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A B S T R A C T   

Urban surface albedo is an essential biophysical variable in the surface energy balance across all scales, from 
micro-scale (materials) to the globe, changing with land covers and three-dimensional structures over urban 
areas. Urban albedos are dynamic over space and time but have not yet been quantified over global scales due to 
the lack of high-resolution albedo datasets. Here, we combined the direct estimation approach and Landsat 
surface reflectance product to generate a 30-m-resolution annual surface albedo dataset for 3037 large cities 
(area > 50 km2) worldwide for the period from 1986 to 2020, allowing spatial patterns and long-term temporal 
trends to be explored with possible causal drivers, and quantification of the surface radiative forcing from these 
albedo changes. Evaluation of this new albedo dataset using global urban flux tower-based measurements 
demonstrates its high accuracy with an overall bias and root-mean-square-error (RMSE) of 0.005 and 0.025, 
respectively. Analysis of the dataset reveals an overall decreasing trend of albedo during the 35-year evaluation 
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period (1986–2020), which is robust accounting for uncertainties from training sample representativeness, 
Landsat data uncertainty, seasonal variation, and snow-cover contamination. Our results reveal that urban 
greening (measured by the positive Normalized Difference Vegetation Index (NDVI) trend) can well explain the 
total variances in the albedo trend for the 35-year period through two different pathways of tree planting and 
urban warming-enhanced vegetation growth. The decrease in urban albedo caused a warming effect indicated by 
positive surface radiative forcing, with a global city-level average surface radiative forcing of 2.76 W⋅m−2. These 
findings enhance our understanding of urbanization’s impacts on albedo-related biophysical processes and can 
provide information to quantify urban surface radiation energy and design effective mitigation strategies to 
reduce urban warming.   

1. Introduction 

Urban areas represent the major land cover that is most affected by 
intensive anthropogenic activities from replacing agricultural, forested 
or natural landscapes with impervious surfaces (Seto et al., 2012). Ur-
banization modifies the carbon exchange between the surface and at-
mosphere (e.g., anthropogenic emissions of carbon dioxide (CO2) from 
domestic heating, transport, industry and services, and electricity gen-
eration; Gong et al., 2023; Ribeiro et al., 2019; Wang et al., 2015), as 
well as changes surface radiative properties and energy partitioning (e. 
g., albedo and evapotranspiration; Cao et al., 2016; Schwaab et al., 
2021), and thus modifies biophysical variables (e.g., air temperature). 
This can result in nocturnal canopy air temperatures being warmer in 
urban areas than the surrounding non-urban areas, known as the canopy 
layer urban heat island (CL-UHI) (Estoque et al., 2020; Oke, 1982). With 
a global urban population of 4.2 billion (around 55% of the total pop-
ulation in 2018) projected to increase to 9.7 billion (about 68% of the 
total population) by 2050 (UNDESA, 2019), the well-being of urban 
residents is at critical risk and simultaneously impact by urban-climate 
phenomena, such as the CL-UHI (Huang et al., 2020; Hsu et al., 2021). 
Improving our understanding of biophysical processes in cities can help 
to create more livable environments. 

Surface albedo change can directly alter the biophysical processes of 
surface energy balance from micro (materials) to local and to global 
scales. Urbanization causes albedo changes by modifying surface ma-
terials and three-dimensional (3-D) structures (Shen et al., 2021). For 
example, anthropogenic land cover changes between 1700 and 2005 are 
estimated to have caused a 0.00106 increase in global mean albedo, that 
is linked to a negative radiative forcing of −0.15 ± 0.10 W⋅m−2 (Ghi-
mire et al., 2014; Myhre et al., 2014). For a long time, the use of highly 
reflective urban materials (e.g., white rooftops and light-colored pave-
ments) has been actively encouraged as method to mitigate the surface- 
UHI (S-UHI) effect and improve human comfort (Morini et al., 2016; 
Rosso et al., 2018). Numerous regional and global climate simulations 
have shown albedo-related impacts. A 0.1 increase in albedo in urban 
areas (e.g., rooftops and pavements) has been estimated to be able to 
reduce the global average surface temperature by 0.01–0.07 K, which is 
equivalent to a 25–150 billion ton offset in CO2 emissions (Akbari et al., 
2012; Menon et al., 2010; Xu et al., 2020). 

Urbanization impacts on surface albedo are multifaceted. Initial ur-
banization, changing a natural vegetated surface (e.g., forest and 
grassland) to light colored short building may increase surface albedo 
(Kuang et al., 2019), but the same materials with denser 3-D urban 
morphology will generate more shadows, reducing the bulk surface al-
bedo (Christen and Vogt, 2004; Groleau and Mestayer, 2013). The net 
surface albedo change depends on both urban cover materials and 
building arrangements (Falasca et al., 2019; Qin, 2015; Santamouris and 
Fiorito, 2021; Yang and Li, 2015). Satellite remote sensing can quantify 
these net effects with global coverage. Coarse-resolution satellites in 
previous studies based on the 500-m-resolution Moderate-Resolution 
Imaging Spectroradiometer (MODIS) and Global LAnd Surface Satel-
lite (GLASS) albedo products were not able to accurately detect the fine- 
scale heterogeneity of urban albedo (Chrysoulakis et al., 2018; Hu et al., 
2016; Tang et al., 2018). Use of higher-resolution satellite observations 

(e.g., 30-m Landsat and 10-m Sentinel-2) demonstrated their potential to 
monitor fine-scale urban albedo (Bonafoni and Sekertekin, 2020; Guo 
et al., 2022; Trlica et al., 2017). 

However, our spatiotemporal knowledge of urban albedo is limited 
for several reasons. First, existing satellite-based albedo studies are 
restricted to very few (≤ 11) cities (Guo et al., 2022; Trlica et al., 2017), 
so the spatiotemporal trends may be city-specific. Second, the underly-
ing drivers controlling the spatiotemporal patterns of surface albedo and 
their resulting climatic effects remain largely unclear. Urbanization are 
complex physical, socioeconomic, and cultural processes in 3-D space, 
involving extent expansion of new impervious areas (Liu et al., 2020; 
Zhang and Seto, 2011) and increase in human modification on mature 
urban areas, such as building construction and greening activity (The-
obald et al., 2020; Zhou et al., 2022). Previous studies attributed urban 
albedo variations to land cover change from natural lands to new urban 
structure by making the use of two-baseline-year datasets, without ac-
counting for human modification activities (Ouyang et al., 2022). For 
example, large-scale tree planting in cities is a global agreement and 
effort to mitigate urban heat stress from climate warming and CL-UHI 
effects (Schwaab et al., 2021). Around 70% of cities worldwide wit-
ness urban greening phenomenon with increasing vegetation coverage 
(Sun et al., 2020; Zhang et al., 2021) and enhanced vegetation growth 
due to CO2 fertilization and longer growing seasons (Hwang et al., 2022; 
Meng et al., 2020; Wang et al., 2019). These actions have substantially 
reshaped urban landscapes, but to what extent urban greening impacts 
the change of surface albedo and albedo-related climatic effects remains 
unknown. 

