
NAM–SCA: A Nonhydrostatic Anelastic Model with Segmentally
Constant Approximations

JUN-ICHI YANO, PIERRE BÉNARD, AND FLEUR COUVREUX
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ABSTRACT

An atmospheric convective system may be modeled as an ensemble of discrete plume elements. A rep-

resentation of decomposited plumes provides the basis for mass-flux convective parameterization. A dry

version of such a prototype model is constructed in a two-dimensional horizontally periodic domain. Each

discrete plume element is approximated by a horizontally homogeneous segment such that the whole system

is given by segmentally constant approximations (SCA) in the horizontal direction for each vertical level in

a nonhydrostatic anelastic model (NAM). The distribution of constant segments is highly inhomogeneous in

space and evolves with time in a highly adaptive manner.

The basic modeling strategy from a physical point of view is to activate new segments vertically upward with

time when a convective plume is growing and to deactivate segments when a plume event is over. The dif-

ference in physical values crossing segment interfaces is used as a criterion for numerically implementing this

strategy. Whenever a large difference is found, the given interface is stretched vertically by subdividing an

existing segment into two. In turn, when a segment interface difference is found below the threshold, the given

interface is removed, thereby merging the two segments into one.

This nonhydrostatic anelastic model with segmentally constant approximations (NAM–SCA) is tested on

an idealized atmospheric convective boundary layer. It successfully simulates the evolution of convective

plumes with a relatively limited number of segments (i.e., high compression) and with a much scarcer dis-

tribution of segments over nonplume environments (i.e., extremely inhomogeneous distribution of segments).

Overall, this method compresses the size of the model up to 5 times compared to a standard NAM with

homogeneous grid distribution without substantially sacrificing numerical accuracy.

1. Introduction

The mass-flux convective parameterization originally

proposed by Ooyama (1971) and Arakawa and Schubert

(1974) is currently employed by a majority of global

models, both those for operational forecasts and for cli-

mate research. The original conceptualization for this

mass-flux convective parameterization may be traced

back to Riehl and Malkus (1958). They proposed that

an ascending branch of the Hadley–Walker circulation

consists of two distinctive subcomponents: an ensemble

of well-localized fast-ascending elements called ‘‘hot

towers’’ or deep moist convective towers and a slowly

descending background environment. They argued that

the existence of localized hot towers is crucial for qual-

itatively understanding the tropical heat budget. They

furthermore quantitatively estimated the contribution of

hot towers in the mean heat budget.

Riehl and Malkus’ (1958) hot towers may be consid-

ered a special case of plume models for atmospheric

convection. Since publication of the seminal works by

Stommel (1947, 1951), thermal ‘‘plumes’’ have been con-

sidered elementary building blocks both for shallow and

deep atmospheric convection (cf. Simpson 1983a,b; Lilly

1983; Morton 1997). Subsequent extensive analog lab-

oratory experiments for atmospheric convection (e.g.,

Morton et al. 1956; Scorer 1957; Turner 1962; see also

Turner 1986 as a review) greatly promoted this idea.

The basic idea of the mass-flux convective parame-

terization is to represent the subgrid-scale convective
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processes within a grid box by an ensemble of those hot

towers or more generally, plumes embedded in a homo-

geneous environment (cf. Fig. 1 of Arakawa and Schubert

1974). This idea is realized by introducing two equations

for each physical variable within a grid box separately

describing the two subcomponents: hot towers and en-

vironment. A prototype for such a closed formulation

was provided by Riehl and Malkus (1958) for diagnostic

purposes (cf. Yano 2009).

The most formal starting point for developing such a

formulation is to suppose that a grid box itself is described

by a full physical system. This is the basic idea of super-

parameterization, which adopts a cloud-resolving model

(CRM) as a full system (Grabowski and Smolarkiewicz

1999; Randall et al. 2003). A description of the ensemble

of hot towers embedded in an environment is essentially

obtained by discretizing a full system in terms of these

discrete subcomponents.

The mass-flux parameterization achieves this goal by

subdividing the gridbox domain into these subcomponents.

Each subcomponent is approximated by a horizontally

constant element surrounded by a horizontally homoge-

neous environment. We call this approximation the seg-

mentally constant approximation (SCA). The idea of SCA

may be traced back to Stommel (1947), who introduced

a hypothesis of horizontal homogeneity in constructing

his entraining plume model. The notion of the ‘‘top-hat’’

profile is explicitly adopted by Morton et al. (1956).

Arakawa and Schubert (1974) present the complete

formulation for their parameterization by introducing

further approximations and hypotheses (cf. Yano et al.

2005). However, it is hard to overemphasize that the

very basic idea of this parameterization resides in sub-

dividing the gridbox domain into various subcomponents

under SCA. It is also important to emphasize that the idea

of this subdivision under SCA is not necessarily limited to

the one between hot towers (or plumes) and the envi-

ronment; but can be generalized for various different

processes such as convective downdrafts, or even various

mesoscale subcomponents such as stratiform clouds.

The goal of the present paper is to present a model

that is simply constructed by subdividing the gridbox

domain into subcomponents. Unlike the standard mass-

flux parameterization, this model however introduces no

further approximations nor hypotheses. For this goal,

the present study adopts a nonhydrostatic anelastic

model (NAM) as a full system, because NAM is a for-

mulation commonly adopted both for the large-eddy

simulation (LES) and cloud-resolving modeling. The

constructed model can be considered as a prototype for

mass-flux convective parameterization.

The present work constitutes a natural extension of

previous work by Yano et al. (2004a, 2005). Yano et al.

(2004a) propose wavelet ‘‘compression’’ as a procedure

for reducing the size of a full model such as NAM to a

degree comparable to that of a standard parameteriza-

tion. Yano et al. (2005) further generalize this idea by

adopting mode decomposition as a procedure for devel-

oping a representation for subgrid-scale physical processes.

Under this perspective, the mass-flux parameterization

is based on segmentally constant mode decomposition.

However, there is major difficulty in constructing a sub-

grid-scale representation on this basis.

Yano et al. (2005) emphasize the importance of com-

pleteness and orthogonality of decomposition modes

to facilitate construction of a subgrid-scale represen-

tation from a full model. Once these conditions are

satisfied, a given system can be truncated (compressed)

extensively by following the principle of the multi-

resolution approach as in the case for wavelets (cf.

Mallat 1998). This framework permits activating and

deactivating modes in phase space along the evolution

of the system in a flexible manner as extensively dis-

cussed in Yano et al. (2005). Unfortunately, segmentally

constant decomposition does not satisfy completeness

and orthogonality.

To circumvent this difficulty in the present study, ac-

tivation and deactivation of constant segments are per-

formed in the physical space in such a way that the total

number of segments is always kept at a minimum. Al-

though the developed methodology is still under the

general framework of the multiresolution approach, the

actual implementation turns out to be something more

akin to adaptive mesh refinement (AMR; e.g., Berger

and Colella 1989; Bell et al. 1994; see Baker 1997 as a re-

view; see also, e.g., Dietachmayer and Droegemeier 1992;

Skamarock and Klemp 1993; Hubbard and Nikiforakis

2003; Jablonowski et al. 2006; and St-Cyr et al. 2008 for

atmospheric applications).

Thus, the present paper reports an initial development

of a NAM under SCA (NAM–SCA), with adaptive ac-

tivation and deactivation. A two-dimensional configura-

tion for a dry version over a periodic domain is adopted.

The vertical resolution is fixed in time, and refinement is

performed only in the horizontal direction.

After introducing the basic model configuration, the

formulation for NAM is reviewed in the next section.

