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ABSTRACT

Turbulence is well represented by atmospheric models at very fine grid sizes, from 10 to 100 m, for which

turbulent movements are mainly resolved, and by atmospheric models with grid sizes greater than 2 km, for

which those movements are entirely parameterized. But what happens at intermediate scales, Wyngaard’s so-

called terra incognita?

Here an original method is presented that provides a new diagnostic by calculating the subgrid and resolved

parts of five variables at different scales: turbulent kinetic energy (TKE), heat and moisture fluxes, and potential

temperature and mixing ratio variances. They are established at intermediate scales for dry and cumulus-topped

convective boundary layers. The similarity theorem allows the determination of the dimensionless variables of

the problem. When the subgrid and resolved parts are studied, a new dimensionless variable, the dimensionless

mesh size Dx/(h 1 h
c
), needs to be added to the Deardorff free convective scaling variables, where h is the

boundary layer height and hc is the height of the cloud layer. Similarity functions for the subgrid and resolved

parts are assumed to be the product of the similarity function of the total (subgrid plus resolved) variables and

a ‘‘partial’’ similarity function that depends only on Dx/(h 1 hc). In order to determine the partial similarity

function form, large-eddy simulations (LES) of five dry and cloudy convective boundary layers are used. The

resolved and subgrid parts of the variables at coarser grid sizes are then deduced from the LES fields.

The evolution of the subgrid and resolved parts in the boundary layer with Dx/(h 1 hc) is as follows: fine

grids mainly resolve variables. As the mesh becomes coarser, more eddies are subgrid. Finally, for very large

meshes, turbulence is entirely subgrid. A scale therefore exists for which the subgrid and resolved parts are

equal. This is obtained for Dx/(h 1 hc) 5 0:2 in the case of TKE, 0.4 for the potential temperature variance,

and 0.8 for the mixing ratio variance, indicating that the velocity structures are smaller than those for the

potential temperature, which are smaller than those for the mixing ratio. Furthermore, boundary layers

capped by convective clouds have structures larger than dry boundary layer ones as displayed by the

Dx/(h 1 hc) scaling in the partial similarity functions.

This new diagnostic gives a reference for evaluating current and future parameterizations at kilometric scales.

As an illustration, the parameterizations of a mesoscale model are eventually evaluated at intermediate scales.

In its standard version, the model produces too many resolved movements, as the turbulence scheme does not

sufficiently represent the impact of the subgrid thermal. This is not true when a mass-flux scheme is introduced.

However in this case, a completely subgrid thermal is modeled leading to an overestimation of the subgrid part.

1. Introduction

Atmospheric turbulence ranges over various spatial

scales, from typical turbulence production scales (those

of the largest eddies in the form of thermals that stretch

from the bottom to the top of the boundary layer) to

eddy sizes where molecular forces disperse the turbulent

kinetic energy (TKE). The representation of turbulence

in atmospheric models is essential as eddies impact both

the mean flow through mixing, and by dispersion of TKE

into internal energy by friction at the ground.

Two types of models are used in the atmospheric

sciences. Large-eddy simulations (LES) [first used by

Deardorff (1970b)] are generally used to study turbulence

processes, in particular in the dry boundary layer, but also

more recently in boundary layer clouds. These models still

rely on parameterization schemes for small scales. Huang

et al. (2009) show that LES are able to represent the con-

vective boundary layer (CBL) quite accurately. Sullivan

and Patton (2008) performed several runs on a 4 km2
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domain in which the grid mesh ranged from 2 to 64 m.

They found a sensitivity of their model to the grid size in

the surface boundary layer (SBL). This sensitivity was

largely decreased in the mixing layer or in the entrainment

zone, thereby validating the use of LES for 64-m grid size in

the CBL. Nowadays, LES are used as a complement to

experimental data. For example, a comparison between

the nonhydrostatic mesoscale model Méso-NH LES model

(Lafore et al. 1998) and lidar data enabled the velocity

fluctuation spectrum to be defined in the SBL by Drobinski

et al. (2007). The LES model can also be used to com-

pensate for a lack of experimental data (Sandu et al. 2008).

At larger scales, such as for operational weather and

climate models, as well as research mesoscale models, the

mesh size generally ranges from a few hundred kilometers

to a few kilometers. As this horizontal grid size is larger

than the boundary layer height (typically 2 km), all tur-

bulent eddies are subgrid. In such a model, a turbulence

scheme takes into account the effects of mixing and fric-

tion on the mean flow. This turbulence parameterization

is known as 1D since, for these scales, the boundary layer

is assumed to be horizontally homogeneous; thus, mixing

only occurs in the vertical. Pergaud et al. (2009, hereafter

PMMC09) used LES to assess the improvement resulting

from the introduction of a mass-flux scheme for the rep-

resentation of such turbulence in Méso-NH at the con-

sidered scale. In this model, local turbulence is expressed

via the turbulent exchange coefficients, whereas ther-

mals (nonlocal turbulence) are represented by a mass-

flux scheme.

Thanks to increasing computational resources, numer-

ical weather prediction models are now running opera-

tionally with grid size as small as 2 km. This is the case, for

example, for the Application of Research to Operations at

Mesoscale (AROME) model (Seity et al. 2011) in France

or the Global Environmental Mesoscale (GEM) model

(Côté et al. 1998) in Canada. It is likely that in the future

such models will reach a grid size on the order of 1 km or

even 500 m. Turbulence is well represented at meshes

larger than 2 km by such models (for which the turbulence

is entirely subgrid) and at very fine meshes (10–100 m) for

which it is mainly resolved in the LES models (Fig. 1). So

the question arises as to what happens at intermediate

scales. Wyngaard (2004) studied this region, which he

called ‘‘terra incognita.’’ He affirmed, using experimental

data, that in the near-neutral to moderately convective

SBL, modeling a tensor diffusion term would properly

simulate this zone. Cheng et al. (2010) simulate cloudy

boundary layers with grid spacings ranging from 50 m to

4 km in order to investigate the effect of the horizontal

and vertical grid sizes on boundary layer clouds and

resolved/subgrid partitioning of turbulence parameters.