In such a context, the main objective of this study is to explore the 
spatiotemporal characteristics of albedo in worldwide cities and to 
decipher the underlying drivers of albedo change. By applying the pre-
viously developed direct estimation approach on the Google Earth En-
gine (GEE) cloud-computing platform, we construct an annual mean 
albedo dataset covering 35 years (1986–2020) for 3037 major global 
cities. Based on the novel dataset, we analyze the spatial and temporal 
patterns of urban albedo and assess the causes of albedo change linked to 
vegetation greening observed in Landsat-derived normalized difference 
vegetation index (NDVI) data. Lastly, we quantify the albedo-induced 
surface radiative forcing to model climatic responses from urban sur-
face albedo change. 

2. Study area and materials 

2.1. City areas 

The city areas were extracted from the 2018 Global Urban Boundary 
(GUB) product, which is based on 30-m-resolution global artificial 
impervious area product (GAIA; Li et al., 2020), using two criteria (Chen 
et al., 2022): (1) a spatial extent larger than 50 km2; and (2) availability 
of at least 30-year valid Landsat observations during the 35 evaluated 
years (1986–2020). A total of 3037 urban areas globally (hereafter 
referred to as cities) satisfied these criteria and were selected (Fig. 1). 
Almost all cities have over 20 available Landsat images for each one- 
year cycle, with the annual average observation number ranging from 
21 to 40 and a mean value of 30, indicating the capability to capture 
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inter- and intra-year variations of urban surface albedo (Figs. S1 and S2). 

2.2. Datasets 

Five major datasets are used in this study for different purposes: (1) 
surface reflectance data (i.e., Landsat-5, Landsat-7, and Landsat-8 sur-
face reflectance products; Gorelick et al., 2017); (2) surface Bidirec-
tional Reflectance Distribution Function (BRDF) data (i.e., MCD43A1; 
Wang et al., 2018); (3) surface albedo data (i.e., flux tower-based 
measurements and MCD43A3; Feigenwinter et al., 2018; Lipson et al., 
2022a, 2022b; Wang et al., 2018); (4) land cover type data (i.e., Euro-
pean Space Agency (ESA) WorldCover and MCD12Q1; Sulla-Menashe 
and Friedl, 2018; Zanaga et al., 2021); and (5) downward solar radiation 
data, (i.e., the Bias-adjusted RAdiation Dataset (BaRAD) product; 
Chakraborty and Lee, 2021). Table 1 summarizes the ancillary infor-
mation of these datasets, including data category, dataset name, spatial 
coverage, ground resolution, observation period, usage description, and 
related references. Table 2 provides detailed information for the 21 
urban flux towers used for albedo validation. 

2.2.1. Landsat surface reflectance product 
We used 35-years (1986–2020) of the Landsat Level-2 surface 

reflectance (Collection 2, Tier 1) product with a 30-m spatial resolution 
derived from three Landsat satellites (i.e., Landsat-5 TM, Landsat-7 
ETM+, and Landsat-8 OLI; Gorelick et al., 2017, Table 1). Landsat 
provides the longest high-quality global surface reflectance record 
available (Wulder et al., 2022). Landsat-5 TM and Landsat-7 ETM+

sensors have six spectral bands spanning three visible (i.e., blue, green, 
and red), one near-infrared (NIR), and two shortwave infrared (SWIR) 
bands, whereas Landsat-8 OLI has one additional ultra-blue spectral 
band. The pixel-level quality assurance (QA) auxiliary data for each 

surface reflectance dataset gives a bitmask metric indicating cloud, 
cloud shadow, snow, and ice conditions. To minimize the uncertainty 
caused by the Landsat-7 scan line off failure on albedo estimation (Qiu 
et al., 2021; Zhang and Roy, 2016), we primarily focused on the use of 
Landsat-5 and Landsat-8 satellite data, with data availabilities of 26- 
year (1986–2011) Landsat-5 TM, 2-year (2012−2013) Landsat-7 
ETM+, and 7-year (2014–2020) Landsat-8 OLI. 

2.2.2. MODIS BRDF/albedo product 
We used the 500-m spatial resolution MODIS BRDF product 

(MCD43A1, Collection 6; Table 1) in 2000–2020 to provide a high- 
quality surface BRDF/albedo training library (Wang et al., 2018). 
MCD41A1 is the most accurate satellite BRDF/albedo product and has 
been widely used for the training and calibration of the direct estimation 
approaches (Guo et al., 2022; Qu et al., 2013). In addition, the 
MCD43A3 albedo product was used for the spatiotemporal analysis of 
urban surface albedo for comparisons with Landsat albedo. MCD43A3 is 
derived from MCD43A1 and provides black-sky albedo (BSA) and white- 
sky albedo (WSA) data at local solar noon for MODIS seven spectral 
bands and three broadbands (i.e., visible, NIR, and shortwave). 

2.2.3. Land cover type products 
Two land cover type products are used (Table 1): 10-m ESA World-

Cover for 2020, and 500-m MCD12Q1 products (Collection 6) from 2001 
to 2020, for selecting training samples. WorldCover is generated from 
Sentinel-1 and Sentinel-2 data, with a similar algorithm framework for 
the annual Copernicus Global Land Service Land Cover (CGLS-LC) 
product (Buchhorn et al., 2020). This dataset provides 11 land cover 
classes (i.e., tree cover, shrubland, grassland, cropland, built-up, bare/ 
sparse vegetation, snow and ice, open water, herbaceous wetland, 
mangroves, and moss and lichen) with an overall global accuracy of 

Fig. 1. Urban areas (cities) used in this study. (a) City location (red dots), urban flux towers (yellow pentagrams), and example of nine cities with boundaries (red 
polygons) as defined by the Global Urban Boundary (GUB) product in 2018: (b) Edmonton, (c) Seattle, (d) Belo Horizonte, (e) Paris, (f) Berlin, (g) Karachi, (h) 
Melbourne, (i) Tokyo, and (j) Beijing. The 3037 global cities are selected with an area extent larger than 50 km2. 21 worldwide urban flux tower sites come from two 
collaborative projects: 19 flux sites from the Urban-PLUMBER multi-site model evaluation project (Lipson et al., 2022a, 2022b) and 2 flux sites from the URBAN-
FLUXES project (Chrysoulakis et al., 2018; Feigenwinter et al., 2018). Background and city pictures are extracted from the Basemap of Google Earth (Google. Inc). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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74.4% (Zanaga et al., 2021). It is freely accessible to the academic 
community (Zanaga et al., 2021). MCD12Q1 is generated by a super-
vised classification approach from MODIS reflectance with five legacy 
classification schemes (Sulla-Menashe and Friedl, 2018). We selected 
the International Geosphere-Biosphere Programme (IGBP) classification 
scheme for data analysis. The “built-up” definitions in these two land 
cover products have a slight difference. For WorldCover, “built-up” is 
defined as land covered by buildings, roads and other man-made 
structures, which excludes urban green areas (Zanaga et al., 2021). 

For MCD12Q1, “urban and built-up lands” is defined as surface covered 
by at least 30% of impervious area, such as building materials, asphalt, 
and vehicles (Sulla-Menashe and Friedl, 2018). 

2.2.4. Surface downward solar radiation data 
We used the 40-year (1980–2019) 0.5◦ × 0.625◦ monthly BaRAD 

solar radiation dataset (Table 1) owing to its temporal window over-
lapping with Landsat. BaRAD is generated from the Modern-Era Retro-
spective analysis for Research and Applications, version 2 (MERRA-2) 

Table 1 
Datasets used in this study by type.  