The formulation of the SCA system is presented in

section 3. An algorithm for adaptive activation and

deactivation of segments is introduced in section 4. As

a preliminary test of the model, section 5 reports an

application to a free-convection case proposed by

Ayotte et al. (1996) for testing boundary layer param-

eterizations. Section 6 presents conclusions and de-

tails of numerical implementation are presented in the

appendix.
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2. A basic set of equations

a. Model configuration

The two-dimensional system is adopted. It is periodic

in the horizontal direction x with a domain size (peri-

odicity) L, and it extends vertically for a height H.

By following the basic principle of the mass-flux con-

vective parameterization of Arakawa and Schubert (1974),

we consider that the system consists of an ensemble of

plumes,1 each of them with a constant value (i.e., SCA)

at each vertical level. Such a geometrical configuration is

schematically shown in Fig. 1. Here, six constant seg-

ment plumes are placed in the domain. The first two

plumes (from left) horizontally extend for (j1, j2) and

(j2, j3), respectively; and vertically extend from the sur-

face to the height z6 and z4. However, the plumes are not

necessarily originating from the surface. The last three

plumes (from left) originate from the heights z3, z1, and

z2, respectively, spanning for (j4, j6), (j6, j7), and (j7, j8).

A plume may not have the same horizontal extent all the

way to the top; the third plume from left spans for (j3, j5)

from the surface to the height z3, then reduces its hori-

zontal extent to (j3, j4) at z 5 z3, and then it continues

upward to the top at z 5 z4.

In this manner, based on a plume picture, the whole

system is decomposed into a set of horizontally homo-

geneous segments. Once such a geometrical decomposi-

tion is achieved, however, we no longer have to stay with

an original plume picture any more. For example, the

fourth segment from the left spanning j4 # x # j6 and

z3 # z # z4 may be better considered (in a moist version)

as a stratiform cloud. Also, keep in mind that each

plume has a height dependence, although the schematics

may indicate otherwise, as well as the whole environ-

ment indicated by white in Fig. 1.

The basic strategy of the present modeling is to per-

form the time integration of a full system under de-

composition into horizontally constant segments under

SCA. The system under SCA is derived in the next

section. These segments are activated and deactivated

with time by following the evolution of the ensemble of

plumes, or the whole system, so that the geometrical

configuration of the model is adjusted accordingly, as

detailed in section 4. Before proceeding further, the basic

formulation of the full system is first reviewed in the re-

mainder of this section.

b. Basic formulation

The dry two-dimensional NAM is considered. All sym-

bols with the subscript r refer to the reference background

state depending on height z only. The pressure p and the

potential temperature u without subscript r refer to the

deviations from these reference profiles, hence the total

pressure is given by pr 1 p, for example. The reference

density rr is simply assumed a constant in the present

study, although it will be included in the following for-

mulations for a generalization in future studies.

The basic set of equations consists of the prognostic

equations for the horizontal u and vertical w winds, and

the potential temperature u,

›

›t
u 1

›

›x
u2 1

1

r
r

›

›z
r

r
uw 5� 1

r
r

›p
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, (2.1a)
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r
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›u
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� �
flux

,

(2.1c)

and the mass continuity,

›u

›x
1

1

r
r

›

›z
r

r
w 5 0, (2.2)

with the acceleration of the gravity g. Here, (›u/›t)flux

represents surface flux specified later by Eq. (5.1). No

diabatic heating is considered in the present study.

A thermodynamic boundary condition ›u/›z 5 0 is

posed both at the surface (z 5 0) and the top of the

system (z 5 H). The rigid-lid boundary condition (w 5 0)

is assumed at the surface, whereas a free surface condition

FIG. 1. Schematics for a geometrical configuration of the model.

Physically, a system with an ensemble of plumes (shown by vary-

ing gray tones) is considered, which, in turn, is mathematically

reinterpreted as a representation of the system under SCA.

1 We call them plumes rather than hot towers, because they are

dry by design.

MAY 2010 Y A N O E T A L . 1959



(p 5 0) is assumed at the top. A radiative boundary

condition proposed by Klemp and Durran (1983) reduces

to the free surface condition in the limit of low wave-

numbers. For this reason, we expect that the free surface

condition loosely behaves like a top radiative boundary

condition, but without a need to move to a wavenumber

space as the original Klemp–Durran condition would re-

quire. This mitigates the necessity of introducing a sponge

layer in combination with a limited segment number at

the uppermost part of the model. No subgrid-scale pa-

rameterization, such as eddy viscosity, is included in the

present version for the sake of presenting the SCA model

in its simplest form (cf. Margolin et al. 1999).

c. Poisson problem

The evolution of the nonhydrostatic anelastic system

may be evaluated by time integrating Eqs. (2.1a), (2.1b),

and (2.1c) for the three variables u, w, and u with a given

pressure p. However, the main problem in performing

this time integration is that there is no equation imme-

diately available for evaluating p, thus an auxiliary equa-

tion must be introduced (see, e.g., Bernardet 1995). The

desired equation is obtained by multiplying the linear

operators (›/›x)rr and (›/›z)rr in Eqs. (2.1a) and (2.1b),

respectively, and adding them together. The obtained

divergence tendency must vanish because of the mass

continuity (2.2), thus

›2

›x2
1

›2

›z2

� �
p 5� ›

›x
[(r

r
v � $)u] 1

›

›z
[(r

r
v � $)w]

� �

1
›

›z
r

r
g

u

u
r

� �
, (2.3)

where v 5 (u, w).

In summary, the NAM system consists of a redundant

set of Eqs. [(2.1a), (2.1b), (2.1c), (2.2), and (2.3)]. The

standard procedure is to time integrate Eqs. (2.1a), (2.1b),

and (2.1c) with the pressure p diagnosed by Eq. (2.3). On

the other hand, NAM–SCA takes a rather unusual set

consisting of Eqs. (2.1b), (2.1c), (2.2), and (2.3) for the

reason explained in the next section.

3. SCA: Segmentally constant approximation

a. Model geometry2

We represent a physical system under an SCA (cf.

Fig. 1), which consists of approximating a full system by,

say, a n(z, t) set of horizontally constant segments defined

over the intervals [xj21/2,b(z, t), xj11/2,b(z, t)] with an

index j for the segments spanning for j 5 1, 2, . . . n(z, t)

(Fig. 2). Note the number n(z, t) of segments depend

both on height and time. Being consistent with the peri-

odic boundary condition, a cyclic condition is introduced

on the interface positions, that is, xn1j21/2,b(z, t) 5

xj21/2,b(z, t) 1 L. As a result, any physical variable u(x, z, t)

is approximated as

u(x, z, t) 5 �
n(z,t)

j51
I

j
(x, z, t)u

j
(z, t), (3.1)

with a segment-mean value uj(z, t) defined by

u
j
(z, t) 5

ðx
j11/2,b

(z, t)

x
j�1/2,b

(z, t)

u(x, z, t) dx

[x
j11/2,b

(z, t)� x
j�1/2,b

(z, t)]
(3.2a)

(cf. Fig. 2) and an indicator Ij(x, z, t) for the jth segment

defined by

I
j
(x, z, t) 5

1, if x 2 [x
j�1/2,b

(z, t), x
j11/2,b

(z, t)]

0, otherwise

�
.

(3.2b)

b. Prognostic equations

The equation for each segment is obtained by aver-

aging the original full system over the given segment.

For this purpose, we first rewrite the prognostic Eqs.

(2.1b) and (2.1c) in a general flux form,

›

›t
u 1

›

›x
uu 1

1

r
r

›

›z
r

r
wu 5 F, (3.3)

FIG. 2. Application of SCA to an arbitrary prognostic variable u
given as a function of horizontal coordinate x. Under SCA, the

variable u is defined by constant values uj over specified intervals

(xj21/2,b, xj11/2,b) with j 5 1, . . . , n.