They show the strong dependency of resolved/subgrid

partitioning on horizontal grid spacing by comparing

modeled clouds and turbulence to LES. However, until

now no universal law has been presented that would make

it possible to evaluate the partitioning quantitatively.

The aim of this article is to quantify the resolved and

subgrid parts of the turbulence at different scales for any

free CBL, in order to provide a new diagnostic that can be

FIG. 1. From LES modeling to 1D modeling: in LES modeling, the largest eddies are explicitly represented. Eddies that are smaller than

the mesh size are parameterized. The coarser the meshes are, the more the eddies are subgrid.
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used as a reference for evaluating current and future pa-

rameterizations for modeling the terra incognita. Note that

no parameterization scheme is developed in this article.

The outline of the article is as follows. Section 2 presents

the data and the method used to determine the resolved

and subgrid parts of the turbulence. Section 3 documents

the characteristics of the reference evolution of these parts

with respect to the grid size, and it describes the similarity

functions of this evolution. In section 4, state-of-the-art

model simulations are compared with reference values at

various horizontal scales in order to evaluate the error

within the terra incognita. Conclusions and perspectives

are discussed in section 5.

2. Methods

a. Free convective boundary layer scaling

The objective here is to characterize CBL turbulence at

kilometric scales in order to provide a diagnostic for tur-

bulence schemes and models in the terra incognita. In order

to determine the resolved and subgrid parts of the turbulent

parameters for several grid sizes, this study uses a method

based on the Vaschy–Buckingham theorem. According to

Deardorff (1970a) and Deardorff (1972), the convective

velocity scale w* 5 (bH
0y

h)1/3 can be used to scale the total

TKE. Here b is the buoyancy parameter, H0y is the kine-

matic surface buoyancy flux, and h is the height of the CBL.

The form of the relation determining the evolution of

the total TKE etotal is

etotal

(w*)2
5 Fe

total

z

h

� �
. (1)

Similarly, the heat flux w9u9 is scaled by H0 (the surface heat

flux); the variance of potential temperature u92 is scaled by

(H
0
/w*)2; the moisture flux w9q9 is scaled by E0 (the sur-

face moisture flux); and the water vapor mixing ratio vari-

ance q92 is scaled by (E0/w*)2. The dimensional analysis

of the different parameters shows that they depend only on

z/h. The functions describing the different parameters are

w9u9

H0

5 F
w9u9

z

h

� �8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

u92
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5 F

u92

z

h

� �
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5 F
w9q9

z

h

� �
q92

(E0/w*)2
5 F

q9
2

z

h

� �
.

(2)

The forms of the functions are traditionally obtained

in a second step, by experimental studies. Some examples

of the similarity functions are given in the literature

(Lenschow et al. 1980; Moeng and Wyngaard 1984;

Sorbjan 1991).

b. Resolved/subgrid partitioning in dry CBLs

To determine the resolved and subgrid parts of the

TKE, as well as the variances and fluxes of moisture and

potential temperature by using the similarity theorem

(Buckingham 1914), it is necessary to introduce a new

parameter: the mesh size Dx. Therefore, there are six

parameters in the dry convective boundary layer scaling:

b, H0, h, Dx, esbg (the subgrid turbulent kinetic energy),

and z (cf. the dimensional matrix; Table 1).

The rank of the dimensional matrix is three. According

to the similarity theorem, there are three dimensionless

factors Pi linked by a function F as P1 5 F(P2, P3). As for

etotal [Eq. (1)], the following scale factors are introduced:

e
sbg

/(w*)2 and z/h. Eventually, a new dimensionless fac-

tor Dx/h appears. This is the dimensionless horizontal

mesh size. The relation determining the subgrid TKE is

esbg

(w*)2
5 Fe

sbg

z

h
,
Dx

h

� �
.

The resolved TKE eres can be expressed similarly. We

assume that total fields do not depend on the grid size of

the model [e.g., e
total

/(w*)2
5 F

etotal
(z/h)]. We now con-

sider the partitioning

esbg

etotal

5
Fe

sbg

Fe
total

5 Pe
sbg

Dx

h
,
z

h

� �
, (3)

where P
esbg

is the function that gives the evolution

of esbg/etotal as a function of a priori z/h and Dx/h. Note

that P will be called a partial similarity function, e in-

dicates the parameter (here TKE), and sbg means ‘‘sub-

grid.’’ The resolved TKE partial similarity function is

noted as Peres
.

The ratio esbg/etotal is linked to the turbulent coherent

structure width, which is well defined in CBLs: plumes in

the SBL, thermals in the mixing layer (ML), and pene-

trating thermals in the entrainment zone (EZ). Thus, it

can be assumed that, in each of these three regions (SBL,

TABLE 1. The dimensional matrix of the problem: determination

of the subgrid TKE in a free CBL.

esbg b H0 z h Dx

Length (m) 2 1 1 1 1 1

Mass (kg) 0 0 0 0 0 0

Time (s) 22 22 21 0 0 0

Temperature (K) 0 21 1 0 0 0
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ML, and EZ) the partition does not depend on z/h.

Therefore,

esbg

etotal

5 Pe
sbg

Dx

h

� �
. (4)

This leads to the relationship e
sbg

/(w*)2
5 F

etotal
(z/h) 3

Pesbg
(Dx/h). Note that Fetotal

(z/h) has already been docu-

mented (Lenschow et al. 1980; Moeng and Wyngaard

1984; Sorbjan 1991). This article focuses on the deter-

mination of the partial similarity functions for the subgrid

Psbg and resolved Pres parts of the TKE, the heat and

humidity fluxes, and the potential temperature and water

vapor mixing ratio variances. As Pres 5 1 2 Psbg for any

parameter, only the subgrid similarity functions are

determined.