Usage type Dataset Spatial 
extent 

Resolution 
(m) 

Frequency Period Purpose description Reference 

Surface 
reflectance 

Landsat-5 SR Global cities 30 16-day 1986–2011 Surface albedo & vegetation 
cover 

Gorelick et al., 2017 

Landsat-7 SR Global cities 30 16-day 2012–2013 Surface albedo & vegetation 
cover 

Gorelick et al., 2017 

Landsat-8 SR Global cities 30 16-day 2014–2020 Surface albedo & vegetation 
cover 

Gorelick et al., 2017 

Surface BRDF MCD43A1 Global 500 Daily 2000–2020 BRDF database for LUT training Gorelick et al., 2017; Wang et al., 
2018 

Surface albedo Tower-based 
measurements 

Table 2 – 10–30 min Table 2 Albedo evaluation Lipson et al., 2022a,b 

MCD43A3 Global 500 Daily 2000–2020 Albedo spatiotemporal analysis Wang et al., 2018 
Land cover type ESA 

WorldCover 
Global 10 Annual 2020 BRDF training sample selection Zanaga et al., 2021 

MCD12Q1 Global 500 Annual 2001–2020 BRDF training sample selection Gorelick et al., 2017; Wang et al., 
2018 

Solar radiation BaRAD Global 0.5◦ x 0.625◦ Monthly 1980–2019 1) Diffuse skylight ratio estimate 
2) Surface radiative forcing 
estimate 

Chakraborty and Lee, 2021  

Table 2 
Flux sites used for albedo evaluation, Tower height and impervious area fraction are available from Lipson et al., (2022a) and https://mcr.unibas.ch/dev/sqldb/index. 
php?nav=dbplot. Footprint diameter (D) of tower measurement (D = 2H • tan (FOV/2)) is calculated from tower height (H) and sensor’s field of view (FOV) according 
to Román et al. (2009).  

Site name City Country Latitude 
(◦) 

Longitude 
(◦) 

Tower 
height (m) 

Footprint 
diameter (m) 

Impervious area 
fraction 

Observation 
year (s) 

Reference 

Amsterdam Amsterdam The 
Netherlands 

52.367 4.893 40 505 0.68 2019–2020 – 

Baltimore Baltimore United States 39.413 −76.522 37 467 0.31 2002–2006 Crawford et al., 
2011 

Capitole Toulouse France 43.604 1.445 48 606 0.90 2004–2005 Goret et al., 2019 
Escandon Mexico Mexico 19.404 −99.176 37 467 0.94 2011–2012 Velasco et al., 2014 
Heckor Heraklion Greece 35.336 25.133 27 341 0.92 2019–2020 Stagakis et al., 

2019 
Jungnang Seoul South Korea 37.591 127.079 42 524 0.97 2017–2019 Hong et al., 2020 
KingsCollege London United 

Kingdom 
51.512 −0.117 50 631 0.79 2012–2013 Bjorkegren et al., 

2015 
Klingelbergstrasse Basel Switzerland 47.562 7.581 40 505 0.79 2003–2021 Feigenwinter et al., 

2018 
KlingelbstrStr. 

schlucht 
Basel Switzerland 47.561 7.581 2 25 0.79 2014–2020 Feigenwinter et al., 

2018 
Kumpula Helsinki Finland 60.203 24.961 31 391 0.46 2011–2021 Karsisto et al., 2016 
Lipowa Łódź Poland 51.763 19.445 37 467 0.76 2008–2012 Fortuniak et al., 

2013 
Narutowicza Łódź Poland 51.773 19.481 42 530 0.65 2008–2012 Fortuniak et al., 

2013 
Ochang Ochang South Korea 36.720 127.434 19 240 0.47 2015–2017 Hong et al., 2020 
Preston Melbourne Australia −37.731 145.015 40 505 0.62 2003–2004 Coutts et al., 2007 
Sunset Vancouver Canada 49.226 −123.078 24 303 0.68 2012–2016 Crawford and 

Christen, 2015 
SurreyHills Melbourne Australia −37.827 145.099 38 480 0.54 2004–2004 Coutts et al., 2007 
Swindon Swindon United 

Kingdom 
51.585 −1.798 13 158 0.49 2011–2013 Ward et al., 2013 

TelokKurau Singapore Singapore 1.314 103.911 21 253 0.85 2006–2007 Roth et al., 2017 
Torni Helsinki Finland 60.168 24.939 60 758 0.77 2011–2013 Järvi et al., 2018 
WestPhoenix Arizona United States 33.484 −112.143 22 278 0.48 2011–2012 Chow, 2017 
Yoyogi Tokyo Japan 35.665 139.685 52 657 0.92 2016–2020 Ishidoya et al., 

2020 
Note: The KlingelbstrStr.schlucht site with a 2-m tower height observes the fluxes of grassland in urban environment. 
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global reanalysis dataset using a bias-correction random forest algo-
rithm, trained with Global Energy Balance Archive (GEBA) observations 
from 2500 worldwide ground stations, and BaRAD is bias-adjusted thus 
has high accuracy (Chakraborty and Lee, 2021). BaRAD provides three 
radiation components: total incoming shortwave, incoming direct beam, 
and incoming diffuse radiation. BaRAD data are used here to determine: 
(1) the fraction of diffuse radiation relative to the total incoming 
shortwave radiation, for the blue-sky albedo calculation (Section 3.1); 
and (2) the surface radiative forcing induced by albedo changes (Section 
3.5). 

2.2.5. Tower-based radiation flux measurements 
To evaluate the accuracy of our algorithm, we used downward and 

upward solar radiation measurements from 21 urban flux towers located 
throughout the world, including cities in Asia, Australia, Europe, and 
North America (Fig. 1a). The data collected by these towers were put 
together as part of two collaborative projects: Urban-PLUMBER (19 
sites; Lipson et al., 2022a, 2022b) and URBANFLUXES (2 sites; Chrys-
oulakis et al., 2018; Feigenwinter et al., 2018). The sensors on these 
towers are mounted at heights ranging from 2 to 60 m above the ground, 
with viewing footprints where impervious surfaces (i.e., buildings, 
roads, paved areas) cover between 31% and 97% of the plan area (Fig. 2; 
Table 2). The radiation flux measurements are used as ground truths for 
assessing the accuracy of surface albedo estimates derived from Landsat 
satellites. 

3. Methods 

3.1. Estimation of annual urban surface albedo from Landsat 

We adopted the developed direct estimation approach to retrieve 
surface albedo from Landsat satellites (Lin et al., 2022), with three key 
steps summarized as follows (Fig. 3):  

(1) Selection of high-quality surface BRDF/albedo datasets. High- 
quality BRDF/albedo training datasets are the key to the direct 
estimation approach. To this end, we used the MCD43A1 BRDF/ 
albedo product with ESA WorldCover and MCD12Q1 land covers 
to screen the BRDF/albedo library that is representative at 30-m 
scale with four criteria: (i) high assurance with the pixel-level QA 
of 0; (ii) homogeneous coverage (with the pixel-level land cover 
purity ≥95% indicated by the 10-m ESA WorldCover data); (iii) 
diverse land cover (including 16 dominant land types following 
the IGBP classification scheme); and (iv) reasonable data range 
(that refers to the pairs of reflectance and albedo within a phys-
ical range of 0–1). We considered this surface BRDF/albedo 
dataset from mixed land covers as a general scheme and 
compared it with the BRDF/albedo dataset from pure urban land 
cover (referred to as urban scheme) in the sensitivity analysis of 
algorithm development (Section 5.1.1), which shows a consistent 
performance.  

