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South American (SA) societies are highly vulnerable to severe
droughts and pluvials, but lack of long-term climate observations
severely limits our understanding of the global processes driving
climatic variability in the region. The number and quality of SA
climate-sensitive tree ring chronologies have significantly in-
creased in recent decades, now providing a robust network of
288 records for characterizing hydroclimate variability since 1400
CE. We combine this network with a self-calibrated Palmer
Drought Severity Index (scPDSI) dataset to derive the South Amer-
ican Drought Atlas (SADA) over the continent south of 12°S. The
gridded annual reconstruction of summer scPDSI is the most spa-
tially complete estimate of SA hydroclimate to date, and well
matches past historical dry and wet events. Relating the SADA
to the Australia–New Zealand Drought Atlas, sea surface temper-
atures, and atmospheric pressure fields, we determine that the El
Niño–Southern Oscillation (ENSO) and the Southern Annular Mode
(SAM) are strongly associated with spatially extended droughts
and pluvials over the SADA domain during the past several centu-
ries. SADA also exhibits more extended severe droughts and ex-
treme pluvials since the mid-20th century. Extensive droughts are
consistent with the observed 20th-century trend toward positive
SAM anomalies concomitant with the weakening of midlatitude
Westerlies, while low-level moisture transport intensified by
global warming has favored extreme rainfall across the subtropics.
The SADA thus provides a long-term context for observed hydro-
climatic changes and for 21st-century Intergovernmental Panel on
Climate Change (IPCCQ: 9 ) projections that suggest SA will experience
more frequent/severe droughts and rainfall events as a conse-
quence of increasing greenhouse gas emissions.

drought atlas | palaeoclimate reconstruction | extreme hydroclimate
events | South America hydroclimate | Southern Hemisphere climate modes

Productive economic and social activities in South America
(SA) are heavily dependent on hydroclimate variability. Se-

vere water shortages have occurred in central Chile and western

Argentina Q: 10during the drought years 1968 to 1969, 1976 to 1977,
1996 to 1997, and 2010 to 2019 due to a deficit in snow accu-
mulation in the Andes. Farmers in western Argentina reported
between 35% and 50% crop losses as a consequence of water
supply reduction in 1968/69 (1). This specific event, known as the
Great Drought of 1968, also had serious impacts in central Chile.
Cereal and vegetable production dropped by 65%, irrigation
areas contracted by 40%, and livestock numbers decreased by
45% across Q: 11the country, leading

Q: 12
to the loss

Q: 13

of 225,000 agricul-
tural jobs (2). Presently, this region is experiencing the most
severe decadal drought identified during the last millennium (3).
Socioeconomic disasters such as those associated with the 1968
drought highlight the acute vulnerability of SA to extreme
droughts, motivating improved understanding of the occurrence,
duration, and spatial extent of extreme hydroclimatic events. The
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steep Andean topography, in turn, induces larger spatial het-
erogeneity in the climate that is not captured by the few high-
elevation climatic records available for the region. Therefore,
climate forecasts and projections for the areas adjacent to the
Andes present large uncertainties due to the limited capacity of
global climate models to simulate processes at regional scales in
mountainous regions (4).
In tropical latitudes, South American hydroclimate is domi-

nated by the seasonal migration of the South American monsoon

(5). In the extratropical Andes, the climate is influenced by lat-
itudinal changes of the South Pacific storm tracks leading to a
winter precipitation regime. The region to the east, in the rain
shadow of the Andes, has a weaker seasonal cycle of rainfall but
a summer maximum reflecting a larger influence of the Atlantic
than the Pacific Ocean over this region (6). It has long been
known that the El Niño–Southern Oscillation (ENSO), the
Southern Annular Mode (SAM), and tropical Atlantic sea sur-
face temperature (SST) variability play major roles in forcing SA
hydroclimate over seasonal to multidecadal scales (5–7). ENSO
in the tropical Pacific is the dominant driver of interannual cli-
mate variations with profound worldwide impacts through at-
mospheric teleconnections (8, 9), whereas SAM is the main
forcing of climate variability from mid- to high latitudes in the
Southern Hemisphere (SH) (10).
The persistently positive trend in the SAM over the last few