We now evaluate the specific case of P
esbg

for asymptotic

Dx/h in the boundary layer. For very large grid meshes

Pesbg
5 1. For small grid meshes the TKE subgrid part

is small but nonzero, so that esbg can be written as

esbg 5

ð‘

(1/2p)(1/Dx)

E(k) dk,

where E is the TKE spectral density and k the wave-

number. For LES mesh size, Dx is in the inertial part of the

Kolmogorov spectrum. According to Kolmogorov (1942),

in this region of the spectrum, E 5 C
k
�2/3k25/3, where Ck is

the Kolmogorov constant and � is the TKE dissipation

rate. Assuming that the energy spectrum extends to very

small meshes (i.e., the case when the Reynolds number is

high), we obtain

esbg ’
Dx’0

ð‘

(1/2p)(1/Dx)

Ck�
2/3k25/3 dk

5 2
3

2
Ck�

2/3k22/3

�‘

(1/2p)(1/Dx)

"

5
3

2
Ck(�2p)2/3(Dx)2/3. (5)

So, Pesbg
}

Dx’0
(Dx/h)2/3.

c. Resolved/subgrid partition in cloud-topped CBLs

In cloud-topped boundary layers hc the height of the

cloud layer above the BL influences at least the size of the

structures in the cloud layer and can even influence the size

of the structures in the underlying boundary layer. The

value of hc depends on the history of the fluxes, the strength

of the inversion at the top of the boundary layer, and the

stability and the humidity in the free troposphere. Thus, it

is independent of the dry boundary layer scaling and it has

to be taken into account as an independent parameter in

the scaling of cloudy boundary layers. The rank of

the dimensional matrix (not shown) is 4. The relation

determining the subgrid TKE is esbg/(w*)2
5 Fesbg

(z/h, Dx/h, hc/h). The similarity functions for the total pa-

rameters only depend on the value of z/h as in the dry

boundary layers (Lenschow et al. 1980; Moeng and

Wyngaard 1984). Thus we assume that esbg/(w*)2
5 Fetotal

(z/h) 3 P
esbg

(Dx/h, h
c
/h). At this point, we cannot go

further but afterward (cf. section 3a) Pesbg
is found in the

form Pesbg
f(Dx/h) 3 [1/(1 1 h

c
/h)]g5 Pesbg

[Dx/(h 1 h
c
)].

Note that this last equation is valid in dry boundary

layers as hc is null.

d. Experimental data used to simulate the free
convective boundary layers

Three different cases of dry CBL representing different

conditions as attested by the spread in boundary layer

height and surface fluxes are presented in this paragraph.

The first case is derived from the International H2O Proj-

ect (IHOP_2002) campaign (Weckwerth et al. 2004). It

corresponds to a clear continental growing CBL reach-

ing 1.5 km with low winds and weak vertical shear [see

Couvreux et al. (2005) for details of this case]. The simu-

lation lasts for 7 h. The second case is derived from the

Wangara campaign (Clarke et al. 1971), conducted in July

and August 1967 at Hay, Australia. The simulation of this

growing boundary layer (without horizontal advection)

lasts from 0900 to 1600 local time. The last case is derived

from the African Monsoon Multidisciplinary Analysis

(AMMA) field campaign (Redelsperger et al. 2006). The

heat flux is twice as large as in the previous simulations.

TABLE 2. Modeled boundary layer mean values over the duration of the simulations for characteristic parameters: analyzed duration,

averaged boundary layer height, averaged cloud base height, averaged surface buoyancy flux, averaged surface humidity flux, convective

vertical velocity, friction velocity, and Monin–Obukhov length.

Duration (h) h (m) zCB (m) H0y (m s21 K) E0 (m s21 kg kg21) w* (m2 s22) u* (m2 s22) LMO (m) 2 h/L
MO

Wangara 4 1203 — 0.17 2 3 1025 1.9 0.05 20.11 4715

IHOP 5 1046 — 0.17 6 3 1025 1.78 0.29 212 94

AMMA 4 1819 — 0.34 0 2.66 0.34 210 225

BOMEX 8 580 540 0.08 5.38 3 1025 0.52 0.28 2220 2.4

ARM 7 1076 1020 0.09 1.31 3 1025 1.37 0.46 28.3 10.9
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This case was added to the two previous cases because of

the very high boundary layer encountered (2200 m at

1500 local time).

The first and last cases have been extensively validated

against observations [see Couvreux et al. (2005) and

Canut et al. (2011, manuscript submitted to Bound.-Layer

Meteor.) for the first case]. The first 2 h of all simulations

are considered as spinup. Since the wind is strong at

the beginning of the AMMA simulation, the following

2 h are also removed from this case. The criteria used to

select hours corresponding to free convective conditions

(Deardorff 1972) are defined as 2h/L
MO

$ 50, with LMO

being the Monin–Obukhov length. The three-dimensional

data used in this study are extracted every 300 s.

In addition, two cases of cumulus nondrizzling CBL

are investigated. The first case is derived from the

Barbados Oceanographic and Meteorological Experi-

ment (BOMEX). The case presents marine shallow cu-

mulus (Siebesma et al. 2004). The second is based on an

idealization of the experiment situated at the Southern

Great Plains site of the Atmospheric Radiation Mea-

surement Program (ARM). Brown et al. (2002) presents

this cloudy convection over land. A summary of the

simulation properties is listed in Table 2.

e. Description of the LES

The Méso-NH model (Lafore et al. 1998) is used to

simulate the five different boundary layers described in

FIG. 2. Vertical profiles of (a) TKE, (b) heat flux, and (c) variance of potential temperature u from IHOP (circles),

AMMA (diamonds), and Wangara (squares) simulations.
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section 2d. LES of the five idealized flat diurnal cases are

performed on a 16 3 16 3 5 km3 domain. According to

De Roode et al. (2004), the dominant length scale in a

clear CBL without moisture is on the order of (or twice)

the boundary layer height and if one includes clouds, the

dominant length scale increases. Here, LES are performed

on a 16 3 16 km2 horizontal domain size, which is large

enough to resolve large-scale fluctuations as the boundary

layer height is always smaller than 2.5 km. The horizontal

grid size is 62.5 m. Vertical grid sizes vary depending on

the simulated case. However, vertical grid spacing is al-

ways less than 100 m in the boundary layer with increasing

grid size near the ground. Initial profiles for potential

temperature and water vapor mixing ratio and prescribed

surface fluxes are derived from observations of the five

experimental cases. A turbulence 3D scheme using the

Deardorff length scale (grid size, limited by the stability

in the EZ; Cuxart et al. 2000) simulates the small three-

dimensional eddies.