2 Full arguments of a dependent variable are explicitly shown

in this section for clarity. These arguments are omitted in the

remaining part of the paper for an economy of the presentation.
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in terms of an unspecified prognostic variable u (either

w or u) and forcing (source) term F. Equations (2.1b)

and (2.1c) are recovered by appropriately specifying the

corresponding term F. We integrate the system given by

Eq. (3.3) over the jth segment that spans the interval

(xj21/2,b, xj11/2,b). The derivation is essentially the same

as when the zeroth-order finite volume method is ap-

plied (cf. Godunov 1959; section 5.6.1 of Durran 1999;

LeVeque 2002).

The final expression obtained for the prognostic equa-

tion under SCA is

›

›t
s

j
u

j
1

1

L
[u

j11/2,b
u

j11/2,b
� u

j�1/2,b
u

j�1/2,b
]

1
1

r
r

›

›z
(r

r
s

j
w

j
u

j
) 5 s

j
F

j
. (3.4)

Here,

s
j
5

(x
j11/2,b

� x
j�1/2,b

)

L

is a fractional length occupied by a jth segment, and

variables (e.g., uj21/2,b) with subscript b refer to those at

the interface x 5 xj21/2,b between the two segments j 2 1

and j. The segmentally averaged forcing Fj is defined in

an analogous manner to Eq. (3.2a). The vertical flux

(wu)j has been approximated by wjuj, following a stan-

dard mass-flux approximation [cf. Eq. (3.3) of Yano

et al. 2004c].

The choice of the physical values at the segment in-

terfaces remains arbitrary under SCA. By following a

standard approximation introduced in plume-dynamics

studies as well as in the mass-flux formulations (cf. Asai

and Kasahara 1967; Arakawa and Schubert 1974), the

upstream (upwind) approximation may be taken, hence

u
j�1/2,b

[
u

j�1
if u

j�1/2,b
. 0

u
j

if u
j�1/2,b

# 0

(
. (3.5)

This also corresponds to the simplest stable advection

scheme available under the finite-volume approaches.

c. Horizontal velocity

Both the vertical velocity w and the potential tem-

perature u are evaluated prognostically by casting Eqs.

(2.1b) and (2.1c) into the form of Eq. (3.4). On the other

hand, the horizontal velocity u is treated differently as

detailed in the present subsection.

By directly integrating the mass continuity (2.2) hor-

izontally with a given segmented constant w, it is found

that u is linearly segmented, for example,

u 5 u
j�1/2,b

� 1

r
r

(x� x
j�1/2,b

)
›

›z
r

r
w

j

� �
, (3.6a)

over a jth segment. By setting x 5 xj11/2,b in this formula,

we obtain a formula for evaluating the horizontal veloc-

ity at a next segment interface, j 1 ½, from a previous

one, j 2 ½,

u
j11/2,b

5 u
j�1/2,b

� 1

r
r

(x
j11/2,b

� x
j�1/2,b

)
›

›z
r

r
w

j

� �
.

(3.6b)

A chain application of Eq. (3.6b) defines the horizontal

velocity at every segment interface except for the do-

main mean u left undetermined.

As in any cloud-resolving modeling under periodic

boundary conditions, there is no obvious way to deter-

mine u; thus it must be posed externally [cf. Eq. (8) of

Grabowski et al. 1996; see also Eq. (7) of Grabowski

2004]. In the present study, we simply set u 5 0.

d. Poisson problem

In the present work, the Poisson problem (2.3) is

solved on a regular grid without applying SCA. This

choice is consistent with the main goal of the present

paper for presenting the new model, NAM–SCA, in its

simplest setup. For this purpose, all the physical variables

represented under SCA are transformed back to a ‘‘con-

tinuous’’ representation with the help of Eq. (3.1). The

horizontal velocity is defined continuously by Eq. (3.6a).

Handling the discontinuities arising from SCA in

evaluating the source term in the Poisson Eq. (2.3) is not

as straightforward. We avoid this difficulty by assuming

that all the physical variables are numerically defined at

every grid point. A horizontally homogeneous grid with

a resolution Dx is assumed for this purpose. Here, Dx is

the minimum segment size (cf. section 4a). A standard

finite-difference approach is then applied for evaluating

the source term as detailed in the appendix. Although the

procedure may not be justified in a mathematically rigor-

ous sense, our tests repeating runs with the resolution Dx/3

in the Poisson problem show that the pressure calculations

are not sensitive to the numerical resolution adopted.

e. Numerical implementation

A closed set of the system consisting of Eqs. (2.1b) and

(2.1c) cast into a form of Eq. (3.4) is thus numerically

integrated in time along with the diagnostic Eqs. (3.6)

and (2.3).

The system is discretized in the vertical direction by

Nz layers with a depth Dz 5 H/Nz. The bottom interface

(full level) of the first layer is designated by a vertical

level k 5 0, and the top interface of the uppermost layer

by k 5 Nz, corresponding to the model surface (z 5 0)
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and the model top (z 5 H), respectively. In solving the

Poisson problem (2.3), we assume that the physical vari-

ables are defined at a middle level of each vertical layer,

which we designate as a half level with an index of a half

integer, ½, 1 1 ½, . . . , Nz 2 ½ (cf. Fig. 3). The half-level

index is also used for identifying a model vertical layer in

the following section. Additional numerical details are in

the appendix.

4. Adaptive activation and deactivation
of segments

As emphasized in the introduction, the present work

has been inspired from the multiresolution approach (cf.

Mallat 1998), which enables us to simulate the time

evolution of a physical system under a strong truncation

or compression by deactivating unnecessary modes and

activating newly generating modes with time. The present

work intends to perform such activation and deactivation

with time by adopting a similar strategy in the real space.

As in the case for the wavelet-based compression

(Yano et al. 2004a), standard deviations [cf. Eqs. (4.3)

and (4.4) found later in the study] are adopted as mea-

sures for defining a threshold for activation and deacti-

vation of constant segments. In the case of the wavelet

compression, the standard deviation is known to provide

an optimized threshold in the sense that, beyond this

threshold, the rate of loss of variance by truncation be-

comes faster than the rate of enhancing compression

rates. Qualitatively, a similar behavior is expected for

the present activation and deactivation strategy.

In the present study, both a local criterion [Eq. (4.3)]

and a global criterion [Eq. (4.4)] are adopted as thresholds.

The local criterion is central because new segments must

FIG. 3. Vertical configuration of the model. Full and half levels are indicated by full and dashed

horizontal lines, respectively.
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be added by following the ascent of a local plume from

a lower layer toward the vertical layer of concern. Ex-

istence of a plume is identified by a marked difference of

a physical value crossing two segments, which is strong

enough in a given vertical layer. However, a global crite-

rion is additionally required to prevent excessive activa-

tion of segments because of the existence of disturbances

that are insignificant in a global sense, although they are

identified to be significant solely based on a local criterion.

Table 1 lists the parameters for activation and de-

activation approximately in the order of appearance in

the text with the default values.

a. Initialization and basic managements on vertical
levels

The basic strategy is to sustain a continuous evolution

of a convective system by maintaining a random noise at

the lowest vertical layers. For this goal, a full resolution

is introduced to the first few vertical layers of the model

and then the system is initialized with a random noise in

the first vertical layer. These perturbations work as con-

tinuous seeds for generating plumes.

More precisely (cf. Fig. 3), the model is initialized with

a horizontally homogeneous distribution of Nx constant

segments with the model’s finest horizontal resolution

Dx 5 L/Nx from the surface z 5 0 to the level z 5 kmDz

(i.e., for the lowest km layers). Above z 5 kmDz, the

number of homogeneously distributed constant segments

is drastically reduced to Mx (,Nx), with a much larger

segment size DX 5 L/Mx (.Dx).