decades, in part driven by stratospheric ozone depletion (11), has
induced important hydroclimatic anomalies over SA, some of
which are unprecedented in the instrumental period (12). Ad-
ditionally, rising greenhouse gases have recently modulated
changes in tropical–subtropical SST patterns over both the Pa-
cific and Atlantic Oceans, causing a persistent, decade-long
drought in the subtropical Andes (12). The drying trend along
the western-central coast of SA during the past decades is also
consistent with the expansion of the Hadley cell and the pole-
ward shift of the westerlies (12–14). During cold ENSO phases,
the poleward shifts of the westerlies were enhanced by the
concomitant SAM positive phase (15, 16). Hence, the expansion
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Fig. 1. SADA domain and verifications basedQ: 24 on instrumental climate and historical documents. (A) Map of the DJF scPDSI target field (small orange dots
mark grid-point centers) and the network of 288 tree ring chronologies used for reconstruction (circles colored to indicate start year). (B) Calibration-period
regression coefficient of determination (CRSQ); the white region over northern Chile indicates where the reconstruction was not performed. (C) Calibration
period leave-one-out cross-validation reduction of error (CVRE). (D–F) Superposed epoch analyses (SEAs) for reconstructed scPDSI (red rectangles in map)
during the dry/wet-flood events recorded by historical documents from (D) Potosí, Bolivia (1585 to 1807), (E) central Chile (1530 to 2000), and (F) Santa Fe city
(1585 to 1815; La Plata basin). The red/blue bars represent scPDSI departure from normal conditions for a 9-y window (t − 4 to t + 4) based on 1,000 Monte
Carlo simulations for the dry/wet historical events, respectively. The short dashed lines represent the 95% confidence limits.

Significance

The SADA is an annuallyQ: 7 resolved hydroclimate atlas in South
America (SA) that spans the continent south 12°S from 1400 to
2000 CE. Based on 288 tree ring records and instrumentally
based estimates of soilQ: 8 moisture, the SADA complements six
drought atlases worldwide, filling a geographical gap in the
Southern Hemisphere. Independently validated with historical
records, SADA shows that the frequency of widespread severe
droughts and extreme pluvials since the 1960s is un-
precedented. Major hydroclimate events expressed in the
SADA are associated with strong anomalies in the El Niño–
Southern Oscillation (ENSO) and the Southern Annular Mode
(SAM). Coupled ENSO–SAM anomalies together with sub-
tropical low-level jet intensification due to increasing green-
house gas emissions may cause more extreme droughts and
pluvials in SA during the 21st century.
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of the Hadley cell descending branch concurrent with the
southward shift of the westerlies has increased the frequency of
dry events in the subtropical Andes, the temperate and cold
regions of SA (12, 13).
Despite all these alarming trends in SA’s hydroclimate, the

brevity of available instrumental climate records (usually less
than 60 y) can only provide a limited view of extremes in natural
hydroclimate variability. A long-term and large-scale perspective
is necessary to document the historical range and sequence of
hydroclimate variations in SA, their connections to large-scale
climate modes and their interactions (e.g., ENSO and the SAM),
and the impacts of external climate forcings. In many regions of
SA, climate proxies such as tree rings, ice cores, sediments,
speleothems, and historical archives have been used successfully
to reconstruct hydroclimatic variations over centuries to mil-
lennia (17–19). However, the local geographic nature of such
records reduces their applicability over large spatial regions,
making it difficult to achieve the broad and detailed coverage
needed to resolve the spatiotemporal complexity of SA hydro-
climatic variability. We address these limitations by bringing
together a network of observational climate data and tree ring
records to develop the South American Drought Atlas (SADA),
a spatiotemporal reconstruction of austral summer hydroclimate
between 12° and 56°S latitude in SA, which allows us to char-
acterize the spatiotemporal variability of extreme droughts and
pluvials over the last 600 y. We also use the spatial covariance
between the SADA and the Australian New Zealand Drought
Atlas (ANZDA) (20) to identify and reconstruct the spatial
fingerprints of the major climate drivers affecting hydroclimate
variations over the SADA–ANZDA domain, which we then use
to help diagnose the coupled ENSO/SAM events as drivers of
extreme droughts and pluvials over the last half millennium
in SA.