The LES results are used as a reference thereafter. The

horizontal grid spacing of 62.5 m ensures that the main

part of the turbulence is resolved. To check that the tur-

bulence was mainly resolved, simulations have been

performed at 62.5, 125, 250, and 500 m (not shown) and

we have checked that the total TKE reaches an asymptote

when the grid mesh becomes smaller than 150 m in

agreement with Sullivan and Patton (2008), suggesting

that a 62.5-m grid size LES is a good reference. This is also

in agreement with Cheng et al. (2010), who looked at the

sensibility to horizontal grid spacing from 50 to 4000 m.

Figure 2 shows the vertical profiles of TKE, heat flux,

and potential temperature variance scaled by the Dear-

dorff normalization for IHOP, AMMA, and Wangara

data of the total (resolved plus subgrid) parameters as

a function of z/h and for all times (one profile every 300 s).

These variables essentially depend on z/h, suggesting that

the assumptions of using the Deardorff scaling and having

the total parameter depending only on the scaled height

are good approximations, except for z/h # 0:2, which

corresponds to an area where ground wind shear cannot

be neglected and thus where the Deardorff scaling is in-

adequate. This is consistent with 2h/LMO $ 50, which

allows us to affirm that the cases modeled correspond to

free convective conditions. Moreover, Fig. 2 shows that

the scaled parameters do not depend on time and can be

considered to be in a quasi-steady state.

Partial similarity functions P are determined for the

three dry LES (IHOP, AMMA, and Wangara), as well as

for the two cloudy LES (BOMEX and ARM). Horizontal

spatial means of the parameters (wind components, po-

tential temperature, and water vapor mixing ratio) are

calculated in order to obtain the theoretical values that an

ideal model should have when its grid size is intermediate

between 62.5 m and 8 km, as shown in Fig. 3 and detailed

in section 2f.

f. Successive horizontal spatial means

In this study, we focus on the following parameters:

TKE, the heat and moisture flux, and the potential tem-

perature and water vapor mixing ratio variance vertical

profiles. For illustration, the method is explained on the

example of TKE. The reference total TKE is derived from

the LES at 62.5 m. The resolved TKE is calculated at

a 62.5-m grid size from the mean wind on each model mesh:

eres(62:5 m) 5
1

2
h(u 2 hui)2

1 (y 2hyi)2
1 (w 2 hwi)2i.

(6)

Here eres(Dx) is the resolved TKE part modeled with

a grid size Dx,

FIG. 3. Illustration of the approach: successive means at different scales for (left) Dx equal to the LES mesh size, (middle) Dx equal to 2

times the LES mesh size, and (right) Dx equal to 4 times the LES mesh size.
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eres(Dx) 5
1

2
h(uDx 2 hui)2

1 (yDx 2 hyi)2

1 (wDx 2 hwi)2i; (7)

uDx
i is the resolved part of one wind component for a mesh

size Dx; and huii is its mean over the whole domain, which

is independent of the grid size. These quantities are ob-

tained at other scales by successive means (cf. Fig. 3):

(u62:5, y 62:5, w62:5) mean
/

(u125, y125, w125) mean
/

. . . mean
/

(u8000, y8000, w8000)

Y Y Y
eres(62:5 m) eres(125 m) . . . eres(8 km)

.

Once the resolved part is known, the subgrid part can

be determined. The total energy is the sum of the refer-

ence simulation resolved and subgrid parts and is sup-

posed not to depend on the grid size. The energy subgrid

part at the desired grid spacing Dx is thus deduced from

the total energy at 62.5 m and the resolved part at the

given grid size as

esbg(Dx) 5 esbg(62:5 m) 1 eres(62:5 m) 2 eres(Dx).

(8)

Similarly, the subgrid and resolved parts of the heat

and moisture fluxes and variances are obtained at the

different scales.

3. Results

a. Evaluation of partial similarity functions

1) MEAN FIELDS

Horizontal cross sections of potential temperature,

vertical velocity, and water vapor mixing ratio at 500-m

FIG. 4. Horizontal cross sections of the IHOP case of (a)–(h) potential temperature (304.1 $ u $ 304.9 K), (i)–(p) vertical velocity (22.5 $

w $ 3.0 m s21), and (q)–(x) water vapor mixing ratio (6.5 3 1023 $ qy $ 8.3 3 1023 kg kg21) at 500-m altitude at different grid sizes from

62.5 m to 8 km. (aa)–(ha) Horizontal cross sections of the ARM case of potential temperature (303.2 $ u $ 303.8 K) at 500-m altitude at

different grid sizes from 62.5 m to 8 km.
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altitude and at different grid sizes of the IHOP simulation

are shown in Fig. 4. They show that, as the grid size

increases, the field tends toward the mean value over the

domain, while its variance tends toward zero. Resolved

structures vanish when the mesh size increases. They dis-

appear more rapidly in the SBL, where the eddy size is

smaller than in the ML (not shown). They also vanish more

rapidly for the potential temperature field than for the

water vapor mixing ratio field (Fig. 4) as the characteristic

size of the structures is larger than those for potential

temperature and vertical velocity, in agreement with De

Roode et al. (2004).

2) TURBULENT KINETIC ENERGY

The resolved and subgrid TKE, scaled by the total

TKE as a function of the scaled mesh size (the mesh size

scaled by the boundary layer height plus the height of

the cumulus cloud; in the dry LES the height of the cloud

layer is null), are presented in Fig. 5b for the five cases.

