

Preliminary work on the Statistical Emulation of Regional Climate Models

Antoine Doury, Samuel Somot, Sébastien Gadat, Aurelien Ribes, Lola Corre

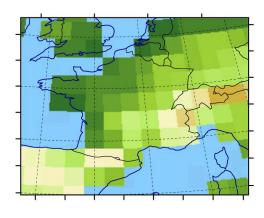
CNRM, University of Toulouse, Meteo-France, CNRS antoine.doury@meteo.fr

Why do we need statistical emulator?

3 kind of climate models :

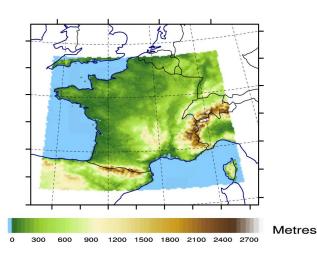
GCM :

- 100-300 km resolution
- On the whole planet
- Computationally "cheap"



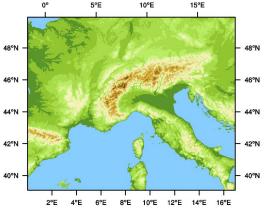
RCM :

- 10-50 km resolution
- Limited area
- Forced at its boundaries by a GCM
- Computationally expensive



CPRCM :

- 1-5 km resolution
- Limited area (smaller than RCMs)
- Often forced by a RCM
- Computationally really expensive



Why do we need statistical emulator?

To deliver **robust information** on future climate change at **local scales**:

- Cover the full range of uncertainties about the future climate change signal.
- Fill up a [SCENARIO x GCM x RCM] matrix with several members.
- Incompatible with the computational costs of Regional Climate Models (even more true with the new generation of CP-RCM).

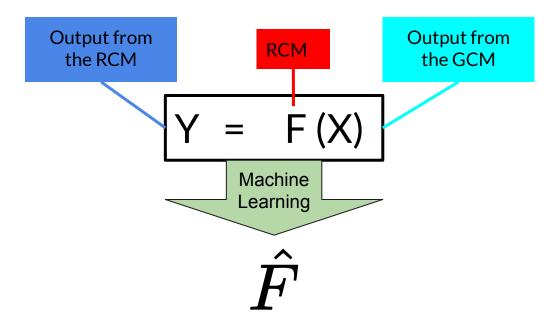
_		RC	P26	CCLM4	COMO-	HIRAMS	BACMO 22E	RCA4	BEMO 2015	(RF 361H	VRF 381P	TADIN 5	9 NIQET	BegCM
	RCP85		CLM4	CLUM	RAM5	22E	tCA4	EMO 2015	ARF 61H	XRF 381P	ADIN 5	ADIN 6	Beg.CM	
HIST	CCLM4	COSMO	HIRAM5	BACMO 22E	RCA4	REMO 2015	WRF 361H	WRF 381P	ALADIN 5	ALADIN 6	BegCM		8	r1
CNRM CM 5	r1		r1	r1	r1	r1		r1	r1	r1				
CAN ESM2	r1					r1							r1	
EC EARTH	r12	r12	r12, <u>r</u> 1,r3	r12, <u>r</u> 1,r3	r12, <u>r</u> 1,r3	r12	r12							r1
HadGEM	r1	8	r1	r1	r1	r1	r1	r1		r1	r1	0		
IPSL CM5		3		r1	r1			r1				8	r1	
MIROC5	r1	8				r1				8		8		
MPI ESM	r1	r1, <u>r</u> 2,r3		r1	r1, <u>r</u> 3	r1, <u>r</u> 2,r3	r1			2	r1			
NorESM1		r1		r1	r1	r1		r1		3				
•														
-														
		1												1
														1
												0		

Euro-Cordex matrix (Vautard et al 2020, Coppola et al. 2020)

One solution : Statistical emulation of RCM

Idea: Combine dynamical downscaling and statistical methods (machine learning) to fill up the [SCENARIO x GCM x RCM] matrix with new runs and several members.

We **learn** the downscaling function from the existing simulations.