Results
The SADA is a treeQ: 14 ring-based spatiotemporal reconstruction of
austral summer (December, January, February [DJF]) droughts
and pluvials over a large portion of SA (12° to 56°S) spanning the
last 600 y. The reconstruction has been produced on a 2,715
regular latitude–longitude grid with 0.5° resolution (Fig. 1A), and
overall reflects contemporaneous summer soil moisture condi-
tions, as well as those accumulated over previous seasons. The
spatial extent and duration of the SADA make it the most spa-
tially complete, highest-resolution, annually resolved hydro-
climate reconstruction that has specifically targeted SA.
The 288-tree ring chronology network used for reconstruction

is shown in Fig. 1A. Compared to the self-calibrated Palmer
Drought Severity Index (scPDSI) grid, its coverage is not spa-
tially uniform across SA, mainly due to the dearth of long-lived
trees in lowlands and deserts, the lack of suitable species for
dendrochronology, and/or the absence of chronologies from
species with dendrochronological potential. Despite these limi-
tations, a well-calibrated and validated reconstruction of DJF
scPDSI has been produced using an ensemble-based modifica-
tion of the point-by-point regression (PPR) method applied in
previous drought atlases (20–23) (SI Appendix, sections 5 and 7
and Fig. S5).
The instrumental scPDSI data cover the 1901 to 2015 period

(SI Appendix, section 2). In contrast, the tree ring chronologies
have a common end year of 2000 because of the wide variation in
the dates of tree ring sampling. The 1901 to 1950 scPDSI data
are of weaker quality, relative to data after 1951, due to the
declining number of precipitation records available for the
scPDSI grid (SI Appendix, Figs. S1 and S2). For this reason, the
selected period for the reconstruction models was 1951 to 2000
because it is based on the best quality instrumental data. The
most common method used in dendroclimatology to validate a
reconstruction is to compare the tree ring climate estimates with

instrumental data not included in the calibration. Given the
relatively short instrumental period used for calibration (1951 to
2000) and the declining number of the instrumental series used
in the scPDSI grid prior to 1951 (SI Appendix, Fig. S1), the re-
constructions were primarily validated using a leave-one-out
cross-validation procedure (24, 25) (SI Appendix, section 6,
Fig. 1B, and SI Appendix, Fig. S4 A–C). The fraction of variance
explained by regression in the calibration period (CRSQ [1951 to
2000]) is above 20% for almost the entire SADA domain and
above 40% for more than 35% of the domain (Fig. 1B). The
cross-validation reduction of error (CVRE) similarly indicates
that over 20% of the variance is explained by the tree ring data in
more than 75% of SADA domain (Fig. 1C).
Validation results are similar to those recorded for other

drought atlases, such as the European Old World Drought Atlas
(23), and suggest that the overall SADA is skillful. To further
validate the SADA results, however, we compare our recon-
structions to independent multicentury historical archives (18) in
three different regions of SA: the Altiplano, central Chile, and
the La Plata basin (SI Appendix, section 8 and Fig. S6). For this
purpose, a superposed epoch analysis (SEA) was conducted
(Materials and Methods), showing significant below/above scPDSI
values are associated with the dry/wet extreme years recon-
structed by documentary data for the three regions (Fig. 1 D–F).
The highly significant phasing between the entirely independent
scPDSI reconstruction and historical records add considerable
confidence to both proxies as reliable sources of information for
past hydroclimate variations across SA during past centuries.