Each point represents instantaneous data collected every

300 s at every vertical level. For the fine Dx/(h 1 h
c
), even

if it is nonzero, the subgrid part is much smaller than

the resolved one. When the grid size increases [when

Dx/(h 1 hc) becomes larger], the subgrid part increases

until a scale is reached for which the two parts have the

same value (vertical purple line). Finally, there is another

characteristic scale, for which the parameter becomes

entirely subgrid as the resolved part is smaller than 5%

(vertical green line). Those scales are commented on later

in this document.

The partial similarity functions (black) are obtained

by regression using data from the five LES. The turbu-

lent kinetic energy can be expressed in this form:

Pe
sbg

Dx

h 1 hc

� �
ML

5
[Dx/(h 1 hc)]2 1 (7/100)[Dx/(h 1 hc)]2/3

[Dx/(h 1 hc)]2 1 (3/21)[Dx/(h 1 hc)]2/3 1 (3/42)

6 0:12 exp(2flog[Dx/(h 1 hc)] 1 1:9g2/5). (9)

This similarity function correctly represents the subgrid

ratio for all five cases (Fig. 5b) for 0:05 # z/h # 0:85 (in

the ML).

To give an idea of the uncertainty linked to the laws,

box-and-whisker plots are shown in Figs. 5–8 (and Fig. 14).

They summarize the median and the variance of the re-

solved data per class of Dx/(h 1 hc). The variances of the

data are bell shaped when they are plotted as a function of

Dx/(h 1 h
c
) in a logarithmic scale. Therefore, the bounds

of the confidence interval, which correspond to the first

FIG. 5. Partition of the resolved TKE (crosses; IHOP: red,

Wangara: orange, AMMA: yellow, ARM: pink, BOMEX: wheat)

and subgrid TKE (circles; IHOP: blue, Wangara: cyan, AMMA:

green, ARM: purple, BOMEX: violet) as a function of the di-

mensionless mesh: (a) in the EZ and (b) in the ML. In the legend, I.

means IHOP, A. means AMMA, W. means Wangara, B. means

BOMEX, and R. means ARM. The vertical purple line represents

the scale for which subgrid and resolved TKE have the same value.

The black lines represent the partial similarity functions. The ver-

tical dark green line is the scale for which the total TKE is more than

95% subgrid. The gray box-and-whiskers plots summarize the me-

dian and the variance of the resolved data per class of Dx/(h 1 hc).

The gray line in (a) is the similarity function from (b). The fine black

lines on both sides of the similarity functions are the first and the last

vigintiles of the data.
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and the last vigintiles of the data (the fine black lines

shown in Figs. 5–8), are assumed to have the same mathe-

matical form, namely a exp(2flog[Dx/(h 1 hc)] 2 bg2/c),

where a, b, and c are constants calculated by the least

squares method.

In the entrainment layer (0:85 # z/h # 1:1), the scale

for which the subgrid and the resolved parts have the

same value has moved to coarser scale, which means that

the TKE structures in the EZ are larger than in the

mixed layer. A new function [Eq. (10)] is found that is

valid for 0:85 # z/h # 1:1 (Fig. 5a):

Pe
sbg

Dx

h 1 hc

� �
EZ

5
[Dx/(h 1 hc)]2 1 (4/21)[Dx/(h 1 hc)]2/3

[Dx/(h 1 hc)]2 1 (3/20)[Dx/(h 1 hc)]2/3 1 (7/21)

6 0:15 exp(2 log[Dx/(h 1 hc)] 1 1:5
� �2/3).

(10)

3) HEAT AND MOISTURE FLUX

Figure 6c shows that, when the grid size is fixed, the ratio

for heat flux (w9u9l )sbg/(w9u9l )total has several values (in the

SBL, z # 0.2 h). The assumption that the partial similarity

function does not depend on z/h is no longer valid so close

to the surface. At approximately two-thirds of the bound-

ary layer height, the heat flux, mainly governed by the

boundary layer top entrainment, becomes negative. Thus,

FIG. 6. Resolved (crosses) and subgrid (circles) heat flux scaled

by the total heat flux as a function of the dimensionless mesh size.

(a) EZ, (b) ML, and (c) SBL. Color codes are as in Fig. 5.

FIG. 7. Resolved (crosses) and subgrid (circles) humidity flux

scaled by the total humidity flux as a function of the dimensionless

mesh size. Color codes are as in Fig. 5.
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the heat flux is defined separately for two zones [Eq. (11)]:

below and above the two-thirds of the boundary layer,

where the total heat flux (w9u9l )total is null. These functions

(w9u9
l
)

sbg
/(w9u9

l
)

total
are shown in Figs. 6a and 6b.

P
(w9u9

l
)

sbg

Dx

h 1 hc

� �

5

1

2

[Dx/(h 1 hc)]2 2 (4/25)

[Dx/(h 1 hc)]2 1 (4/25)
1

1

2
6 0:15 exp(2flog[Dx/(h 1 hc)] 1 0:98g2/2:10) for 0:2 #

z

h
# 0:55

1

2

[Dx/(h 1 hc)]2 1 0:05[Dx/(h 1 hc)]1/4 2 (11/40)

[Dx/(h 1 hc)]2 1 0:05[Dx/(h 1 hc)]1/4 1 (11/40)

1
1

2
6 0:14 exp(2flog[Dx/(h 1 hc)] 1 0:91g2/2:62) for 0:85 #

z

h
# 1:0

.

8>>>>>>>><
>>>>>>>>:

(11)

Note that P
(w9q9t )sbg

5 (w9q9
t
)

sbg
/(w9q9

t
)

total
is shown in

Fig. 7 for the five boundary layer cases. A well-defined

function [cf. Eq. (12)] can be obtained. It is valid between

z/h 5 0:2 and z/h 5 0:9. This is remarkable because

moisture conditions for the five boundary layers are very

different.