The initial random noise along with an initial high

resolution in the lowest km layers allows perturbations to

develop at the lowest levels, which work as a source for

plumes. To sustain the plume source with time, the high

horizontal resolution Dx is always maintained at the low-

est kb layers (up to z 5 kbDz) throughout the simulations,

where kb # km. Activation and deactivation of segments

are performed over a vertical range from z 5 kbDz to ktDz

(where kt , Nz) as detailed later.

We introduce the uppermost level ktDz, where new

segments may be activated. Above this level, the total

number of segments is always kept at Mx as initially

assigned. This last procedure, by averaging out an up-

ward smaller-scale vertical flux into a larger scale, aims

to introduce numerical dissipation without explicitly

introducing a sponge layer at the uppermost layers.

b. Basic principles for activation and deactivation:
Threshold measures

More precisely, at a very technical level it is not

a segment itself but an interface between segments that

is activated and deactivated with time. A new interface

subdivides a preexisting segment into two, leading to a

finer resolution, and a deactivation of an existing inter-

face merges the existing two segments into one, leading

to a lesser resolution. The basic principle is schemati-

cally shown in Fig. 4.

As a criterion for activation and deactivation of seg-

ment interfaces, a difference of physical values between

two segments crossing an interface is used,

Du
j�1/2,b

[ (l
j�1/2

)1/2ju
j
� u

j�1
j, (4.1)

where uj is a value of a variable u at the jth segment, and

lj21/2 is an integer length of the shortest segment adja-

cent to this interface given in the unit of the maximum

model resolution Dx, thus

l
j�1/2

5 min(jx
j11/2,b

� x
j�1/2,b

j, jx
j�1/2,b

� x
j�3/2,b

j)/Dx.

(4.2)

TABLE 1. List of model parameter default values, which are given

by categories roughly in the order introduced in the text.

Model resolution–related parameters

L 5 6.4 km: horizontal domain size

Nx 5 128: total number of segments under a full resolution

Nz 5 150: total number of full vertical levels

Mx 5 2: minimum number of segments allowed at each

vertical level

Dt 5 1 s: time step

DX 5 3.2 km: length of the segment under

the minimum resolution

Dx 5 50 m: full horizontal resolution

Dz 5 20 m: vertical resolution (depth of a full vertical layer)

Critical vertical levels

kb 5 5: maximum height at which the full resolution is always

maintained

km 5 20: top height at which the full resolution is initially

introduced

kt 5 100: maximum height at which activation and deactivation

of segments is performed. Above this level, the minimum

resolution Mx is always maintained

Vertical depth for performing activation and deactivation

Dka 5 3: vertical depth over which activation is performed

Dkd 5 0: vertical depth over which the deactivation condition

is checked

Intervals for activation and deactivation

na 5 10: interval for performing activation given as a number

of time steps

nd 5 10: interval for performing deactivation given as a number

of time steps

Relative thresholds for activation and deactivation

ga 5 1.0: threshold for activation relative to the standard

deviation at a given vertical level

gd 5 1.0: threshold for deactivation relative to the standard

deviation at a given vertical level

gmin 5 1022: threshold for activation and deactivation relative

to the total standard deviation
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This qualitatively [Eq. (4.1)] provides an ‘‘energy’’ mea-

sure for u.3 As a result, larger segments are preferably

activated and smaller segments are preferably deacti-

vated. The shorter of the two segments adjacent to an

interface is used for the energy measure so that an acti-

vation of a shorter segment is always not favored.

If the difference (4.1) is above a threshold for any of

the prognostic variables, a new segment interface is

added (activated) above and below the given vertical

layer (if an interface does not exist yet) over Dka vertical

layers. On the other hand, when differences of ‘‘neigh-

boring’’ interfaces are below thresholds over Dkd layers

both above and below, the corresponding segment in-

terface is removed (deactivated). When Dkd 5 0, the test

is performed only at the given level of the interface in

concern.

The thresholds are defined relative to the standard

deviation of a given variable. Both local and global mea-

sures are introduced. As a local measure, we take the

standard deviation for a variable u at a half vertical level

k 1 ½ defined by

y(u, k 1 1/2) 5 �
n(z

k11/2)

j51
s

j,k11/2
(u

j,k11/2
� u

k11/2
)2

2
64

3
75

1/2

,

(4.3)

with a fractional length sj,k11/2 [ (xj11/2,k11/2 2 xj21/2,k11/2)/

L for the jth segment and a horizontal mean uk11/2:

u
k11/2

5 �
n(z

k11/2)

j51
s

j,k11/2
u

j,k11/2
.

Additionally, a standard deviation averaged over the

whole depth of the model (total standard deviation),

y
t
(u) 5 �

N
z
�1

k50

y2(u, k 1 1/2)

N
z

2
64

3
75

1/2

, (4.4)

is considered a global measure.

In numerical implementation, deactivations are per-

formed first and then activations follow. As a result, the

deactivated interfaces may be immediately activated again

at the same time step when the latter condition is less

restrictive than the former, but with the physical values

homogenized over these reactivated interfaces (cf. sec-

tion 4e). In this sense, deactivation works, to a certain

degree, like a ‘‘cleaner’’ or horizontal filtering of the

field. Deactivation and activation are performed for ev-

ery nd and na time steps, respectively.4

c. Activations

For the activations, the basic principle is to test at a

given half level, say, k 1 ½, if there is an interface with

a strong difference relative to the standard deviation

defined at a half level immediately above or below, that

is, k 1 3/2 or k 2 ½. Then, depending on the case, a new

interface is added upward or downward (cf. Fig. 4).

Under this strategy, the following test is first applied at

every half level, k 1 ½, from k 5 kb 2 1 to kt 2 1, at

every interface j for every variable u:

Du
j�1/2,k11/2,b

. g
a
y(u, k9 1 1/2) and (4.5a)

Du
j�1/2,k11/2,b

. g
min

y
t
(u) (4.5b)

for the half levels immediately above and below, that is,

k9 5 k 1 1 and k 2 1, as long as the level stays within the

FIG. 4. A schematic for the activation principle. A segment with

a significant difference (indicated by a thick vertical bar) at the

level k 1 ½ is extended both upward and downward for Dka layers

(Dka 5 2 in the schematic, as indicated by a thick dashed line).

Deactivation is essentially a backward procedure to the activation

with the parameter Dka replaced by Dkd (not shown). See the text

for the details.

3 To see this assume for simplicity that u varies juj 2 uj21j over

a distance lj21/2. Then a contribution of the variance hu2ij (i.e., an

energy measure) over this distance is estimated as hu2ij ; lj21/2(uj 2

uj21)2. The root mean square of this formula gives Eq. (4.1). See also

discussion in section 3d of Yano et al. (2004b).

4 A possibility of nd 6¼ na is considered to evaluate the relative

importance of deactivation and activation in accomplishing an ef-

ficient compression of the system. As will be later shown by Fig.

10b, it turns out that such differentiation does not sensibly con-

tribute to a computational efficiency.
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range kb # k9 # kt 2 1. Here, ga and gmin are the

thresholds for local [Eq. (4.5a)] and global [Eq. (4.5b)]

conditions, respectively, relative to the standard de-

viations defined by (4.3) and (4.4). When both condi-

tions are satisfied at a level k9 1 ½ with either k9 5 k 2 1

or k 1 1, the jth interface located at xj21/2,k11/2,b is ex-

tended either downward or upward for Dka layers de-

pending on k9 5 k 2 1 or k 1 1. For example, when k9 5

k 1 1, the interface at xj21/2,k11/2,b is extended upward

from the level k 1 ½ to k 1 3/2 1 Dka.

d. Deactivations

Deactivation is essentially a backward procedure to

the activation with the parameter Dka replaced by Dkd.

The tests are performed over the 2Dkd 1 1 layers. When

a criterion is satisfied, the segment at the middle layer is

removed.

