs in LI and NL model.

LI model	NL model
BBC	
$gw_s = 0$	$gw_s = ec v_s ec abla \phi_s$
$\frac{dgw_s}{dt} = 0$	$rac{dgw_s}{dt} = rac{dec v_s}{dt}ec abla \phi_s + ec v_sec abla (ec v_s \dot \phi_s)$

new proposal, choose such gW that

BBC	
$gW_s = 0$	$gW_s = 0$
$\frac{dgW_s}{dt} = 0$	$rac{dgW_s}{dt} = 0$

no residual remains related to BBC condition in vertical momentum equation. Positive result expected.

・ロト ・日下・ ・ ヨト・

We implemented three possible definitions of gW

Definition		
$gW_n = gw + Y_n$ with	$Y_5 = -ec v ec abla \phi$	
	$Y_6=-ec vec abla \phi_s$	
	$Y_7 = -ec v_sec abla \phi_s$	

Spectral prognostic quantity d is modified as

Modification of <i>d</i>	
$d_4 = -\frac{p}{mRT}\frac{\partial gw}{\partial \eta} + X_4$	$d_n = -rac{p}{mRT} rac{\partial g W_n}{\partial \eta} + X_n$ with
	$X_n = \frac{p}{mRT} \frac{\partial Y_n}{\partial \eta} + X_4$

Image: A matrix and a matrix

However such definition just shifts problems from surface to model top \Rightarrow relaxation function $\gamma(\eta)$ in vertical is used to avoid "jet streams of gW close to model top.

$$gW_n = gw + \gamma(\eta)Y_n$$

Prognostic equation for gW_n is

$$\frac{dgW_n}{dt} = \frac{dgw}{dt} + \frac{d\gamma Y_n}{dt}$$

and for d_n variable

$$\frac{dd_n}{dt} = \frac{dd_4}{dt} + \frac{dX_n}{dt}$$

 \Rightarrow modification of *gw* inluences only evolution of *X*-term. The LI model remained unchanged for all *gW_n*.

Prognostic variables

The evolution of Y_n can be treated explicitly or approximative way

Explicit treatment

Evolution of Y_n

$$\frac{d(\gamma Y)}{dt} \approx \frac{(\gamma Y)_A^{t+\delta t} - (\gamma Y)_A}{\delta t}$$

δt

Aprox. SL treatnent

$$\frac{\gamma dY_6}{dt} = -\gamma \left(\frac{d\vec{v}}{dt}\vec{\nabla}\phi_s - J_s\right) + \dot{\eta}\vec{v}\vec{\nabla}\phi_s\frac{\partial\gamma}{\partial\eta}$$
$$\frac{\gamma dY_7}{dt} = -\gamma \left(\frac{d\vec{v}_s}{dt}\vec{\nabla}\phi_s - J_{ss}\right) + \dot{\eta}\vec{v}_s\vec{\nabla}\phi_s\frac{\partial\gamma}{\partialt}$$

gw

gW_6 explicit treatment

 gW_6 approx. SL treatment

Real case - gW

Real simulations - 4.1.2017, strong wind across Alps. Vertical cross section through the hor. wind speed field:

Flexible iterative scheme

Implementation of alternative vertical velocity variables

・ロト・日本・日本・日本・ 日本・ 2000

28th of May 2019

16/28

" π " represents the mass of column per m^2 in HY and NH model as well. In HY model $\pi = p$.

Finite differences modelFinite elements modelDefinition $\pi(\eta_{\bar{l}}) = A(\eta_{\bar{l}}) + B(\eta_{\bar{l}})\pi_{\mathfrak{s}}(x,y)$ $m_l = \frac{\partial \pi(\eta_l)}{\partial \eta} = \frac{\partial A(\eta_l)}{\partial \eta} + \frac{\partial B(\eta_l)}{\partial \eta}\pi_{\mathfrak{s}}(x,y)$