Advantages :

- Learn the future relationship (no question of transferability) and on the whole grid of the RCM (no need of observations).
- Should be able to emulate a new GCM.
- Computationally cheaper than RCMs.

Limitations :

- Reproduce the defaults of the RCMs
- 1 emulator by RCM

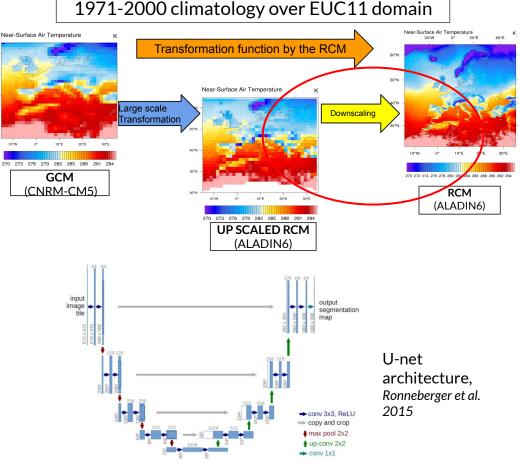
Methods to build the emulator

X coming from an UPSCALED RCM

- There are large scale differences between RCM and GCM. Recent papers tend to show that they are due to the lower complexity of the RCM (*Boé et al. 2020, Schwingshackl* et al 2019).
- GCM large scale is more trustable than RCM one. ⇒ Focus on the downscaling function of the RCM, train the model with X coming from an upscaled RCM

Machine learning method :Neural Network

To learn the downscaling function of the RCM we used an adapted U-NET, which is a Neural Network architecture based on Convolutional layers. We selected these kind of architectures for their ability to deal with spatial structures.

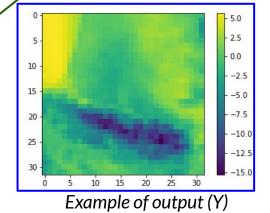


DATA to train the emulator

- X : From the UP RCM on a chosen domain
 - 4 altitude fields : ZG, TA, HUS, (UA,VA) at 850, 700 and 500 hPa
 - 3 surface variables : TAS, PR, (UAS,VAS)
 - on the red domain ([-5,10]E x [35,50]N)
 - Daily frequency

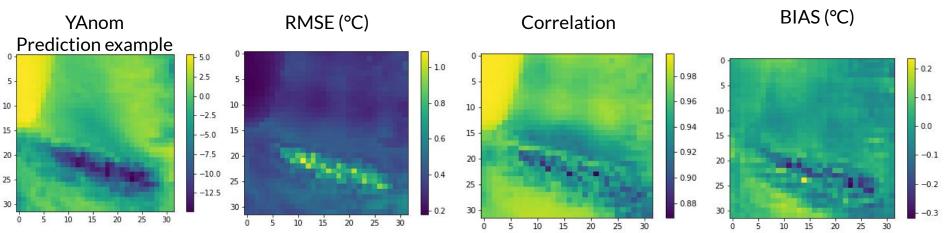
- Y: RCM output ⇒ Daily Surface Temperature on box over South West of France including the Pyrenees and the Atlantic coast (blue box on the map).
 - ⇒ Anomalies mode : We remove from the local temperature the temperature average on a 5x5 GCM grid point box. So for a RCM grid point i :

$$Y_{Anom,i} = TAS_{RCM,i} - TAS_{UPS-RCM,5*5box}$$



Validation Step

- We first test the ability of the emulator to reproduce the same simulation it was trained on, but different years.
- Simulation : ALADIN6 12km forced by CNRM-CM5 (150km) RCP4.5, period 2006-2100, daily timescale
- Training set : 70% of the years, Testing set: 30% of the years
- The emulation presents good results :
 - RMSE, BIAS and correlation are really good on every points.
 - The PDFs and Time Series plots are also really satisfying (see next slide).
 - \circ \qquad Some improvement can still be done on highest mountain points.