Temporal Patterns of Extreme Events. There is considerable
year-to-year variability in the estimates of the wet/dry conditions
across the SADA domain (Fig. 2 A and B), while the average
scPDSI for all 2,715 grid cells shows large decadal to centennial
variability; the SADA domain has moved between wetter (e.g.,
early 19th century) and drier (e.g., mid-18th century) climates
repeatedly over the past 600 y (Fig. 2B).
A temporally varying return-time analysis of the spatial extent

of severe droughts/pluvials (scPDSI less than −2/greater than 2,
respectively) reveals the frequency of widespread severe
droughts over the past six centuries was nonstationary (Fig. 2C).
There has been a steady increase in the frequency of widespread
droughts since about 1930, with the highest frequency (one event
per ∼10 y) since the 1960s, while the return time of severe
widespread pluvials has remained relatively steady at 16 to 34 y
over the period of study (Fig. 2C). A return time analysis of the
spatial extent of both droughts and pluvials identifies the highest
frequency of severe widespread events every ∼5 y post-1960,
slightly higher than the second most frequent return period (∼6
y) recorded during the 17th century (gray line in Fig. 2C). A
return time analysis of the average scPDSI value for the whole
SADA domain (Fig. 2D) estimates that extreme pluvial values
were highest since the second half of 20th century (one event per
∼11 y). The recurrence interval of extreme drought during the
second half of the 20th century was high (∼12 y) but not different
from the previous 17th-century period (∼13 y). Combining the
occurrence of extreme droughts and pluvials, the highest return
time corresponds to the second half of the 20th century with one
extreme event every ∼4.5 y, while the second highest rate was
recorded during the 17th century (one event per 5.5 y). Both
analyses collectively indicate that widespread severe droughts
and extreme pluvials over the SADA domain have been more
frequent during the second half of the 20th century, relative to
the rest of the SADA period.

Hydroclimate Extremes and Societal Impacts. Four well-
documented extreme hydroclimatic events from three different
regions are characterized by historical information completely
independent of the SADA; note that the complete historical
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hydroclimatic reconstructions were compared in Fig. 1 D–F and
SI Appendix, Fig. S6 (SI Appendix, section 8). The silver mine
drought (1800 to 1804) was the most severe 5-y drought recorded
by Spaniards over more than 200 y of intensive mining in Potosí,
BoliviaQ: 15 (26, 27). Because water channels were used to power the
silver mills in Potosí, the occurrence of wet and dry spring–
summer seasons were consistently recorded between 1585 and
1807. SADA maps for the years 1800 to 1804 are consistent with
the recorded historical drought and show severe dry conditions
throughout the Altiplano (red square in Fig. 3A) that also extend
into northwest and central Argentina (Fig. 3A). In both the
SADA and historical data, the severity of the drought decreased
in 1802 and intensified again in the following 2 y (Fig. 3A).
Historical records describe 1863 as the year of “complete and

calamitous sterility” in central Chile (27). The great drought of
1863, which extended as far south as 40°S, allowed settlers in the
extremely humid localities of Puerto Varas and Puerto Montt to
burn and clear 30,000 ha of ancient rainforests. In this process of
land clearance for agriculture, the oldest specimens in the region
were burned (28). The 1863 SADA map (Fig. 3B) shows ex-
tremely dry conditions in central Chile and northern Chilean
Patagonia that persisted for the following 3 y (Fig. 3B).
The subtropical region of the La Plata basin is frequently ex-

posed to flood disasters. Cities and villages along the river
margins such as the city of Santa Fe (mid-Paraná River basin,
Argentine) have provided abundant documentary evidence of
significant flood events. Based on this information, Prieto (29)
reconstructed 38 large flood events between 1585 and 1815. We
highlight here the 1651 to 1652 and 1723 floods. The floods of
1651 to 1652 destroyed more than half of the city of Santa Fe,
leading to the relocation to its current position (29). Consistent
with this event, the 1651 SADA map (Fig. 3C) shows very wet
conditions throughout the La Plata basin, gradually decreasing
toward the Chaco region in Argentina, southern Brazil, and
Patagonia. In 1723, the villages and cultivated fields near the