(2) Generation of training and testing datasets. Based on the selected 
BRDF/albedo library, we simulated Landsat-like surface reflec-
tance in two steps. First, we simulated MODIS-like surface 

Fig. 2. Google Earth satellite images of flux sites (red pentagrams) and the associated radiation footprint areas (red circles) for (a) Amsterdam, (b) Baltimore, (c) 
Capitole, (d) Escandon, (e) Heckor, (f) Jungnang, (g) KingsCollege, (h) Klingelbergstrasse, (i) KlingelbstrStr.schlucht, (j) Kumpula, (k) Lipowa, (l) Narutowicza, (m) 
Ochang, (n) Preston, (o) Sunset, (p) SurreyHills, (q) Swindon, (r) TelokKurau, (s) Torni, (t) WestPhoenix, and (u) Yoyogi. The map scales and tower heights (in 
meters) are shown at the bottom of each image in white and red, respectively. Note: Footprint area (with a 25-m diameter) of the KlingelbstrStr.schlucht site in panel 
(i) is overlapped by red pentagram symbol. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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reflectance across its seven spectral bands using the linear 
RossThick-LiSparseR BRDF model (Lucht et al., 2000) with 
optimized angular settings (i.e., a 2◦ interval for solar zenith, 
viewing zenith, and local solar zenith angles; and a 5◦ interval for 
relative azimuth angle). Second, we converted the MODIS-like 
surface reflectance to the Landsat-like surface reflectance using 
band conversion coefficients derived using similar approaches to 
Qu et al. (2013). Considering the different spectral configurations 
for Landsat satellites (Table S1), we simulated surface reflectance 
datasets across six spectral bands for Landsat-5 TM and Landsat-7 
ETM+, and across seven spectral bands for Landsat-8 OLI. We 
also simulated surface shortwave albedo from the MODIS BRDF/ 
albedo library in two steps. First, we simulated spectral BSA and 
WSA datasets under clear-sky and perfectly diffuse illumination 
conditions, respectively. Second, we converted the spectral BSA 
and WSA albedo datasets to shortwave albedo using the regres-
sion coefficients proposed by Liang et al., (2002).  

(3) Build-up of reflectance-to-albedo look-up-tables (LUTs). With the 
pairs of simulated Landsat-like surface reflectance and surface 
shortwave albedo, we created LUTs of reflectance-to-albedo re-
lations using the linear regression approach for each angular 
setting (He et al., 2018; Qu et al., 2013). To minimize the po-
tential impact from Landsat satellite orbital drifts (e.g., Landsat-5 
drifted between 1995 and 2000 and 2003–2007, Landsat-7 drif-
ted from 2017 to the present; Qiu et al., 2021; Zhang and Roy, 
2016), we trained spectral reflectance and shortwave albedo re-
lations for local solar noon (e.g., 12:00 p.m.) geometry that is 
independent from instantaneous satellite observation time. 

We applied our reflectance-to-albedo LUTs (BSA and WSA; Eq. (1)) 
on the Google Earth Engine (GEE, Gorelick et al., 2017) cloud- 
computing platform to estimate urban surface albedo for global cities 

using four steps. First, we used the pixel-level QA auxiliary layer to 
exclude cloud, cloud shadow, and snow contaminated pixels in Landsat 
surface reflectance. Second, we estimated BSA and WSA from the 
quality-controlled Landsat surface, where the solar geometry is extrac-
ted from metadata and sensor geometry is set as nadir due to small 
variations in Landsat sensor viewing (< 7.5◦). Third, we calculated 
annual blue-sky albedo from BSA and WSA by using the diffuse fraction 
(i.e., fraction of diffuse radiation in total illumination radiation) from 
the BaRAD dataset. Based on Landsat spectral reflectance, we also 
calculated the annual NDVI as an indicator of vegetation cover. Finally, 
we stored Landsat-derived blue-sky albedo and NDVI as two separate 
data layers for each city over 35 years. To verify the feasibility of the 
direct estimation approach with training samples from mixed land 
covers over urban areas, we also compared the algorithm with the 
training samples of pure urban cover in the discussion section. 
α = C0 (θs, θv,φ)+ΣN

i=1 Ci (θs, θv,φ)× ρL (λi) (1)  

where α is the surface shortwave albedo (BSA and WSA); ρL (λi) is the 
Landsat surface reflectance at spectral band λi (i = 1, 2, 3, …, N; N = 6, 6, 
and 7 for Landsat-5, Landsat-7, and Landsat-8, respectively); and Ci (θs, 
θv, φ) denotes the regression coefficient at spectral band λi for solar 
zenith angle θs, view zenith angle θv, and relative azimuth angle φ. 

3.2. Evaluation of urban albedo with radiation data from urban flux 
towers 

We evaluated the accuracy and uncertainty of Landsat blue-sky al-
bedo using observed albedo calculated from the incoming and outgoing 
shortwave radiation measured by 21 urban sites (Table 2). To match the 
Landsat-derived albedo at local solar noon and minimize diurnal vari-
ations, we used observations from 11:00 a.m. to 1:00 p.m. local standard 
time. As the diffuse fraction (d) is not recorded by these flux tower 
datasets and the BaRAD dataset is too coarse for site-scale albedo 

Fig. 3. Satellite-based direct estimation of surface albedo from Landsat, with two major steps: (a) direct estimation algorithm development, and (b) surface albedo 
estimation and evaluation. 
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calculation, we thus adopted a two-step strategy: (1) if the MODIS 
Aerosol product (MOD08) has high-quality Aerosol Optical Depth (AOD) 
observation over the target flux site, the radiative transfer simulation 
approach was applied (Wang et al., 2018); and (ii) otherwise, we 
adopted an empirical approach shown in Eq. (2) to calculate diffuse 
fraction d (Stokes and Schwartz, 1994): 
d = 0.122+ 0.85× exp.(− 4.8× cos (θs) ) (2) 

We used the radiation flux footprint estimated from sensor height 
(Table 2; Román et al., 2009) to crop the pixel-level Landsat blue-sky 
albedo image and calculate the corresponding albedo average, and 
then compared this Landsat blue-sky albedo average with the 
tower-based albedo measured on the same dates. For the accuracy 
assessment, four commonly used metrics were used: bias (mean differ-
ence between Landsat-derived and tower-based albedo), 
root-mean-square-error (RMSE), relative root-mean-square-error 
(rRMSE, the ratio between RMSE and the measured albedo mean), and 
coefficient of determination (R2), with equations as follows: 

Bias =
1

N

∑

N

i=1

(

αLandsat,i −αground,i

) (3)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1

N

∑

N

i=1

(

αLandsat,i − αground,i

)2

√

√

√

√ (4)  

rRMSE =
RMSE

αground

× 100% (5)  

R2 =

∑

N

i=1

(

αLandsat,i − αLandsat

)(

αground,i − αground

)

∑

N

i=1

(

αLandsat,i − αLandsat

)2 ∑
N

i=1

(

αground,i − αground

)2

(6)  

where αLandsat,i and αground,i are ith Landsat-derived and ground-measured 
albedo; αLandsat and αground are the average values of Landsat-derived and 
ground-measured albedo; N is the number of observations. 