More specifically, at every half level, k 1 ½, the follow-

ing conditions are tested for every prognostic variable:

Du
j�1/2,k11/2,b

# g
d
y(u, k9 1 1/2) or

Du
j�1/2,k11/2,b

# g
min

y
t
(u).

Here, gd is a local deactivation threshold that is set equal

to ga in a standard case (cf. Table 1), although sensitivity

tests are performed with gd 6¼ ga (cf. Table 2). The test is

performed from k9 ranging from k 2 Dkd to k 1 Dkd as

long as k9 remains within the range kb # k9 # kt 2 1. If

the test is passed (i.e., either of these two conditions is

satisfied over all k9) for three consecutive interfaces at

each vertical level, a middle interface indexed by, say, j is

classified as a candidate for deactivation.

When Dkd is not zero, the following test is further-

more applied for k9 spanning from k 2 Dkd to k 1 Dkd

but excluding k:

Du
j9�1/2,k911/2,b

# g
d
y(u, k 1 1/2) or

Du
j9�1/2,k911/2,b

# g
min

y
t
(u).

The test is performed over the three interfaces: j9 5 j(k 1

½) 2 1, j(k 1 ½), and j(k 1 ½) 1 1. Here, the explicit

argument, k 1 ½, is added in j(k 1 ½) to explicitly in-

dicate the vertical level used for defining the segment

index. The test is performed as long as these three inter-

faces continue vertically. Otherwise, the test is simply

skipped. Once these tests are passed, the interface in con-

cern is removed.

e. Assignments of new physical values

New physical values must be assigned to the newly

reconfigured segments, in either a case of subdividing a

segment into two by activation or a merger of two seg-

ments into one by deactivation. When a new interface

subdivides a segment into two, the same physical values

as those for the original single segment are assigned to

the two new segments.

On the other hand, when the jth interface at the level

k 1 ½, say, is removed, then the two original segments

merge into one, thus values for all physical variables must

be assigned for the merged segment. They are defined by

taking an average of values for the two old segments

weighted by their relative lengths, that is,

u
j�1,k11/2

5 r
1
u

j�1,k12
1 r

2
u

j,k11/2
,

with

r
1

5
x

j�1/2,k11/2,b
� x

j�3/2,k11/2,b

x
j11/2,k11/2,b

� x
j�3/2,k11/2,b

and

r
2

5
x

j11/2,k11/2,b
� x

j�1/2,k11/2,b

x
j11/2,k11/2,b

� x
j�3/2,k11/2,b

.

TABLE 2. List of Ayotte test cases. List of Ayotte test cases used

in the scatter plots of Fig. 10; there are four major categories shown

by different symbols in the figure.

First category (marked by 1)

All the possible combinations with

ga 5 0.01, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0

gd 5 0.01, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0

na 5 nd 5 1, 10, 60

8 3 8 3 3 5 192 cases in total. If not otherwise noted,

the default values are used as listed in Table 1.

The same for the other categories listed below.

Second category (marked by *)

All the possible combinations with

na 5 1, 10, 20, 40, 60, 120

nd 5 1, 10, 20, 40, 60, 120

(ga, gd) 5 (0.2, 0.2), (1.0, 1.0), (5.0, 5.0), (0.2, 5.0), (5.0, 0.2)

7 3 7 3 5 5 245 cases in total

Third category (marked by s)

All the possible combinations with

Dka 5 1, 3, 10, 20, 40

Dkd 5 0, 1, 3, 10, 20

(ga, gd) 5 (0.2, 0.2), (1.0, 1.0), (5.0, 5.0), (0.2, 5.0), (5.0, 0.2)

5 3 5 3 5 5 125 cases in total

Fourth category (marked by 3)

All the possible combinations with

gmin 5 0.001, 0.01, 0.1, and 1.0

gd 5 0.01, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, and 5.0

ga 5 0.2, 1.0, and 5.0

4 3 8 3 3 5 96 cases in total

Note that some overlapping cases are plotted twice, and in some

cases, using a different run with a different initialization
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Note that the deactivation is performed only if the

number of total interfaces is larger than the greater of 3

or Mx. The original interfaces assigned at the positions

xb 5 iDX with i 5 1, . . . , M are never deactivated.

5. Numerical validation: Ayotte test case

a. Outline

Ayotte et al. (1996) provide a set of idealized dry large-

eddy simulations (LESs) for testing the planetary bound-

ary layer (PBL) parameterizations (see also Hourdin

et al. 2002). Here, NAM–SCA is tested as one of the

parameterization schemes by the procedure prescribed

in Ayotte et al. (1996). Among the cases provided by

Ayotte et al. (1996), the case 24F, which is a simulation

of a free-convection PBL, is adopted in the present study

as the simplest and easiest to test.

For comparisons, Ayotte et al. (1996) provide an ex-

periment with an LES (Ayotte–LES), originating from

Moeng (1984). This LES run is also adopted as a refer-

ence in the present study. Note that the adopted reso-

lution in NAM–SCA (Dx 5 50 m, Dz 5 20 m; cf. Table 1)

is comparable to the one adopted in the Ayotte–LES (cf.

Ayotte et al.’s 1996 Table III). However, it is important

to note that the present NAM–SCA, for the sake of

simplicity, contains no subgrid-scale parameterization,

unlike standard LESs.5

By following the test instruction provided by Ayotte

et al. (1996), the domain-mean values of an equilibrium

state obtained by running the Ayotte–LES for five large-

eddy times, or 5t, are adopted as the initial conditions.

The domain-mean potential temperature at t 5 5t of the

Ayotte–LES run is also adopted as a reference profile ur.

On top of these domain-averaged values, a random

perturbation is added to the potential temperature field

with a standard deviation of 0.2 K to the first two layers

of the model, following the standard procedure in LES

initialization.

The Ayotte–LES is run for another 10t, and the re-

sults averaged over the last 5t are provided to the model

comparison project participants for a comparison with

parameterizations. A result after 7t of a parameteriza-

tion is prescribed to compare with this averaged data.

The present NAM–SCA run is also compared with the

Ayotte–LES results in this manner.

In the case considered (24F), the system is forced with a

constant surface flux H defined by H/rrCp 5 0.25 K m s21.

Here, Cp is the specific heat of the dry air at constant

pressure. In the present model implementation, the sur-

face flux is added as a tendency for the potential tem-

perature in the first two model layers as

›u

›t

� �
flux

5
H

r
r
h

b
C

p

, (5.1)

where hb is the top height of the second layer. The sur-

face flux is redistributed over the first two layers instead

of only the first layer so that the lowest-level vertical

velocity, evaluated at the interface between the first two

layers, can fully feel the development of buoyancy by the

surface flux.6

In this test case, the large-eddy time is t 5 515 s, and

the height of the capping inversion at t 5 5t is at zi 5

1033 m. The potential temperature profile of the ini-

tial condition (t 5 5t of the Ayotte–LES run; long

dashed curve in Fig. 5a) has a numerically, artificially

generated, strong inversion capping, which is gradually

eroded with time because of a constant heat flux from

the surface.

b. Full-resolution case: The domain size dependence

The first case performed is an experiment with a full-

resolution Dx found everywhere by setting Mx 5 Nx 5

128, but it otherwise retains the standard parameters

given in Table 1. A snapshot of this simulation at t 5 7t is

shown in Fig. 6. A few well-organized upward convec-

tive plumes are identified in both in the vertical velocity

(upper panel) and the potential temperature (lower

panel) fields. It is also seen that intrusion of plumes into

the inversion locally generates a negative potential tem-

perature anomaly.