Layer depth $\delta \pi_l = \pi_{\tilde{l}} - \pi_{l-1}^{-2}$ $m_l = \frac{\delta A_l}{\delta \eta_l} + \frac{\delta B_l}{\delta \eta_l} \pi_s$ $\delta \eta_l = \eta_{\tilde{l}} - \eta_{l-1}^{-2}$

Integral operator

$$\int_0^1 \frac{\partial \pi}{\partial \eta} \psi d\eta \approx \sum_{l=1}^L \psi_l \delta \pi_l$$

 η values remain implicit (semi-Lagrangian advection requires them)

$$\int_0^1 \frac{\partial \pi}{\partial \eta} \psi d\eta \approx (\mathbf{K} m \psi)_L$$

 η requires explicit definition, operator (K) is full level matrix and (K)_{l} represent value of integral from top to level l

<ロ> <四> <四> <三</p>

Finite differences model	Finite elements model
Mass conservation	
$\sum_{l=1}^{L} \delta \pi_l = \sum_{l=1}^{L} \delta A_l + \sum_{l=1}^{L} \delta B_l \pi_s$	$\left(\mathbf{K}m\right)_{L}=\left(\mathbf{K}rac{\delta A}{\delta\eta} ight)_{L}+\pi_{s}\left(\mathbf{K}rac{\delta B}{\delta\eta} ight)_{L}$
$\pi_s = (A_{\tilde{L}} - A_{\tilde{1}}) + (B_{\tilde{L}} - B_{\tilde{1}})\pi_s$	$\left(\mathbf{K}rac{\delta A}{\delta\eta} ight)_L=0 \qquad \left(\mathbf{K}rac{\delta B}{\delta\eta} ight)_L=1$

Adjustment

BCs of \boldsymbol{A} and \boldsymbol{B} satisfy mass conservation property

$$\begin{split} &\delta \tilde{A}_{l} = A_{\tilde{l}} - A_{l\tilde{-}1} \qquad \delta \tilde{B}_{l} = B_{\tilde{l}} - B_{l\tilde{-}1} \\ &\delta B_{l} = \frac{1}{\alpha} \delta \tilde{B}_{l} \qquad \alpha = \left(\mathbf{K} \frac{\delta \tilde{B}}{\delta \eta}\right)_{L} \\ &\delta A_{l} = \frac{1}{\beta} \left(\delta \tilde{A}_{l} + \delta B_{l} \pi_{r}\right) - \delta B_{l} \pi_{r} \\ &\beta = \left(\mathbf{K} \left(\frac{1}{\pi_{r}} \frac{\delta \tilde{A}_{l}}{\delta \eta} + \frac{\delta B_{l}}{\delta \eta}\right)\right)_{L} \end{split}$$

Explicit definition of η

In finite difference model η is implicit, in finite elements model it must be defined explicitly.

LREGETA generalisation	
$\eta_k = \frac{\sum_{i=1}^k d\pi_k^\alpha}{\sum_{i=1}^L d\pi_k^\alpha}$	$\alpha = 0 \Rightarrow LREGETA,$ $\alpha = 1 \Rightarrow .NOT.LREGETA$

Above definition is unstable for high order VFE schemes with spline order 5 and higher when tested with 137 levels. Stabilisation require higher density of levels close to BCs in η space

Denser levels close to BCs - LVFE_CENTRI	
$\eta_k = (1 - \beta)\frac{k}{L} + \beta \left[\frac{1}{2} - \frac{1}{2}\cos(\pi\frac{k}{L})\right]$	$\beta={\rm 0}\Rightarrow {\it LREGETA},\ \beta\approx 1$ very dense close to BCs

Experimentally found that $\beta \approx 0.5$ is stable for high order operators and the eigenvalue of linear model L* are pure imaginary one as required (susi, sunhsi). I implemented also implicit definition of η that allows to control density close to top BC and close to surface BC independently.

Denser levels close to BCs - LVFE_CHEB (testing to be done)

 $\frac{\partial s}{\partial \eta} = a\eta^2 + b\eta + c \qquad \qquad \int_0^1 \frac{\partial s}{\partial \eta} = 1, \ \left(\frac{\partial s}{\partial \eta}\right)_0 = \alpha, \ \left(\frac{\partial s}{\partial \eta}\right)_1 = \beta$

s represents LREGETA coordinate.