P
(w9q9

t
)

sbg

Dx

h 1 hc

� �
5

1

2

[Dx/(h 1 hc)]2 1 (3/100)[Dx/(h 1 hc)]1/4 2 (4/13)

[Dx/(h 1hc)]2 1 (3/100)[Dx/(h 1 hc)]1/4 1 (4/13)

1
1

2
6 0:17 exp(2flog[Dx/(h 1 hc)] 1 1:17g2/2:8) (12)

The moisture and heat fluxes present similar behavior for

altitudes below 0.2(h 1 hc). In the entrainment zone, the

moisture flux no longer follows Eq. (12) and the subgrid

and resolved parts are less well drawn. In these cases, en-

trainment is paramount for the moisture variability.

4) TEMPERATURE AND MOISTURE VARIANCE

Partial similarity functions for the subgrid potential tem-

perature variance are valid between z/h 5 0:2 and z/h 5 1:1

(i.e., the quasi totality of the boundary layer; cf. Fig. 8a):

FIG. 8. The variance of (a) the resolved (crosses) and subgrid (circles) potential temperature scaled by the total

variance of the potential temperature and (b) the resolved (crosses) and subgrid (circles) water vapor mixing ratio scaled

by the total variance of water vapor mixing ratio as a function of the dimensionless mesh size. Color codes are as in Fig. 5.
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P
(u9

l
2)sbg

Dx

h 1 hc

� �
5

1

2

[Dx/(h 1 hc)]2 1 (2/10)[Dx/(h 1 hc)]2/3 2 (26/100)

[Dx/(h 1 hc)]2 1 (1/10)[Dx/(h 1 hc)]2/3 1 (26/100)

1
1

2
6 0:16 exp(2flog[Dx/(h 1 hc)] 1 1:33g2/3:15).

(13)

The partial similarity function for the subgrid water

vapor mixing ratio variance is also satisfactory (cf. Fig.

8b). It is valid for 0:1 # z/h # 0:9:

P
(q9

2)sbg

Dx

h 1 hc

� �
5

1

2

[Dx/(h 1 hc)]2 1 0:25[Dx/(h 1 hc)]2/3 2 0:73

[Dx/(h 1 hc)]2 2 0:03[Dx/(h 1 hc)]2/3 1 0:73
1

1

2
6 0:2 exp(2flog[Dx/(h 1 hc)] 1 0:55g2/1:45).

(14)

5) PARTIAL SIMILARITY FUNCTIONS IN THE

CUMULUS LAYER

In this layer the form of the functions differs from the

functions in the boundary layer. Indeed, the form imposed

by the asymptotic laws (cf. section 2c) is no longer required.

The partial similarity function in the cloud layer follows

Eqs. (15)–(19), as shown in Figs. 9 and 10. The partial

similarity functions are valid for the whole cloud layer.

Pe
sbg

Dx

h 1 hc

� �
5

[Dx/(h 1 hc)]2 1 1:67[Dx/(h 1 hc)]1:4

[Dx/(h 1 hc)]2 1 1:66[Dx/(h 1 hc)]1:4 1 0:2
6 0:134 exp(2flog[Dx/(h 1 hc)] 1 1:933g2/3:31)

(15)

P
(u9

t
2)sbg

Dx

h 1 hc

� �
5

[Dx/(h 1 hc)]2 1 1:06[Dx/(h 1 hc)]1:4

[Dx/(h 1 hc)]2 1 1:04[Dx/(h 1 hc)]1:4 1 0:24
6 0:145 exp(2flog[Dx/(h 1 hc)] 1 1:086g2/2:016)

(16)

P
(qt92)sbg

Dx

h 1 hc

� �
5

[Dx/(h 1 hc)]2 2 0:34[Dx/(h 1 hc)]1:4

[Dx/(h 1 hc)]2 2 0:35[Dx/(h 1 hc)]1:4 1 0:37
6 0:341 exp(2flog[Dx/(h 1 hc)] 1 0:722g2/1:459)

(17)

P
(w9qt9)sbg

Dx

h 1 hc

� �
5

[Dx/(h 1 hc)]2 2 0:07[Dx/(h 1 hc)]1:4

[Dx/(h 1 hc)]2 2 0:07[Dx/(h 1 hc)]1:4 1 0:02
6 0:202 exp(2flog[Dx/(h 1 hc)] 1 1:554g2/2:895)

(18)

P
(w9u

t
9)sbg

Dx

h 1 hc

� �
5

[Dx/(h 1 hc)]2 2 0:08[Dx/(h 1 hc)]1:4

[Dx/(h 1 hc)]2 2 0:08[Dx/(h 1 hc)]1:4 1 0:02
6 0:172 exp(2flog[Dx/(h 1 hc)] 1 1:623g2/3:088)

(19)

b. Discussion

An idea of the turbulence structure dimension can be

drawn from the scale for which the variance is entirely

subgrid or entirely resolved. When the whole variance is

subgrid, this means that the largest structures have a smaller

size than the mesh. In contrast, when the whole variance is

resolved, that means that the smallest structures are larger

than the mesh. Figures 8a and 8b show that the water

vapor mixing ratio structures are larger than the potential
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temperature ones. Indeed, the moisture variance is en-

tirely subgrid for a larger mesh [Dx/(h 1 h
c
) 5 5:3] than

the potential temperature is [Dx/(h 1 hc) 5 4:3]. Likewise,

if the TKE is considered to be dominated by the vertical

velocity variance (for the CBL), structures of vertical ve-

locity are smaller than potential temperature or water va-

por mixing ratio structures. Figure 5 shows that the TKE is

entirely subgrid for grid sizes smaller [Dx/(h 1 h
c
) 5

1:9, so Dx ’ 2000 m] than for the two other fields.

Let us define L as the scale where the subgrid and

resolved partitioning are equal. Figure 11 shows L as a

function of the altitude for TKE, potential temperature

FIG. 9. Cloud-layer-resolved (crosses) and subgrid (circles) (a)

total water mixing ratio variance, (b) liquid potential temperature

variance, and (c) TKE as a function of the dimensionless mesh size.

Color codes are as in Fig. 5.