The domain-mean u profile (u) obtained by the full-

resolution case at t 5 7t is shown as the leftmost solid

curve in Fig. 5a. The curve is compared with the corre-

sponding profile obtained by the Ayotte–LES, which is

shown by the leftmost short dashed curve. Furthermore,

Fig. 5b shows the vertical heat flux in a similar format:

the long dashed curve shows the result from Ayotte–

LES, whereas the leftmost solid curve shows the vertical

heat flux w9u9, where the prime designates a deviation

from the horizontal mean. The total heat flux estimated

from a potential temperature tendency over a large-

eddy time t as defined by Eq. (25) of Ayotte et al. (1996),

but correcting their sign mistake,

5 Most notably, the present code does not satisfy the Monin–

Obukhov condition at the surface as recommended by Ayotte et al.

(1996). Though this modification is very straight forward, the au-

thors rather decide to present the behavior of NAM–SCA in its

simplest implementation.

6 Note that, thus, this is the minimum value possible for a pa-

rameter hb. The choice of this parameter is comparable to that by

Margolin et al. (1999). They assume a subgrid heat flux exponen-

tially decreases upward with a scale height of 25 m.
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is also shown by the leftmost short dashed curve. The

estimated total heat flux includes various numerical ef-

fects indirectly contributing to the vertical flux.

The first defect of the model to point out may be the

tendency of an instantaneous heat flux w9u9 (the leftmost

solid curve in Fig. 5b) to not constitute a straight line

over a well-mixed layer, as should be. A closer inspec-

tion shows that the domain-mean potential temperature

is not quite stationary with time either, even after 7t.

Unsteadiness of heat flux is attributed to a relatively

small domain size adopted for the simulation, which can

only contain a few plumes at any single moment within

the given two-dimensional domain (cf. Moeng et al.

2004), as shown by a snapshot in Fig. 6.

To see the change with increasing numbers of avail-

able plumes at a single moment, the full-resolution run

is repeated with varying sizes of the horizontal domain

(with the fixed horizontal resolution). The results are

shown by shifting the solid and the short dashed curves

to the right with a constant (12 K) increment in Fig. 5

for L 5 12.8, 25.6, and 51.2 km. We see that the in-

stantaneous vertical heat flux tends to straighten with

increasing horizontal domain sizes, associated with in-

creasing numbers of available plumes.

Because of the simplified physics of the current NAM–

SCA, the full-resolution result suffers from two addi-

tional defects: 1) because of a lack of any surface scheme

(not to mention the absence of the Monin–Obukhov

condition), the surface layer remains strongly convectively

unstable compared to the Ayotte–LES result; 2) above

the surface layer, the NAM–SCA profiles are noticeably

more stable than the Ayotte–LES within the well-mixed

convective boundary layer.

To infer a reason for a stably stratified mixed layer,

time evolution of both the domain-mean potential tem-

perature u and heat flux w9u9 are plotted in Figs. 7a and

7b, respectively, with an interval of 2t. Over the first two

large-eddy times (long dashed curve), the well-mixed layer

is much destabilized (Fig. 7a) with an extensive heat sup-

ply to the lower half of the mixed layer, as manifested by

a steeper slope in heat flux over the layer 0.4–0.6 km

compared to 0.8–1.0-km levels (Fig. 7b). However, over

the next four large-eddy times (short dashed and chain

FIG. 5. The Ayotte test case. The vertical profiles of the domain-

mean potential temperature obtained after 7t by NAM–SCA with

varying horizontal domain sizes. The horizontal domain size in-

creases from left to right as 6.4 (standard case), 12.8, 25.6, and

51.2 km. The horizontal resolution is fixed to Dx 5 50 m. Also

shown are the initial condition (long dashed) and the result from

the Ayotte–LES after 7t (short dashed). (b) Solid curves as in (a),

but for the vertical heat flux. The long dashed curve is the one from

Ayotte–LES at t 5 7t. The short dashed curves are the same as the

solid curves, except for an estimate (5.2) based on the potential

temperature tendency over one large-eddy time. In both panels, the

curves are shifted horizontally with a constant (12 K) increment for

displaying the nonstandard cases (L 5 12.8, 25.6, and 51.2 km).

FIG. 6. A snapshot of the Ayotte case NAM–SCA simulation with

a full resolution at t 5 7t: anomalies (deviation from the reference

state) (top) vertical velocity and (bottom) potential temperature.
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dashed curves), more heat is supplied to the upper levels

accompanied by a rapid decrease of heat-flux gradient in

the upper levels (Fig. 7b), and as a result, the stratifica-

tion gradually turns from an unstable to a stable profile.

At t 5 8t (double chain–dashed curve), the potential

temperature profile comes to equilibrium, and from that

point the potential temperature increases homogeneously

with time in the vertical, maintaining the same weakly

stable profile (not shown).

We believe that a tendency toward a weak stratifica-

tion is due to very buoyant convective plumes that di-

rectly penetrate into the upper half of the mixed layer

without much mixing in the lower half of the layer. These

penetrating plumes are generated, after an initial transi-

tional destabilization dominated by shallower plumes,

because of an unusually strong unstable surface layer.

The plumes can transport heat upward even over a

stably stratified layer because of their nonlocal nature of

heat transport. In fact, such a nonlocal heat transport

is the core of the hot-tower hypothesis by Riehl and

Malkus (1958; see also Yano 2009). They recognize that

such a nonlocal process must be invoked to explain an

up-gradient heat transport against a typical equivalent

potential temperature profile in the upper half of the

tropical troposphere. A similar process is clearly going

on in the present weakly stratified mixed layer, except

that the stratification is much weaker and the layer is

much more vertically extended.

This argument is also supported by examining the con-

tribution of heat transport due to mass-flux parameteri-

zations in convective boundary layers. It is typically seen

that a heat-flux gradient due to mass flux monotonously

decreases with height from positive just above the sur-

face layer to negative above a middle level (e.g., Fig. 7d

of Siebesma et al. 2007; Fig. 3c of Pergaud et al. 2009), as

also seen in heat flux at equilibrium in the present case

(cf. Fig. 7b). As a result, if the eddy-diffusive transport

were simply removed, heat would be preferentially trans-

ported to an upper half of the mixed layer, resulting in

a stable stratification.

c. Compression tests

An example of snapshots from a run with a relatively

strong compression is shown in Fig. 8. The parameters

used for this case are the default parameters (cf. Table 1),

ga 5 gd 5 1.0, na 5 nd 5 10, etc. In the upper frame,

where the vertical velocity field is shown, positions of the

segment interfaces are also indicated by vertical bars.

At t 5 8t (Fig. 8a), a plume toward the left edge of a

domain is well represented by a dense distribution of

segments, whereas the quiescent region outside is rep-

resented by a much scarcer distribution of segments.

One large-eddy time later (Fig. 8b), the main activity of

plumes shifts rightward, and so does the region with

dense distribution of segments by time-dependent acti-

vation and deactivation of segments.

The modifications of the vertical profiles with in-

creasing compression rates are shown in Fig. 9 for po-

tential temperature and heat flux in the same format as

in Fig. 5. That is, cases with increasing thresholds— ga 5

gd 5 0.2, 0.5, 1.0, 2.0— are shown by shifting the curves

from the left to the right with a constant (12 K) in-

crement. The relative total number of segments com-

pared to the full-resolution case, or the compression

rate, of the system is 0.490, 0.284, 0.144, and 8.74 3 1022,

respectively. Compared to a degree of decreasing com-

pression rates, deterioration of the vertical profiles both

for u and w9u9 compared to the full version (the leftmost

curve in Fig. 5) appears to be relatively slow, although

the deterioration of the heat flux stands out more than

that for the u profile.7

FIG. 7. The time evolution of the full-resolution case: (a) the

domain-mean potential temperature u and (b) the instantaneous

domain-mean heat flux w9u9 for t 5 0 2 8t with an interval of 2t

with varying curves. Note that u monotonously increases with time

except for a very shallow surface layer, and the same curve as that

for u is used for the heat flux at the same t (in the increasing order of

time: solid, long dash, short dash, chain dash, and double chain dash).