3.3. Spatiotemporal characteristic analysis of surface albedo in global 
cities 

We calculated the 35-year city-scale blue-sky albedo mean from 
Landsat albedo time series to explore its spatial patterns. To further 
examine the temporal trends, we used the non-parametric Mann-Kendall 
statistic (Mann, 1945) and the non-parametric Theil–Sen slope estimator 
(Theil, 1950) approaches, which do not require specific data distribution 
and are robust to outliers (Wang et al., 2019), to calculate the magnitude 
and direction of the pixel-level monotonic albedo trend at a statistical 
significance level of 0.05 (i.e., p-value <0.05). The city-scale albedo 
trend is calculated as the aggregation mean of all pixels that passed the 
significance test within the city area. The spatiotemporal patterns of 
Landsat blue-sky albedo are undertaken for two periods (1986–2020 and 
2001–2020). For comparison, we extracted 35-year city-scale spatio-
temporal patterns of MODIS blue-sky albedo in 2001–2020, which is 
calculated from the integration of MODIS BSA, WSA, and BaRAD- 
derived diffuse fraction. 

3.4. Associations between urban greening and albedo change 

We explored the multifaceted associations between urban greening 
and albedo change in several steps. First, the spatiotemporal patterns of 
Landsat NDVI in the 1986–2020 and 2001–2020 time periods were 
calculated and aggregated to city-level means. Second, the intra- and 
inter-city associations between urban albedo and NDVI trends were 
analyzed. Local examples in four typical cities: two rapid-urbanized 
Shenzhen city (22◦ 32′ 29.4″ N, 114◦ 3′ 34.56″ E), China and 

Birmingham city (52◦ 29′ 10.47″N, 1◦ 53′ 25.44″W), United Kingdom, 
together with two well-urbanized Milton city (30◦37′49.0″N, 
87◦02′47.0″W), Florida, and Pinehurst city (36◦ 41′ 43″ N, 119◦ 0′ 57″ W), 
North Carolina, United States, were selected to showcase different 
pathways by which urban greening modulates surface albedo during the 
urbanization process. Lastly, the associations between urban albedo and 
vegetation in 2-D (measured by NDVI) and 3-D (measured by vegetation 
height from 10-m-resolution Sentinel-2; Lang et al., 2023) were inves-
tigated to elucidate the effects of urban greenery on surface albedo using 
data at the baseline year 2020. 

3.5. Urban surface radiative forcing induced by albedo change 

Changes in radiative forcing can be caused by natural and/or 
anthropogenic drivers (Shindell et al., 2013). A positive radiative forc-
ing occurs when there is more incoming than outgoing energy (i.e., 
warming), whereas a negative radiative forcing (outgoing > incoming 
energy) results in a cooling effect. We quantified the urban surface 
radiative forcing (RF) from albedo changes (Chen et al., 2015) using the 
following equation: 
RF = −K↓×(αt2–αt1) (7)  

where K↓ is the mean incoming or downward shortwave solar radiation 
between years t1 and year t2; and αt2 – αt1 is the surface albedo differ-
ence between those years. We used BaRAD and Landsat-derived blue-sky 
albedo to derive pixel-scale RF (Eq. (7)) and then calculated the city- 
scale RF from pixel-scale data. To minimize the impact of fluctuations 
in annual albedo, we used a 5-year average annual albedo for the RF 
calculation in 1986–2020. Namely, the mean surface albedo (αt1) was 
estimated for the 1986–1990 period, and αt2 for the 2016–2020 period, 
and K↓ was estimated as the mean downward shortwave solar radiation 
between 1991 and 2015. 

4. Results 

4.1. Accuracy assessment of Landsat urban albedo 

We assessed the accuracy of Landsat-derived surface albedo using the 
flux tower-based observations (Table 2). Across the 21 flux tower sites, 
Landsat satellites individually achieve a high albedo accuracy (bias =
−0.011 - 0.005, RMSE = 0.019–0.026, rRMSE = 15.4% - 20.1%, R2 =
0.58–0.71; Fig. 4b-d). For all three Landsat satellites, the overall accu-
racy is also reliable (bias = 0.005, RMSE = 0.025, rRMSE = 19.5%, R2 =
0.66; Fig. 4a). Temporal validation for individual (Fig. S3) and com-
bined (Fig. S4) years show similar accuracy patterns. These assessment 
results suggest that the Landsat-derived albedo dataset is reliable and 
can be used to analyze the spatiotemporal characteristics of surface al-
bedo of cities globally. 

4.2. Global variations of urban albedo 

The 35-year (1986–2020), city-wide mean surface albedos for the 
3037 global cities assessed here have clear spatial patterns (Fig. 5). 
Cities in temperate climates have the lowest mean albedo (0.143, N =
1340), followed by those in cold (0.144, N = 1073), tropical (0.145, N =
161), and arid (0.174, N = 463) regions. Cloud cover limits the number 
of tropical cities meeting the threshold of having 35-year data. The al-
bedo range for tropical cities (0.115–0.240) is in line with the range 
reported by Rechid et al. (2009) (0.10–0.20). The urban albedo distri-
bution is skewed, with most cities (2452) within the range of 0.12–0.16, 
followed by 462 cities within the range of 0.16–0.20, 87 cities with 
albedos >0.2, and only 36 cities <0.12. The 20-year (2001−2020) city- 
level annual mean albedo from the MODIS and Landsat datasets are 
close to those of the 35-year Landsat equivalence (Fig. S5), with the 
majority of cities within the range of 0.12–0.20 and very few presenting 
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Fig. 4. Evaluation of Landsat-derived albedo with flux-tower measurements for (a) all three Landsat satellites, (b) Landsat-5, (c) Landsat-7, and (d) Landsat-8. The 
following comparison statistics are calculated: N (number of Landsat data observed on the same date as flux-tower measurements), bias (mean difference between 
Landsat-derived and tower-based albedo), RMSE (root-mean-square-error), rRMSE (relative RMSE, ratio between RMSE and measured albedo mean) and R2 (co-
efficient of determination), 1:1 line (solid line), error lines of −0.05 and 0.05 (dashed line). 

Fig. 5. City-level average annual albedo (lower key) derived from 35-year (1986–2020) Landsat data for 3037 global cities mapped onto 1-km Köppen-Geiger 
climate (Beck et al., 2018) (upper key), with the number of cities (and the associated percentage in parentheses) given above the inserted histogram. 
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albedos <0.12 or > 0.20. 

4.3. Global variations of urban albedo trend and driver attribution 

4.3.1. Global temporal trends of urban albedo 
The 35-year (1986–2020) trend of city-scale annual mean surface 

albedo depicts a negative slope of −0.0007 yr−1 (Fig. 6). When cities are 
subdivided by their mean trend, 2921 shows a decreasing trend (mean 
trend = −0.0007 yr−1) and 116 an increasing trend (mean trend =
0.0004 yr−1). Rapid changes, lower than −0.001 yr−1, were observed in 
312 cities across Europe, North America, East Asia, and the Middle East. 
Most cities are in the −0.001–0.000 yr−1 (2609) and 0.000 to 0.001 yr−1 

(107) albedo change rate. Nine cities with a larger increasing albedo 
trend (> 0.001 yr−1) were observed in the Southwest region of the 
United States. 