Paraná River suffered severe flooding, causing damage to
buildings, diseases (e.g., dysentery), and loss of crops and live-
stock (29). The SADA map for the year 1723 shows extreme wet
conditions for the upper Paraná basin (eastern Paraguay,
southern Brazil, northeastern Argentina; Fig. 3C). These wet
conditions also extend to the Pampas and central-western
Argentina and gradually decrease toward central Chile. Our
selected cases demonstrate that the SADA provides reliable
spatiotemporal information on hydroclimate extremes and their
connections with socioeconomic impacts across much of SA.

Patterns of Hydroclimate Variability and the Influence of ENSO and
SAM. We used maximum covariance analysis (MCA) (30) to
isolate patterns with common temporal variability between large-
scale ocean–atmosphere climate modes and reconstructed
scPDSI fields from the SADA and ANZDA. MCA identifies a
coupled pattern explaining 48% of the total cross-covariance
between scPDSI and austral summer (DJF) sea surface tem-
peratures (HadISST dataset; SI Appendix, section 10, and
Fig. 4A) over the period 1901 to 2000. The spatial loadings show
an ENSO-like spatial pattern, where positive (negative) DJF
SSTs in the tropical Pacific are coupled with wet (dry) conditions
in southeastern SA (SESA), central Chile, and New Zealand.
Dry (wet) conditions were also indicated in the Altiplano and
central-east Australia during positive (negative) DJF SSTs. The
correlation coefficients between the DJF SSTs for the Niño 3.4
sector (HadISST_N3.4; SI Appendix, section 10) and the scPDSI
leading mode and SST leading modes are 0.63 (Fig. 4C) and
0.94, respectively. A similar spatial pattern emerges by applying
MCA to instrumental SSTs and scPDSI datasets (SI Appendix,
Fig. S8A) with a leading mode of coupled variability explaining
57% of the total covariance.
The MCA was repeated using DJF geopotential height at 500

mb (GPH500; SI Appendix, section 10) and reconstructed DJF
scPDSI from SADA and ANZDA over the period 1948 to 2000.
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The resulting coupled spatiotemporal pattern accounts for 32%
of the total cross-covariance and is consistent with the SAM (10)
spatial pattern. SAM, which is the primary mode of tropospheric
circulation variability south of 20°S (31), was correlated with the
first covariance-leading mode (scPDSI, r = 0.55; Fig. 4D;
GPH500, r = 0.67). Variations in the SAM phases result from
atmospheric mass exchanges between the sub-Antarctic (50 to
60°S) and mid-latitudes (40 to 50°S) in the SH. The positive
phase is associated with decreased geopotential heights over
Antarctica and strengthened and more poleward SH westerlies.
Consequently, drier conditions occur in central Chile, Patagonia,
New Zealand, and Tasmania during the positive phase (Fig. 4B).
During the negative phase, opposite conditions are observed.
Similar patterns emerged when MCA was applied to the in-
strumental GPH500 and scPDSI datasets, showing 28% of
shared covariance between these fields (SI Appendix, Fig. S8B).
The leading modes of covariance were extended over the com-
mon 1500 to 2000 period between SADA and ANZDA, and
used as estimators of past ENSO and SAM variability in the SH
domain, hereafter called ENSO-e and SAM-e, respectively
(Fig. 4 C and D). The relationships between different

paleoclimate ENSO and SAM reconstructions and our 500-y
ENSO-e and SAM-e estimates are shown in SI Appendix, Figs.
S9 and S10; correlations between the reconstructions are statis-
tically significant in most cases.
The ENSO-e and SAM-e time series are negatively correlated