7 Recall that the estimate of the heat flux by Eq. (5.2) is based

on a tendency over t, thus a problem of statistical fluctuation is

avoided.
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To better compare the runs, the relative error is de-

fined as the ratio between the RMS error of a run and

the RMS difference from the full resolution run at t 5 7t,

e 5

ðz
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0
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2
dzðz
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. (5.3)

Here, u(z, t) refers to a domain-mean vertical profile of

the potential temperature for a given run at time t,

whereas uf (z, t) is the same but for the full-resolution

case, shown by the leftmost curve in Fig. 5.

A relative CPU is also defined by the CPU of a given

run divided by the CPU for the full-resolution run. Each

run is performed for 25 large-eddy times. All the cal-

culations are performed with a local Xeon machine

(5 GHz). The CPU time for the full-resolution run is

1232.61 s.

Extensive sensitivity tests are performed by changing

the model parameters in various ways. Tests are cate-

gorized into the four sets as listed in Table 2. The results

are shown by scatterplots against the compression rate

both for the relative RMS error and the relative CPU in

Figs. 10a,b, respectively, in which each category is shown

by different symbols.

Figure 10a shows that an increase of error with de-

creasing (stronger) compression rates is relatively slow

above the compression rate 0.2–0.3, and only below this

level does it begin to disperse enormously, but with the

lowest error obtained still remaining comparable to those

obtained under weaker compressions. This result shows

that NAM–SCA can run with a relatively strong com-

pression rate (down to ca. 0.2) with a relatively small

relative error (ca. 0.2). This may be compared with a

relatively slow increase of error under wavelet compres-

sions as shown in Fig. 11c and 12c of Yano et al. (2004a).

Qualitatively, the SCA works in a similar manner as

wavelet compression, by conceptually following the spirit

of multiresolution approach (cf. Mallat 1998).

Figure 10b shows that overall, the CPU time decreases

linearly with decreasing (stronger) compression rates; the

spread is relatively weak. It implies that the CPU over-

head for actually performing activation and deactivation

does not sensibly depend on the choice of the parameters,

especially the frequency of activation and deactivation

na and nd. The lowest bound of the scatter is approxi-

mately extrapolated to the relative CPU of 0.2, when

the compression rate approaches zero. The nonvanishing

CPU in this limit provides a measure of the numerical

burden for solving the Poisson problem with full reso-

lution in the current algorithm regardless of the com-

pression rate of the other parts.

Extensive investigations are performed for identifying

a particular combination of the parameters that can com-

press the system extensively while keeping a relatively

small error. However, none is identified as a particularly

strong choice, but stronger compressions always lead to

FIG. 8. As in Fig. 6, but under a strong compression with thresholds ga 5 gd 5 1 at (a) t 5 8t and (b) t 5 9t. (top) Interfaces between the

segments are also indicated by vertical bars.
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larger errors regardless of the parameter choice, as in-

dicated by Fig. 10a. Exceptionally fortunate cases in

scatter provide good results (high compressions with low

relative errors) mostly due to much weaker compression

rates in earlier parts of the integrations. Recall that both

the relative error and the compression rate are evalu-

ated at a particular moment t 5 7t.

6. Discussion and conclusions

The core of mass-flux convective parameterization may

be considered as subdividing a gridbox domain into vari-

ous constant segments corresponding to an environment

and convective elements, such as convective towers. The

goal of the present paper has been to present a model

that simply introduces such a subdivision of a model

domain into a nonhydrostatic cloud-resolving or a large-

eddy simulation model. The model constitutes a pro-

totype for mass-flux convective parameterization, which

is further developed by introducing additional assump-

tions and hypotheses.

From a numerical point of view, the constructed model

is based on a finite-volume approach (cf. Godunov 1959;

section 5.6.1, Durran 1999; LeVeque 2002). However, a

major philosophical departure from the standard finite-

volume methods is that the horizontal extent of a vol-

ume element (constant segments) is not necessarily

small at all, but is intended to represent a convective

plume, or even an entire environmental segment in the

same spirit as the parameterization of convective mass-

flux. As a result, the distribution of finite volumes could be

much more inhomogeneous than in standard approaches.

A degree of strong inhomogeneity is in keeping with the

spirit of the multiresolution approach (cf. Fournier et al.

2005).

These finite-volume elements are added and removed

(activated and deactivated) with time by following the

birth and death of convective elements. The procedure

may be considered a type of adaptive mesh refinement

(AMR; e.g., Berger and Colella 1989; Bell et al. 1994).

However, a major philosophical departure from stan-

dard AMRs must also be emphasized.

AMR is based on the idea of refinement, where the

major goal is to describe local ‘‘singularities’’ associated

with shocks and discontinuities (e.g., Berger and Colella

1989; Grauer et al. 1998; Rosenberg et al. 2006) by in-

troducing a local refinement of grid or meshes. To make

this procedure systematic, a hierarchical structure for mesh

refinement is often developed so that a higher refinement

of a singular structure is achieved simply by moving to

a higher order of the hierarchy. The hierarchical frame-

work also enables us to mathematically prove the con-

vergence of a solution.

On the other hand, the present SCA approach is based

on the idea of compression under the spirit of the mul-

tiresolution analysis, where the major goal is to reduce

the total number of constant segments to achieve a higher

numerical efficiency. In the traditional mass-flux frame-

work, a main portion of the gridbox domain is consid-

ered to be occupied by a horizontally homogeneous

environment. Under the same spirit, the environment

(nonplume region) is intended to be represented by as

few segments as possible in the present approach (cf.

Fig. 8). Note that under this approach the system always

has a fewer number of segments than a full horizontal

resolution case, and it asymptotically converges to a full-

resolution case as the compression is weakened.

The development of the nonhydrostatic anelastic model

with segmentally constant approximations (NAM–SCA)

has enabled us to successfully simulate the evolution of

convective plumes within a boundary layer with a rela-

tively limited number of segments; however, the number

of segments required for representing a single plume

turns out to be closer to a few rather than a single seg-

ment, as a quick inspection of Fig. 8 shows. Thus, the

present adaptive refinement scheme suggests the difficulty

FIG. 9. As in Fig. 5, but showing the change with decreasing

compression rates. Four cases are shown by shifting the curves

from the left to the right with a constant (12 K) increment, ga 5

gd 5 0.2, 0.5, 1.0, and 2.0. Note that the curves for ga 5 gd 5 0.2

represent true values.
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of representing a single plume by a single segment as

formally envisioned in the mass-flux formulation.

A moist version with simple microphysics has already

been developed. Preliminary results for tests with deep

moist convection appear to be more promising than the

dry boundary layer case reported here.

Further improvements of the model are also antici-

pated. At the most technical level, the Poisson problem

is solved on a regular grid with the present model. This

is a major task to take on, because to the best of our

knowledge, there is no ready-made package that can be

adopted in the SCA configuration. Currently, possibili-

ties are under consideration for reformulating the Poisson

problem on an irregular grid under a conjugate gradi-

ent approach (cf. Smolarkiewicz and Margolin 1994;

Skamarock et al. 1997). Such a procedure should scale

the numerical efficiency of the Poisson solver linearly

with the compression.

The numerical efficiency of the model as a whole may

also be improved by further enhancing the compress-

ibility of the model. The ‘‘renormalization’’ approach

(Yano et al. 2003) would be one of the possibilities to

investigate for this purpose.

Subgrid-scale eddy parameterization can also be in-

corporated into the model. Effects of fluctuations within

a constant segment can be included by taking an anal-

ogous procedure to the standard moment expansion ap-

proach (cf. Mellor and Yamada 1974). It is especially

important to note that the inclusion of vertical eddy dif-

fusion is straightforward because SCA is applied only in

the horizontal direction.