The 21-year (2000−2020) trends for MODIS and Landsat consis-
tently decrease (Figs. S6), at rates of −0.0003 yr−1 and -0.0014 yr−1, 
respectively. Due to its inability to detect fine-scale urban heterogeneity, 
the 500-m-resolution MODIS satellite returns a lower decreasing rate 
than the 30-m-resolution Landsat (Fig. S7), supporting the necessity of 
using high-resolution satellite data to monitor urban environments. The 
21-year change rate (−0.0014 yr−1) is twice as high as the 35-year trend 
(−0.0007 yr−1) for Landsat, indicating that the rate of worldwide urban 
albedo decrease has grown. 

4.3.2. Associations between urban albedo and greenness 
Greening activity is one potential driver influencing urban albedo 

change. Landsat NDVI has a mean increase of 0.001 yr−1 for these 3037 
cities during the same 35-year period, with 2205 cities exhibiting an 
increase (i.e., greening) and 832 experiencing a decrease (i.e., browning, 
Fig. 7). Most cities are in the 0.000 to 0.003 yr−1 (1742) and − 0.003 to 
0.000 yr−1 (642) NDVI change range, followed by 463 cities with an 
increasing NDVI trend >0.003 yr−1 and 190 cities with a decreasing 
NDVI trend < −0.003 yr−1. Browning cities are predominantly found in 
East Asia, South America, and the Southwest region of the United States. 

Intra-city associations (within cities) between urban NDVI and al-
bedo trends show a total of 2564 cities are negatively correlated (Fig. 8), 
with 583, 1077, and 904 cities presenting correlation coefficients <
−0.6, within the −0.6 to −0.3, and − 0.3 to 0 ranges, respectively. Only 
291 of 473 cities have statistically significant positive NDVI-albedo 

relationships, most of which are distributed in Europe and East Asia. 
Inter-city associations (across cities) using the median albedo trends 
derived from 10% NDVI bins show that the increase in NDVI trend (with 
a slope of −0.049) coexists with the decrease in albedo trend, which 
explains 92% of the total variance of the albedo binned trend (Fig. 9a). 
Moreover, statistical results of NDVI and albedo trend consistency from 
the raw observations show a decrease in albedo trend of 2176 (71.65%) 
cities in the opposite direction with respect to the NDVI trend (Fig. 9b). 
As the greening trend is greater (0.004 yr−1) for the past 21 years 
(Fig. S8), the intra- and inter-city associations between urban NDVI and 
albedo trends become stronger, with more cities exhibiting negative 
NDVI-albedo correlation coefficients (Figs. S9 and S10). These intra- and 
inter-city dominant negative associations reveal that urban greening 
will lead to a decreasing albedo trend. 

Four sample cities provide spatially explicit information on the 
decreasing trend of surface albedo caused by different greening path-
ways: tree planting (Shenzhen, China and Birmingham, United 
Kingdom) and urban warming-induced vegetation growth (Milton, 
Florida and Pinehurst, North Carolina, United States). Shenzhen and 
Birmingham have experienced tremendous urbanization during the past 
three decades, but they have also implemented tree planting programs 
in central areas, as it can be observed through the NDVI trend maps and 
high-resolution Google Earth satellite images (Fig. 10a-c and Fig. 11a-c). 
Two local sites in both Shenzhen and Birmingham clearly show the 
opposite trends for the NDVI and albedo time series (Fig. 10d-e and 
Fig. 11d-e). In comparison, Milton and Pinehurst are two well-urbanized 
cities without substantial impervious area expansion in the urban fringe 
areas. Despite the absence of large-area tree planting activities, green-
ness continues to increase in these two cities due to enhanced vegetation 
growth induced by urban warming (Figs. 12 and 13). The significant 
negative correlation between surface albedo and 2-D (NDVI as vegeta-
tion coverage) and 3-D (vegetation height) vegetation structure metrics 
in the baseline year 2020 further explains the multifaceted controls of 
urban greening on surface albedo (Fig. 14). Besides urban greening, the 
other anthropogenic practices might influence surface albedo variations. 
For example, as shown in Figs. S11 and S12, building construction and 
rooftop renewal with new light-colour materials increase surface albedo. 
Nevertheless, the frequency and intensity of building construction is 
lower than urban vegetation growth, which results in the greening- 
dominated declining trend of urban surface albedo worldwide. 

Fig. 6. Spatial patterns of the Landsat-derived city-level albedo trend for 3037 global cities over 35 years (1986–2020), with the albedo trend histogram and the 
number of cities (with the related percentage in parentheses) given above the inserted histogram. 
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4.4. Global variations of albedo-induced urban surface radiative forcing 

The 35-year change in surface albedo has caused a mean positive 
surface radiative forcing of 2.76 ± 1.92 W⋅m−2 for the 3037 global cities 
assessed in this study (Fig. 15), suggesting a net increase in absorbed 
incoming solar energy at the urban surface. Large inter-city spatial 
variabilities are observed, with values ranging from −10.75 to 23.34 
W⋅m−2. The 2936 cities with positive radiative forcing (i.e., warming) 
have a mean value of 2.92 W⋅m−2, while the 101 cities with negative 
radiative forcing have a mean value of −1.97 W⋅m−2. The mean 
magnitude of albedo-induced radiative forcing also varies by regions: 
3.14 W⋅m−2 for 1073 Asian cities; 3.09 W⋅m−2 for 92 African cities; 2.72 
W⋅m−2 for 933 European cities; 2.60 W⋅m−2 for 789 North American 
cities; 1.23 W⋅m−2 for 31 Australian cities; and 0.85 W⋅m−2 for 119 

South American cities. 

5. Discussion 

5.1. Uncertainty analysis 

Some influencing factors such as training sample representativeness, 
Landsat data uncertainty, seasonal variation, building footprint, and 
snow event may mislead our findings. To examine their impacts, we 
conducted sensitivity analyses and discussed the potential uncertainties 
associated with each of these factors. 

5.1.1. Training sample representativeness 
The representativeness of training samples, angular-bin size, and 

Fig. 7. Spatial patterns of the Landsat-derived city-level normalized difference vegetation index (NDVI) trend for 3037 global cities over 35 years (1986–2020), with 
the NDVI trend histogram and the number of cities (with the related percentage in parentheses) given above the inserted histogram. 

Fig. 8. Spatial patterns of the intra-city correlation between urban normalized difference vegetation index (NDVI) and albedo trend for 3037 global cities over 35 
years (1986–2020), with the histogram (correlation coefficient key) of the city-level albedo trend and the number of cities (with the associated percentage in pa-
rentheses) given above the inserted histogram. Large markers represent a statistical significance level of 0.05 (p-value <0.05) and small markers represent a non- 
significant trend with p-value >0.05. 
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regression relationship between reflectance and albedo are three factors 
that need to be considered for the successful application of the direct 
estimation approach. Recent studies have thoroughly investigated the 
sensitivity to the angular-bin size and the regression relationship be-
tween reflectance and albedo, verifying their applicability to both nat-
ural and urban surfaces (Chen et al., 2023; Lin et al., 2022). Therefore, 
training dataset representativeness has been highlighted as a key 
component for the application of the direct estimation approach over 
urban areas. We conducted two sensitivity analyses using BRDF/albedo 
over mixed land covers (16 IGBP land covers used in this study, referred 
to as general scheme) and pure urban cover (referred to as urban 
scheme) to test the theoretical accuracy of this approach over urban 
areas. Results show that these two schemes have almost the same 

theoretical accuracy (0.0161 vs. 0.0156, Fig. S13), which is very close to 
the MODIS BRDF/albedo product accuracy (Wang et al., 2018). Based 
on the optimized BRDF/albedo training samples for the general scheme 
(7200 samples for 16 land covers with 450 samples per type) and urban 
scheme (3000 urban cover samples), we constructed one general and 
one urban reflectance-to-albedo LUT and validated their accuracy with 
global flux tower-based measurements. Validation results reveal that 
these two algorithms are highly accurate, suggesting that the direct 
estimation approach used in this study with the general training sample 
scheme is stable (Fig. 4 vs. Fig. S14). 