RC LACE

Explicit definition of η

Profiles of layer thickness $\delta\eta$ and $\frac{\partial\pi}{\partial\eta}$ vs levels index for various definitions of η coordinate (P00 - LREGETA=.T., P10 - LREGETA=.F., M07 - CETRI with $\beta = 0.7$, M09 - CENTRI with $\beta = 0.9$)

メロト メロト メヨト メヨ

I implemented into SUSI and SUNHSI analysis of stability exactly as in Simmons,1978 article. We assume that atmosphere is described by $\overline{L}(\overline{T}, \overline{\pi_s})$, that is the same as \mathcal{L} except linearisation is done around $(\overline{T}, \overline{\pi_s})$ instead (T^*, π_s^*)

$$\frac{X^{t+\delta t} - X^t}{\delta t} = \frac{\overline{\mathsf{L}} X^{t+\delta t} + \overline{\mathsf{L}} X^t}{2}$$

part described by SI \mathcal{L} model is implicit and residual part $RX = \overline{L}X - \mathcal{L}X$ explicit using and iterative procedure

$$\frac{X^{t+\delta t(0)} - X^t}{\delta t} = RX^t + \frac{\mathcal{L}.X^{t+\delta t(0)} + \mathcal{L}X^t}{2}$$
$$\frac{X^{t+\delta t(n)} - X^t}{\delta t} = \frac{RX^{t+\delta t(n-1)} + RX^t}{2} + \frac{\mathcal{L}.X^{t+\delta t(n)} + \mathcal{L}.X^t}{2}$$

Largest eigenvalue of matrix M_c is showed

$$M_p = (I - \tau \mathcal{L})^{-1} (2\tau R + I + \tau \mathcal{L})$$

$$M_c = (I - \tau \mathcal{L})^{-1} (\tau R M_p + \tau R + I + \tau \mathcal{L})$$

we examine stability of time stepping for single wave $\triangle = -\frac{n(n+1)}{a^2}$ for n = 1000 and dt = 600s for FD and VFE scheme with various order of splines with 137 levels and $T^* = 350K$, $T_a^* = 50K$, $\pi_s^* = 100000Pa$. Results are plotted for CENTRI definition with $\beta = 0.5$.

temperature dependence

Image: A mathematical states and a mathem

pressure dependence

Experiment with elliptic Agnesi mountain (h=1000m, L=1000m) with resolution dx = 150m, dt = 10s, $N = 0.02s^{-1}$, $U = 10ms^{-1}$.

I implemented full level option of gw in IFS using operators **P** and **D**₁. But $\mathbf{P}.\mathbf{D}_1 \neq I_d$. As you see on right figure this seems not to be obstacle. To be studied.

• • • • • • • • • • • •

Comparison of ref 3rd order ECMWF VFE scheme against new VFE scheme using HY dynamics. TCO1279 and 137 levels.

Ingredients	
no ECMWF operators	LVFE_ECMWF=F
5th order spline basis	NVFE_TYPE=5
new definition of η (denser levels close to boundaries)	LVFE_CENTRI=T, RVFE_ALPHA=0.0,RVFE_BETA=0.5
different BCs of input quantity in integral operator	NVFE_INTBC=3

Image: A matrix and a matrix

1-Jul-2017 to 31-Jul-2017 from 21 to 31 samples. Verified against 0001.

Real experiments with IFS - HY model - 7th vs. 5th order

Neutral results with potential :-)

Image: A mathematical states and a mathem

Real experiments with IFS - lowres longterm validation

Ingredients

LVFE_ECMWF=F

NVFE_TYPE=3

LVFE_CENTRI=T, RVFE_ALPHA=0.0,RVFE_BETA=0.5

イロト イヨト イヨト イ

NVFE_INTBC=3

Cooling at the right place.

FD reference

VFE exp

イロト イヨト イヨト イヨ