(r = −0.60; P < 0.0001) over CE 1500 to 2000, providing a first
indication of persistent interactions between ENSO and SAM
over the past 500 y in the sense that La Niña causes a poleward
shift of the westerlies and, hence, a positive SAM. To explore the
influence of combinations of ENSO/SAM modes over the SA
hydroclimate during the past 500 y, we examined those years
when ENSO-e was negative and SAM-e was positive, and vice
versa. A total of 25 (26) events for each phase was identified
showing negative (positive) ENSO-e and positive (negative)
SAM-e coefficients. The SADA composite map for the 25 cou-
pled negative ENSO-e/positive SAM-e years (Fig. 4E) shows
dominant dry conditions over central Chile, Patagonia, and
southeast SA, whereas the Altiplano and northwestern Argen-
tina are wet. The 26-y composite scPDSI map for positive
ENSO-e/negative SAM-e years shows wet conditions across most
of the SADA domain (Fig. 4F). The MCA analysis therefore

Fig. 3. Summer scPDSI maps of historical extremely dry and wet events in three regions from SADA domain. (A) The silver mine drought of Potosí, Bolivia
(1800 to 1804). (B) The central Chile drought of 1863 (1863 to 1866). (C) Santa Fe city floods (1651, 1723). The red stars indicate the geographic location of
these recorded historical events.
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provides evidence that persistent “in-phase” (in terms of impacts
on the westerlies) ENSO/SAM anomalies explain most extended
past droughts and pluvials across the SADA domain from CE
1500 to 2000 (SADA–ANZDA common period).

Discussion
The SADA provides a long-term context for our present un-
derstanding of hydroclimate extremes in SA and identifies an
intensification of the most widespread severe droughts since the
mid-20th century (Fig. 2 A and C). This increase in extended
droughts is consistent with the positive trend documented in the
SAM during recent decades and the consequent poleward shift
of the westerlies and associated storm tracks, leading to drier
conditions in temperate southern SA (32, 33). Additionally, the

western subtropics are becoming drier in response to the pole-
ward expansion of the descending branch of the Hadley cell and
the consequent southern extension of the dry subtropical belts
(34). Concurrent with the intensification of widespread severe
droughts, the SADA shows that extreme pluvials were also more
frequent during the second half of the 20th century (Fig. 2 B and
D). The increase in extreme wet events is largely concentrated in
the wet SESA (SI Appendix, Fig. S7 C and G). Positive rainfall
trends were recorded in subtropical central-southeastern SA and
a parallel increase in the magnitude and frequency of extreme
wet events since the 1950s (35, 36). Precipitation in this region is
expected to increase under global warming scenarios (37) in-
ducing a southward displacement of both the South Atlantic
Convergence Zone and the Atlantic subtropical high (38). Ad-
ditionally, future projections indicate an intensification of the
low-level jet in SA, causing a wetting in SESA (39). However, the
wetting trend over SESA and the poleward shift of the westerlies
in summer are also modulated by ozone depletion over Ant-
arctica, and its projected recovery may revert these trends during
this century (10, 36).
SADA was developed using the same method of climate field