5.1.2. Landsat data uncertainty 
The uncertainty of Landsat data quality mainly stems from Landsat 

Fig. 9. Associations between city-level normalized difference vegetation index (NDVI) and surface albedo trends for 3037 global cities over 35 years (1986–2020), 
with (a) scatter plot and (b) statistics of NDVI and albedo trend consistency. In (a), the city-level trends are averaged from pixel-level trends that are statistically 
significant at a level of 0.05, using the non-parametric Mann-Kendall and Theil–Sen slope estimator approaches. A zonal analysis is used to refine the association 
results by averaging the NDVI and albedo trend pairs (red circles) within each 10% NDVI interval for the linear regression (red dashed line). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Examples showing the close association between surface albedo and urban greening in the Shenzhen city, China, based on the maps of (a) Google Earth 
satellite image, (b) albedo trend, (c) NDVI trend, (d) time series of urban NDVI and albedo for S1 area in (a), and (e) time series of urban NDVI and albedo for S2 area 
in (a). 
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satellite orbital drifts and scan line corrector (SLC) failure in Landsat-7. 
On the one hand, Landsat satellite orbital drifts (e.g., Landsat-5 drifted 
between 1995 and 2000 and 2003–2007, Landsat-7 drifted from 2017 to 
the present; Qiu et al., 2021; Zhang and Roy, 2016) alter local acquisi-
tion time, affecting solar-viewing geometry and surface reflectance, 

resulting in artificial impacts on surface albedo. To minimize such im-
pacts, we trained the spectral reflectance with shortwave albedo at local 
solar noon (e.g., 12:00 p.m.) to construct reflectance-to-albedo LUTs, 
allowing us to compare predicted surface albedo across years (Guo et al., 
2022). On the other hand, since Landsat-7 data covers only two years 

Fig. 11. Examples showing the close association between surface albedo and urban greening in the Birmingham city, United Kingdom, based on the maps of (a) 
Google Earth satellite image, (b) albedo trend, (c) NDVI trend, (d) time series of urban NDVI and albedo for S1 area in (a), and (e) time series of urban NDVI and 
albedo for S2 area in (a). 

Fig. 12. Examples of close association between surface albedo and urban greening in the Milton city, Florida, United States, based on the maps of (a) Google Earth 
satellite image, (b) albedo trend, (c) NDVI trend, (d) time series of urban NDVI and albedo for the S1 area in (a), and (e) time series of urban NDVI and albedo for the 
S2 area in (a). 
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(2012–2013), the data gap impacts from this satellite on the main 
findings of this study are minor. Sensitivity analysis shows that the 
yearly mean and long-term temporal trend of global urban albedo are 
nearly the same, whether or not Landsat-7 satellite data are used 
(Figs. 5–6 vs. Fig. S15). 

5.1.3. Seasonal variation 
Seasonal impacts on urban albedo estimation and analysis come from 

two sources: seasonal vegetation growth and seasonal solar geometry 
change. On the one hand, Landsat satellite has a regular 16-day revisit 
cycle, which allows at least two observations per month to capture 
seasonal vegetation growth dynamics. On the other hand, our algorithm 
has normalized surface albedo to local solar noon and the solar position 
is relatively stable within a month, minimizing the interference from 
seasonal change of solar geometry. Sensitivity analysis results of the 

Landsat-derived albedo trends using time series from different seasons 
are very similar to those of the annual mean time series (Fig. S16), 
supporting the minor seasonal variation effects on the observed 
decreasing albedo trend of global cities in this study. 

5.1.4. Building footprint 
Building footprint changes, such as those related to new construction 

or building renovations using different materials, might increase urban 
albedo (Figs. S11 and S12). To explore building footprint impacts on 
surface albedo, we used 30-m-resolution rasterized building footprint (i. 
e., total, average, minimum, and maximum building areas within a 30- 
m-resolution pixel) dataset for 242 cities in the United States (Heris 
et al., 2020), and three building height datasets for China (120 cities; 
Yang and Zhao, 2022), Germany (18 cities; Frantz et al., 2021), and the 
United States (372 cities, Falcone, 2016) to provide the horizontal and 

Fig. 13. Examples of close association between surface albedo and urban greening in the Pinehurst city, North Carolina, based on the maps of (a) Google Earth 
satellite image, (b) albedo trend, (c) NDVI trend, (d) time series of urban NDVI and albedo for the S1 area in (a), and (e) time series of urban NDVI and albedo for the 
S2 area in (a). 

Fig. 14. Correlation between surface albedo and (a) 30-m-resolution Landsat normalized difference vegetation index (NDVI, Gorelick et al., 2017), and (b) 10-m- 
resolution vegetation height (Lang et al., 2023) of the baseline year 2020 for 3037 global cities. 
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vertical building footprint metrics (Table S2). By conducting a bivariate 
relationship analysis between building footprint metrics and albedo, we 
found a positive correlation with mean correlation coefficients of 0.21, 
0.21, 0.21, and 0.16 for maximum (i.e., area of the largest building 
intersecting each 30-m pixel), minimum (i.e., area of the smallest 
building intersecting each 30-m pixel), average (i.e., number of build-
ings that intersect each 30-m pixel), and total (i.e., total building foot-
print coverage per 30-m pixel) building areas, respectively (Fig. S17). 
We also observed a negative correlation between albedo and building 
height, with a mean correlation coefficient of −0.22 (Fig. S18), as 
shadowing and radiative trapping in canyons increase with building 
height. However, quantifying the contribution of the building landscape 
to albedo change remains a challenging task due to the lack of high- 
resolution urban building time-series products, which requires future 
investigation. 

5.1.5. Snow cover impact 
Snow cover is another important confounding factor for the spatio-

temporal analysis of global urban albedo due to its much higher 
reflectance than other urban materials. On one hand, because regular 
snow events only occur for short periods in the winter for high-latitude 
cities, they will have little impact on the general diminishing patterns of 
global urban albedo. Snow episodes, on the other hand, are rather reg-
ular across time, and their influence on long-term urban albedo is likely 
to be systematically linear, which will not modify the spatiotemporal 
trend analysis. Our sensitivity analysis results demonstrate that, with the 
exception of a few high-latitude Northern hemisphere cities, the overall 
decreasing trends of worldwide urban albedo are nearly the same 
whether snowy satellite pixels are excluded or not (Fig. 6 and S19). 