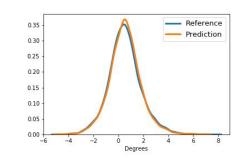
Validation Step

0.175 Reference Prediction 0.150 **PDFs** 0.125 0.100 comparison 0.075 0.050 0.025 0.000 -25 -20 -15 -10 -5 10 Ó 5 Degrees points) Reference 1 Time series Prediction grid Degrees vrt 5x5 GCM g example: 500 consecutive (Anor days 100 ò 200 400 500 300

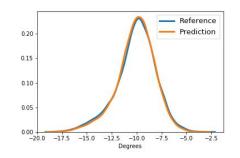
All points pooled

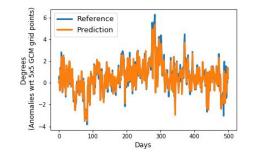
Days

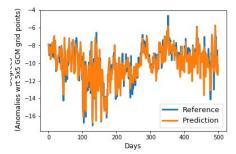
A lowland point



A high mountain point

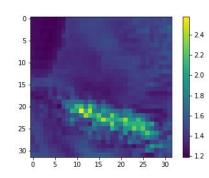






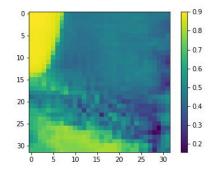
Application : Downscaling of a new run

- Training set: 2006-2100 ALADIN6 simulation forced by CNRM-CM5 with scenario RCP 4.5
- Downscaling of ALADIN6 forced by CNRM-CM5 on 2006-2100 RCP 8.5.
- This simulation exists, so we can verify our emulation
 - \Rightarrow with for each grid point i, the comparison reference is $TAS_{RCM,i} TAS_{UPS-RCM,5*5box}$ since we remove the large scale average
- The results are disappointing here but the emulator shows promising results:
 - ⇒ The climatology is respected (reasonable bias and rmse, also visible on PDFs plots on next slide)
 - ⇒ The anomalies seasonality and temporality is respected in most cases (Correlation + Time series plots)

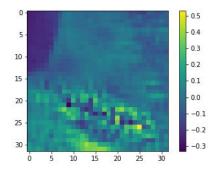


RMSE (°C)

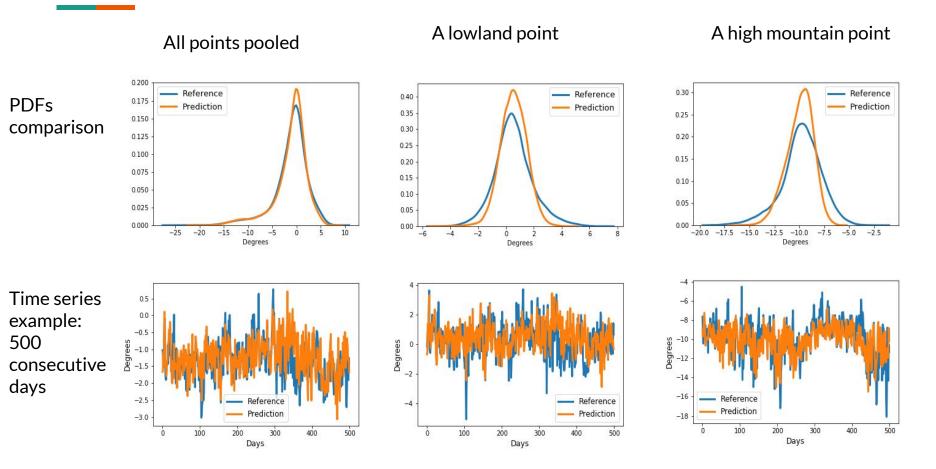
Correlation



BIAS (°C)



Application : Downscaling of a new run



Summary and Future work

- We developed the concept of RCM emulators and the methodology.
- We built a satisfying 2D emulator for ALADIN RCM using a Neural Network architecture.
 - The performance of the emulator in the validation step are good but perfectible.
 - The results of the application are promising but we expect more.

- More configurations have to be tested (ex: train on historic and rcp 85, application on rcp 45).
- More test have to be done : downscaling of other GCMs, other variables, larger domain.
- Further work should also be done to define the reference scale for the anomalie mode.