FIG. 10. Cloud-layer-resolved (crosses) and subgrid (circles) (a)

water mixing ratio and (b) liquid potential temperature flux as a func-

tion of the dimensionless mesh size. Color codes are as in Fig. 5.
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and mixing ratio variance, and heat and moisture fluxes.

We consider that the TKE is dominated by the vertical

velocity variance. The curves of the variances (TKE, po-

tential temperature, and mixing ratio variance) provide

a proxy of the vertical velocity, potential temperature, and

mixing ratio structure characteristic size. De Roode et al.

(2004) showed that the coherent structures have different

scales depending on the ratio of the entrainment flux/

surface flux. We confirm here that moisture variance is

mainly resolved for scales larger [#0.8 (h 1 hc)] than the

potential temperature one [#0.4 (h 1 hc)], which is itself

mainly resolved for scales larger than the vertical velocity

[#0.2 (h 1 hc)].

Moreover, as can be seen in Figs. 5–8, cloudy and dry

boundary layer similarity functions are superimposed.

This means that for an equal boundary layer height, the

structures are larger when the boundary layer is capped

by convective clouds [cf. Eq. (20)],

DxBL 5 Dxdry BL 1 1
hc

h

� �
, (20)

where DxBL is the horizontal size of the structure in the

boundary layer BL and Dxdry BL is the horizontal size of

the structure in the dry boundary layer. So clouds in-

fluence the underlying boundary layer by allowing

thermals to stretch from the ground to the top of the

cloud layer. The taller the thermals, the larger they are.

So when the boundary layer is capped by convective

clouds the structures are larger. As an example, the field

of potential temperature of IHOP can be seen at the top

of Fig. 4 and those of ARM are at the bottom. The

horizontal cross sections are chosen at a time when the

simulations present very different h (760 m for ARM

and 1050 m for IHOP). The hc of ARM is 320 m (h 1 hc

5 1080 m). Figure 4 shows that the structures are quite

similar even if the boundary layer height of ARM is

much smaller than those of IHOP.

4. Quantification of atmospheric model error in the
terra incognita of boundary layers

a. Method

The ratio scaling laws determined in this work from

LES are a precious tool for quantifying the errors made by

atmospheric models at intermediate grid sizes: a model

simulation at any given grid size can be considered good if

its total, resolved, and subgrid turbulence follow scaling

laws at the corresponding grid size. Otherwise, this high-

lights a discrepancy of the turbulence scheme in the atmo-

spheric model, suggesting a need for improvement in the

turbulence parameterization. As an application, the errors

of a mesoscale model are now quantified thanks to the

partial similarity functions.

The atmospheric model used for this study is Méso-NH

(Lafore et al. 1998; the same as for the LES, used as ref-

erence). The turbulence scheme of the model is described

in Cuxart et al. (2000). It can be used in both 3D and 1D

mode. Setting up the turbulence scheme for the simula-

tions at all these grid sizes is not easy, in particular because

before this study it was not known exactly how the tur-

bulence should be reproduced by the parameterization at

grid sizes from 250 m to 2 km. For small grid meshes (62.5

and 125 m), models are somehow considered to be at or

not far from a LES configuration, and the eddies param-

eterized should be only those smaller than the grid mesh.

For these grid sizes, the Deardorff mixing length (DEAR

hereafter) is usually used. For coarser meshes ($2 km),

it is usually believed, albeit without proper justification,

that subgrid motions should contain (at least in part) the

convective thermals. So for these grid sizes, a mixing

length is used that represents the size of the largest

eddies present at each height, computed according

to Bougeault and Lacarrère (1989, hereafter BL89).

However, even with BL89 values, the turbulence

scheme remains local (in the sense that it parameterizes

mixing between adjacent vertical grid meshes). This

usually produces, even for large scales, convective

boundary layers without a countergradient zone, which

are (slightly) unstable up to the inversion. PMMC09

FIG. 11. Vertical profiles of the scale L for which subgrid and

resolved parts are equal (TKE, variances of ul and qt, and heat and

moisture fluxes) in the subcloud boundary layer (gray) and in the

cloud layer (black).
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developed a mass-flux parameterization of dry ther-

mals (and potentially shallow cumulus above, but only

dry boundary layers are considered here). This mass-

flux parameterization aims to simulate the nonlocal ver-

tical transport by subgrid thermals. This allows boundary

layers to be reproduced with correct countergradient

zones. However, the parameterized subgrid thermals are

assumed to occupy a small part of the grid mesh, a common

assumption for mass-flux schemes. This is a strong hy-

pothesis especially at intermediate scales, at which ther-

mals have a horizontal size similar to that of the grid mesh.

To quantify the errors of this model, simulations were

performed for horizontal grid sizes of 125 m, 250 m,

500 m, 1 km, 2 km, 4 km, and 8 km. For each grid spacing

from 8 km to 125 m, eight simulations are performed:

with a 3D scheme or 1D scheme, with DEAR or BL89

values as the mixing length, and with or without PMMC09

parameterization.

b. Comparison of total fields with LES
in boundary layers

Total parameters are now compared with the dry and

cloudy LES. In this study, the boundary layer height

is calculated as the height of the minimum of the total heat

flux. The relative errors of the boundary layer height per

class of Dx/(h 1 h
c
) are shown in the top-left panel of

Fig. 12 (an analysis in terms of Dx is presented in the ap-

pendix; see Tables A1 and A2). The relative error is de-

fined as the averaged (h 2 hLES)/hLES. The boundary

layer height is generally well represented with an average

error on the order of 2%. It is well represented at coarse

grid sizes when the configuration is BL89–PMMC09,

whatever the scheme dimensionality, especially at

Dx/(h 1 h
c
) $ 3:5, for which other configurations produce

errors greater than 10%. At these grid sizes, the boundary

layer height is underestimated when BL89 alone is

used. At intermediate scales [0:5 # Dx/(h 1 hc) # 0:8], it

is well represented, except when DEAR-3D is used with

and without PMMC09. In those cases, the boundary layer

height is highly overestimated. For the finest meshes

[Dx/(h 1 h
c
) # 0:1], DEAR-3D is the best configuration.