5.2. Novelty and implication of this study 

This study makes several advances over past similar studies on 
methodological development. First, we investigated the direct estima-
tion approach and validated its theoretical capability for retrieving 
surface albedo from Landsat over global urban areas. Our training 
sample representativeness sensitivity analyses indicate that more accu-
rate urban BRDF/albedo training datasets beyond MODIS are one po-
tential way to improve the algorithm accuracy, which should include 
fine-resolution 3-D radiative transfer model parameterization and 
global 3-D urban morphology datasets. Second, the absolute accuracy of 

the direct estimation approach for estimating urban albedo had not yet 
been properly evaluated. For the first time, this study used albedo data 
from incoming and outgoing shortwave radiation measured by synthe-
sized global urban flux towers around the world as ground truth to assess 
the accuracy of the proposed algorithm. The results demonstrated that 
Landsat-derived urban albedo is reliable (Fig. 4). 

The global 35-year, 30-m-resolution urban surface albedo dataset 
generated in this study is unique and valuable. Although many previous 
efforts have attempted to estimate surface albedo from high-resolution 
Sentinel-2 and Landsat satellite data (Guo et al., 2022; He et al., 2018; 
Lin et al., 2022; Shuai et al., 2011, 2014), most of them were limited to 
individual locations, cities, or specific regions, and years, which 
hampered our understanding of the spatiotemporal patterns of global 
urban albedo throughout the past three decades of urbanization. Our 
albedo dataset of 3037 cities from around the world, including cities in 
the Global North and Global South, provides us a thorough picture of the 
dynamic spatiotemporal evolution of global urban albedo. This dataset 
can be incorporated as input data into urban canopy models (Ryu et al., 
2016) for the monitoring and estimation of urban energy balance and 
other albedo-related studies. 

By comparing the results of the previous three decades with those of 
the previous two decades using the global 30-m resolution Landsat al-
bedo dataset developed here, we found that global urban albedo is 
decreasing at an increasing rate, implying that the albedo-induced 
warming has been exacerbated. We also observed that the urban 
greening phenomenon is expanding around the globe. Since 1985, 
72.60% of global cities (2205) have increased greening, and this pro-
portion has increased to 89.20% (2709 cities) since 2001. This propor-
tion is higher than the 70% reported in a previous study using coarse- 
resolution MODIS data (Zhang et al., 2021). Finally, our study demon-
strates that urban greening regulates the decreasing trend of urban al-
bedo through two different pathways: tree planting and urban warming- 
enhanced vegetation growth. These findings help to clarify recent 
controversial conclusions about worldwide urban albedo trend patterns 
(Guo et al., 2022; Ouyang et al., 2022). Guo et al. (2022) reported an 
increasing trend of urban albedo based on 30-m resolution Landsat- 
derived summer albedo across 11 Chinese megacities, without taking 
into account the various urbanization trends in other Chinese cities or 
around the world, as well as seasonal changes. By comparing the 1◦- 
resolution albedo estimated from MODIS land cover types across two 
baseline years, 2018 and 2001, Ouyang et al. (2022) found a decreasing 

Fig. 15. Spatial patterns of surface radiative forcing (RF, W•m−2) from albedo change for 3037 global cities over 35 years (1986–2020), with the number of cities 
(and the associated percentage in parentheses) given above the inserted histogram. 
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pattern in urban areas. This coarse-resolution and short-term data (since 
2001) cannot detect fine-scale heterogeneity in the urbanization pro-
cesses during the past three decades, such as tree planting and con-
struction of new buildings and roads, as well as changes in existing 
artificial impervious surfaces. Using our 30-m resolution surface albedo 
and NDVI dataset covering 3037 cities around the world, we determined 
that greening is the key controlling factor for the downward trend of 
urban albedo using multidimensional association analysis and further 
evidence from local cases. 

The strong relationship between urban greening and albedo has 
important implications. Planting trees, in conjunction with artificial 
albedo alterations (e.g., the use of high-reflective materials), have been 
recognized as two critical approaches to mitigate urban warming (Chen 
et al., 2022; Wong et al., 2021; Wu et al., 2023). However, 
albedo-induced warming effects of urban greening have received little 
attention. Recent vegetation greening research at regional and global 
scales have found that albedo is a key component in the 
greening-induced change in the Earth’s energy budget and might 
potentially offset cooling benefits, causing local and global warming 
(Lian et al., 2022; Piao et al., 2020). This study provides empirical ev-
idence of the warming effect triggered by changes in urban albedo 
caused by increased vegetation, a phenomenon that must be taken into 
account when evaluating the effectiveness of greening-based cooling 
solutions by incorporating such fine-scale datasets with 3-D microcli-
mate models (e.g., SOLWEIG; Lindberg et al., 2008). 

5.3. Limitations and future perspectives 

It is important to recognize and resolve various limitations and un-
certainties in this study for future research. Topography is an essential 
factor in estimating albedo, although it has seldom been taken into ac-
count when mapping surface albedo on a wide scale using satellite data. 
In this study, we do not include topography, as the majority of the cities 
investigated exhibit minimal variations in elevation (mean slope = 3.3◦, 
Fig. S20). But some cities have large slopes, and their surface albedo 
retrieval may still require accounting for topographic impacts (Wu et al., 
2018, 2019). 

Another critical issue to address is 3-D urban morphology, which 
requires significantly higher resolution data (e.g., ~1 m) for both the 
satellite surface reflectance and morphology datasets. The impact of 
urban geometry, such as the density of buildings, the sky view factor, 
and the aspect ratio of buildings, on surface albedo, and in turn on air 
temperature close to the surface is widely recognized (Xu et al., 2020; 
Yang and Li, 2015). The increasing availability of high-resolution Digital 
Surface Model data (e.g., Scott et al., 2022) and 3-D building data (e.g., 
Zhou et al., 2022) will strengthen interpretation of higher-resolution 
satellite observations beyond Landsat (e.g., 10-m Sentinel-2 with ~5- 
day revisit; 3-m PlanetScope with daily revisit; Drusch et al., 2012; 
Planet Team, 2022) to improve albedo estimates at urban facet scale (e. 
g., road, roof, and wall). 

Although fine-scale albedo trends have been studied, Landsat data 
remains a mixed signal that cannot effectively segregate individual 
contributions from different urban elements (e.g., building, tree, and 
grassland) to the overall spatiotemporal trend of urban albedo. 
Furthermore, the individual contributions of tree planting and urban 
warming-enhanced vegetation growth to greening-induced urban al-
bedo modification are still unknown. An integration of fine-resolution 
land-cover datasets of different urban elements and high-resolution al-
bedo datasets are expected to be used for isolating and assessing the 
individual contributions of particular urban features. Finally, this study 
did not take into account the detailed spatial and temporal variations 
associated with land cover changes, which can be analyzed by 
combining our Landsat albedo data with the appropriate high-resolution 
annual land cover map data. This will be helpful for city climate change 
management to address mitigation, adaptation, and forecasting because 
it directly affects surface energy balance (Duveiller et al., 2018; Oke, 

1982). 

6. Conclusions 

The spatial and temporal features of urban surface albedo in cities 
around the world and their underlying drivers are still not well under-
stood due to a lack of high-resolution albedo observations. In this study, 
we generated a 35-year, 30-m resolution annual albedo dataset for 3037 
worldwide cities. We demonstrated the accuracy and reliability of the 
albedo dataset by comparing it to albedo data derived from flux tower- 
based measurements. We investigated the spatial and temporal patterns 
and trends of urban albedo using this dataset and found that most cities 
had a decreasing albedo trend as a consequence of increased greenness. 
Cities with this decrease in albedo are expected to experience more 
(positive) surface radiative forcing. 
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