The most important implication suggested by the

present study is that explicit modeling and parameteri-

zations are not two distinctively separated approaches as

is often considered, but they only constitute two extreme

limits of available approaches for investigating subgrid-

scale processes (cf. Yano et al. 2005). The present study

suggests that the gap may be filled by reinterpreting the

mass-flux formulation as a type of finite-volume approach,

coined SCA. By applying SCA to a different degree to

a NAM (LES and CRM), a hierarchy of models that fill

the gap between the explicit model and parameteriza-

tions may be developed. This is another possibility cur-

rently under investigation.
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APPENDIX

Numerical Procedures

A basic FORTRAN code used for NAM–SCA is

available online from an anonymous FTP site (available

online at ftp://cnrm-ftp.meteo.fr/pub-moana/yano/crm-

sca/with_activation_ayotte). An extensive user’s guide

FIG. 10. Compression tests of NAM–SCA for the Ayotte case: the compression rate (relative

number of segments to a full-resolution case) is scatter plotted against (a) the relative RMS

error [Eq. (5.3)] and (b) the relative CPU. The list of the plotted cases is given in Table 2.
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(available online at ftp://cnrm-ftp.meteo.fr/pub-moana/

yano/crm-sca/with_activation_ayotte/ms.pdf) is also in-

cluded.

a. Overview

From a numerical algorithmic point of view, the NAM–

SCA system consists of the three major components.

First, by applying SCA, the horizontal direction of the

system is numerically already represented by a finite vol-

ume in Eq. (3.4). Second, in the vertical direction, Eq. (3.4)

is defined in a fully continuous manner that must be

discretized for a numerical purpose. On the other hand,

the Poisson problem (2.3) is defined in a fully continuous

manner in both the horizontal and vertical directions.

Thus, discretization must be introduced in two spatial

directions to numerically solve this problem. Finally, the

horizontal velocity is evaluated by Eq. (3.6) analytically

once the vertical-velocity divergence is given.

b. Discretizations

The system is discretized in the vertical direction for

solving both the prognostic Eq. (3.4) as well as the

Poisson problem (2.3). For this purpose, staggered grids

are introduced in the same manner as in Mesinger and

Arakawa’s (1976) C grid with a homogeneous vertical

resolution Dz. Use of a finite volume also in the vertical

direction is feasible, but the choice would make the

numerical algorithm slightly more involved.

Under this discretization, the interfaces between the

vertical layers are defined by

z
k

5 kDz, (A.1)

for k 5 0, . . . , Nz with Nz 5 H/Dz. The vertical velocity w

is evaluated at these interfaces (full levels). In solving

the Poisson problem (2.3), we assign the values of the

other physical variables at half levels defined by

z
k�1/2

5 (k� 1/2)Dz, (A.2)

for k 5 1, . . . , Nz.

In solving the Poisson problem (2.3), the system is

further discretized into a horizontal direction by assum-

ing a homogeneously distributed grid with a constant

resolution Dx over the whole length L of the domain.

Under the given discretization, all the physical variables

are defined at every grid point based on Eqs. (3.1) and

(3.6a). The discretization enables us to evaluate the

source term [the right-hand side of Eq. (2.3)] by apply-

ing standard centered finite differences in two spatial

directions. The source term is transformed into the

Fourier space in the horizontal direction, and the verti-

cal derivative in the Laplacian is discretized according

to the defined staggered vertical grids, leading to a tri-

diagonal form of the matrix for the Laplacian. This

matrix can be inverted analytically (i.e., with a finite

number of numerical operations), and then a Fourier-

transformed pressure perturbation p is obtained.

The time integral is performed by a mixture of the two

schemes. The Euler time step (cf. Haltiner and Williams

1980) is adopted both for the vertical and horizontal

(lateral mixing) advections, whereas the second-order

Adams–Bashforth scheme (Lilly 1965; Durran 1991) is

adopted for the physical tendency (tendency due to the

forcing F). Replacement of the integration scheme for

the first two processes by the second-order Adams–

Bashforth scheme was found not to improve the nu-

merical efficiency of the calculations.

c. Identification of segment interfaces

To identify the vertical continuation of the segment

interfaces, their positions are indexed in two comple-

mentary manners at a given vertical level zk, where k is

a half integer at a half level—the position of the segment

itself, given by xj21/2,b(zk) for a jth interface,8 and the

segment index j for a given discretized horizontal posi-

tion, xi 5 iDx, say jb(xi, zk). Note that not all of the

horizontal positions xi are occupied by a segment in-

terface. In case of an absence, we set jb(xi, zk) 5 2j, with

j corresponding to the index of the closest interface to

the left. The index jb(xi, zk) is used for identifying the

vertical extent of a segment interface given at x 5 xi.

This indexing system enables us to activate and de-

activate segments with time without constructing a hi-

erarchical structure.

d. Finite difference in the vertical direction

We integrate Eq. (3.4) in time for the vertical velocity

w and the potential temperature u, respectively, at full

and half levels zk and zk11/2. In these computations, for

example, the vertical flux divergence for the jth segment

at the vertical level k 1 ½ is evaluated by

1

r
r

›

›z
r

r
(wu)

� �
j,k11/2

’ 1

r
r
(z

k11/2
)

� �
1

z
k11
� z

k

[r
r
(z

k11
)(wu)

j(k11/2),k11
� r

r
(z

k
)(wu)

j(k11/2),k
], (A.3)

where the subscript k, for example, j(k 1 ½), indicates a

value at the vertical level k averaged over a range de-

8 An interface indexed as j 2 ½ is called the jth interface for

convenience.
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fined by the jth segment at the vertical level k 1 ½. The

flux is evaluated by an upstream formula (wu)j(k11/2),k 5

wj(k11/2),kuj(k11/2),k* in which the vertical level k*

is set k* 5 k 2 ½ if wj(k1½),k . 0, and k* 5 k 1 ½ if

wj(k),k , 0.

An evaluation of uj(k),k* is performed by

u
j(k11/2),k* 5 �

j2(k*)

j9(k*)5j1(k*)

s
j(k11/2), j9(k*)

u
j9(k*),k*, (A.4)

where sj(k11/2),j9(k*) is a fractional contribution of the

j9th segment at the vertical level k* given by

s
j(k11/2),k j9(k*)

5
1

x
j(k11/2)11,k11/2

� x
j(k11/2),k11/2

3 min[x
j(k11/2)11,k11/2

, x
j9(k*)11,k*]

n
�max[x

j(k11/2),k11/2
, x

j9(k*),k*]
o

.

(A.5)

The pressure gradient is evaluated in a similar man-

ner, but over a fixed segment at a height zk in concern,

›p
j

›z

� �
(z

k
) 5

ðx
j11/2,b

(z
k
)

x
j�1/2,b

(z
k
)

[p(z
k11/2

)� p(z
k�1/2

)] dx

[x
j11/2,b

(z
k
)� x

j�1/2,b
(z

k
)](z

k11/2
� z

k�1/2
)

.

(A.6)

e. Evaluation levels and vertical interpolations

As already discussed in appendix section b above, the

vertical velocity is defined at the full vertical levels, and

the potential temperature and the horizontal velocity

are defined at the half vertical levels, respectively. For

this reason, both the physical tendency [tendency due to

the forcing F in Eq. (3.4)] and the vertical advection are

evaluated at the full and the half levels, respectively, for

the vertical velocity and the potential temperature.

On the other hand, the lateral exchange [the second

term in the left-hand side of Eq. (3.4)] is evaluated at the

half levels as a layer between two neighboring full levels

constitutes a ‘‘physical’’ layer. For this purpose, right

before this calculation is performed, the vertical velocity

is linearly interpolated onto the half levels. Finally, both

prognostic variables are interpolated onto the full ver-

tical levels after adding a tendency of lateral mixing.
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