reconstruction used to produce six other independent drought
atlases, five in the Northern Hemisphere and the ANZDA in the
SH. The simultaneous use of the SADA and ANZDA allow us to
determine the influence of tropical–extratropical interactions on
hydroclimate variability in the Pacific domain of the SH over the
past several centuries. Using MCA (Fig. 4), we isolated the
coupled patterns of maximum-shared covariance between
reconstructed scPDSI from SADA and ANZDA, with hemi-
spheric SST and pressure field variations. Both reconstructed
and instrumental fields show important fractions of the total
explained covariance related to ENSO-like (48%) and SAM-like
(32%) spatial patterns. Taken together, these coupled spatio-
temporal patterns suggest that ENSO and SAM largely explain
most of the interannual scPDSI variability in the SADA and
ANZDA domains. Our results highlight that the combined im-
pacts between negative (positive) ENSO and positive (negative)
SAM events have modulated the occurrence of severe drought/
pluvial conditions in large areas of SA during the last 500 y.
Modeling will be required to determine whether these extreme
events arise from ENSO forcing of the SAM combined with
constructive internal SAM variability. In a long-term context, the
unprecedented persistent positive SAM trend in the last five
decades, coupled with the poleward migration of the westerlies,
has largely contributed to the persistent drying trends in south-
western SA (32, 33). Because persistent positive SAM conditions
are expected to continue for decades (38), even though rising
greenhouse gases and ozone recovery may induce opposite
trends (10), it is particularly important to advance our knowledge
on the ENSO–SAM interactions under global warming in the
21st century. Here, we demonstrate how SADA provides critical
hydroclimatic information that can be used to validate last mil-
lennium simulations and consequently assess whether models
realistically represent future tropical–extratropical interactions
and their synergistic impacts on SA hydroclimatic variability. The
use of SADA in combination with other drought atlases and
global climate field reconstruction products, such as the Paleo
Hydrodynamics Data Assimilation (40) and the Last Millennium
Reanalysis (41), therefore promises to improve our un-
derstanding of SH hydroclimate variability and change on in-
terannual to centennial timescales and therefore refine our
ability to project near-future changes due to continued emission
of greenhouse gases into the atmosphere.

Materials and Methods
Observational Climate and Tree Ring Data. The observational data used to
compute instrumental scPDSI was an ensemble of the interpolated fields of
monthly climate observations from three datasets: 1) precipitation,
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temperature, and potential evapotranspiration data from the Climatic Re-
search Unit Time Series (CRU) TS 4.01 (42), enhanced by the incorporation of
precipitation and temperature records from the Argentinean Institute of
Snow, Ice and Environmental Research (IANIGLA-CONICET) database (SI
Appendix, section 1 and Fig. S1); 2) precipitation and air temperature
dataset from the University of Delaware (43); and 3) the precipitation
dataset from Global Precipitation Climatology Centre (44). The computed
monthly scPDSI data were seasonalized to develop average data for the
austral summer season (DJF). The DJF scPDSI reflects spring–summer soil
moisture conditions from 2,715 grid cells (0.5° longitude by 0.5° latitude)
covering the study domain (12° to 56°S; 50° to 80°W) (SI Appendix,
section 2).

During the last several decades, tree ring scientists from Chile, Argentina,
and Bolivia have vastly increased tree ring sample collections in SA (17). The
SADA includes data from 288 tree ring chronologies (SI Appendix, section 3
and Table S1), mainly concentrated on both sides of the Andes Cordillera
(16° to 56°S), from the Altiplano and intermontane subtropical valleys to the
Patagonian forests at the southern tip of the continent (Fig. 1A). Addition-
ally, new collections from tropical lowlands have allowed extension of the
geographical coverage of tree ring records to lower latitudes. The target
period (CE 1400 to 2000) for reconstruction of scPDSI is the consequence of a
relatively high number of longer tree ring chronologies and good spatial
coverage along the Andes (SI Appendix, Fig. S3). To preserve medium fre-
quency variability due to climate, the 288 tree ring chronologies were
standardized using “signal-free” methods (45) (SI Appendix, section 4).

Reconstruction Method. A modification of the well-tested nested PPR method
(22) was used to produce the SADA (SI Appendix, section 5). The version
presented here is an average derived from an ensemble approach using
15-ensemble members, where each member uses a different search radius
(200-, 500-, 800-, 1,100-, and 1,500-km distance) to locate the tree ring
chronologies for reconstructing scPDSI at each grid point based on a
weighted power correlation (P = 0; P = 1; P = 2) between tree ring chro-
nologies and scPDSI (23). The 15 output model members were averaged,
recalibrated, and revalidated directly against instrumental data. The aver-
age correlation between ensemble members at each grid point was then
calculated. Because opposite precipitation trends occur on both side of the
highest Andes region (24° to 38°S), we produce two independent
15-member ensemble reconstructions on each side of the Andes that were
merged to create a final reconstruction.

Comparison between Historical and Tree Ring-Based Hydroclimate
Reconstructions. SEA, a nonparametric statistical technique, was used to
determine the relationships between the regional scPDSI reconstructions and
drought/pluvial events from climate reconstructions based on historical re-
cords. The selected scPDSI regions (red rectangles in Fig. 1A) for these
analyses were the Altiplano (17° to 23°S; 66° to 70°W), central Chile (30° to
37°S; 70° to 72°W), and part of La Plata basin (31° to 37°S; 56° to 61°W). The
historical sources are precipitation records from Potosí, Bolivia (Altiplano;
ref. 21), the snow and drought records from the Andes region of central
Chile (ref. 46 and sources references therein), and the flood records in the
city of Santa Fe (mid-Paraná river, La Plata basin; ref. 29). In this analysis, the
regional scPDSI records were used as the background time series and the
dates of dry/wet-flood years in the historical series as event years (Dataset
S1). For each event, a 9-y lag window was used with the event year as the
central value plus 4 y before and after the event. The 9-y scPDSI data were
averaged for each event to produce a mean pattern related to the historical
event. The mean scPDSI pattern for the selected years was statistically
evaluated for significance (95% confidence interval) by performing 1,000
Monte Carlo simulations (47) using random years from the scPDSI record.

Analysis of Hydrological Extreme Events. Dry and wet events were charac-
terized by their intensity and spatial extent. We calculated the average of
scPDSI for the entire SADA domain from CE 1400 to 2000. Extreme intensity
dry/pluvial events were determined by including scPDSI values lower/higher
than the 95th and 5th percentiles, respectively. To determine large spatially

widespread dry and wet events, we first calculated the interannual fluctu-
ations in the percent area of severe dry/wet conditions, i.e., the total number
of grid points with scPDSI values less than −2 for severe dry and greater than
2 for severe wet years. Those severe dry/wet events that exceeded the 95th
percentile of spatial extent were considered extreme spatially widespread
pluvial/drought events. Temporary changes in the occurrence-rate estima-
tion of extremes in intensity and spatial extent of drought/pluvial events
were estimated using the nonparametric kernel function. This technique
allows the detection of nonmonotonic trends without imposing parametric
restrictions. For this purpose, a Gaussian kernel function was applied in or-
der to estimate the probability of occurrence of one specific extreme event
using a 60-y bandwidth. To better interpret these estimates, confidence
bands at the 95% level were obtained using 1,000 bootstrap simulations
(48, 49).

MCA for Reconstructed scPDSI and Climate Modes. To describe how SST and
geopotential height (500 mb) (SI Appendix, section 10, for dataset reference)
covary with the summer scPDSI from the SADA and the ANZDA, we used
MCA. This method is widely used in climate research and identifies coupled
patterns in two data fields that share the maximum amount of covariance
(50). This statistical tool identifies the common signal while separating sto-
chastic noise from other factors. The leading modes obtained by MCA were
used as estimators of ENSO (ENSO-e) and SAM (SAM-e) variability for the
past 500 y (Dataset S2). The resulting time series of the difference between
both climate index estimators was used to determine the anomalous neg-
ative/positive values by the 5th and 95th percentiles, respectively (Dataset
S3). The 25 (26) negative (positive) values were associated with coupled
anomalous negative (positive) ENSO-e and positive (negative) SAM-e events.

Data Deposition. Tree ring chronologies, instrumental and reconstructed
scPDSI (SADA) are available at the Center for Climate and Resilience Research
(CR)2, www.cr2.cl/. Historical hydroclimate reconstructions together with
regional scPDSI used to validate each proxy are presented in Supplementary Q: 16

Data. The main leading modes used as estimators of ENSO and SAM vari-
ability for the past 500 y together with the 25 (26) negative (positive) cou-
pled ENSO/SAM events are also presented in Supplementary Q: 17Data.
Additional instrumental climate data used in the paper are available in the
corresponding hosting websites.
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