The total heat and humidity fluxes (not shown) are

forced by the surface fluxes and the entrainment fluxes

at the top of the boundary layer. Surface fluxes are im-

posed. As the entrainment ratio of the different simu-

lations is similar, when the boundary layer height is well

represented, buoyancy fluxes are correct. Moisture

fluxes also present good results. Afterward, we consider

that a configuration is not adequate for a class of

Dx/(h 1 h
c
) if it produces a relative error of boundary

layer height that is larger than 10%.

As fluxes are well represented, no cloud appears in

IHOP, AMMA, or Wangara for any configuration or grid

size examined. That is why the error on the height of the

cloud layer is only calculated for the cloudy cases ARM

and BOMEX. The figures are shown in the top-left panel

of Fig. 12 (an analysis in terms of Dx is presented in the

appendix). The height of the cloud layer is not as well

represented as the boundary layer height. DEAR-3D

produces the smallest error for small Dx/(h 1 hc). BL89-

1D-PMMC09 presents good results at coarse scales.

In the bottom-left panel of Fig. 12, it can be seen that

total TKE results at intermediate scales strongly de-

pend on the configuration of the model. The configu-

rations for which the boundary layer height is poorly

represented (relative error larger than 10%) are not

taken into account in the analysis. The total TKE is

systematically underestimated when PMMC09 is acti-

vated. PMMC09 does not produce an explicit TKE.

However, the buoyancy flux resulting from the mass-

flux scheme is added in the thermal production of the

TKE inside the turbulence scheme. A direct estimation

of the updraft TKE using the parameterized core

vertical speed could provide better results. This is es-

pecially the case for DEAR-1D-PMMC09 and DEAR-

3D-PMMC09 cases, which strongly underestimate the

total TKE. The configurations which minimize the error

are DEAR-3D when Dx/(h 1 h
c
) # 0:2 and DEAR-1D

when 0:3 # Dx/(h 1 h
c
) # 0:8. When Dx/(h 1 h

c
) be-

comes larger, BL89-1D has the lowest error. Contrary to

the boundary layer height, total TKE generally has an av-

erage relative error on the order of 20%.

c. Qualitative comparisons for an intermediate scale:
Grid size of 1000 m

Comparison of the total fields with the LES is not

sufficient to evaluate a parameterization: the resolved

and subgrid parts must be well proportioned. As an

example, horizontal cross sections of vertical velocity at

different heights in the boundary layer are presented in

Fig. 13 for a horizontal grid size of 1000 m in the IHOP

case [the boundary layer height is approximately

1000 m, so Dx/(h 1 hc) 5 1]. The reference from the LES

means are at the top, a simulation without PMMC09 is in

the middle, and a simulation with PMMC09 is at the

bottom. The mixing length for the last two simulations is

BL89 and the scheme is 1D. The simulations should

present phenomena of the same intensity and variability

(or in other words thermals with similar vertical velocity

distribution).

The reference (Fig. 13a–d) indicates that sur-

face boundary layer (z 5 50 m, z/h 5 0:05) structures are

too small to be resolved at this horizontal scale, while

thermals are partially resolved in the middle of the

boundary layer (z/h 5 0:5) and overshoots in the en-

trainment layer can be seen at z 5 1000 m but not really
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at z 5 1200 m. The simulation with the turbulence

scheme alone over predicts vertical resolved motion,

even in the SBL. In fact, these vertical velocities are as

strong as those in the LES run at 62.5-m grid size. This

discrepancy in the model is due to the lack of a coun-

tergradient zone: as the turbulence scheme cannot re-

produce this process (this is a down-gradient scheme),

the dynamics of the model perform this function, creating

strong resolved thermals.

In contrast, when the mass-flux scheme is added (Figs.

13i–l), all the variability of the thermals disappear. In this

case, the thermals are represented as if they were entirely

subgrid, while one part of the movement should still be

described by the model dynamics. Too much transport is

performed by the mass-flux scheme, as it was built for

larger grid meshes where the thermals are entirely sub-

grid. But, as shown by the reference LES means, this is no

longer true at 1000-m grid size.

d. Comparison with partial similarity functions in the
boundary layers

We now extend this model error analysis to all in-

termediate scales, using the partial similarity functions.

This is done for the three dry boundary layers as well as

for the two boundary layers below cumulus. The mean

of the difference between the partitioning of resolved

TKE from Méso-NH running with several configura-

tions and the partial similarity function of the resolved

FIG. 12. Relative error (%) of the (top left) boundary layer height, (top right) height of the cloud layer, (bottom

left) total TKE, and (bottom right) resolved TKE by the Méso-NH model as functions of Dx/(h 1 h
c
). The large

symbols are the configuration with the smallest error.
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TKE is shown in the bottom-right panel of Fig. 12. In this

study, as the aim is to find the best configuration for each

grid size, it makes no sense to analyze errors on a parti-

tion if the total parameters are not correctly repre-

sented. The configurations that correspond to a relative

error of boundary layer height greater than 10% or

a relative error of total TKE greater than 30% are not

taken into account in the analysis. BL89 have the

lowest errors at coarse grid sizes. The best partitioning

of intermediate scales seems to be produced by BL89-

3D [0:2 # Dx/(h 1 h
c
) # 0:3] and BL89-1D-PMMC09

[0:3 # Dx/(h 1 h
c
) # 1:3]. The partitionings for the fine

meshes are well represented by DEAR-3D. Figure 12

shows that the relative error of the partition increases

in the gray zone.

Figures 14 a–h show box-and-whiskers plots of the

subgrid and the resolved partitioning for the five cases.

Box-and-whiskers plots make it possible to show the var-

iance of the data. Subgrid and resolved partial similarity

functions are plotted in Fig. 14 and are used as a reference.

Figure 14c indicates that DEAR-3D simulations satisfac-

torily reproduce the partitioning until Dx/(h 1 hc) # 0:1

(approximately 125-m grid size), which is typical of LES.

Likewise, for coarse mesh sizes [Dx/(h 1 hc) . 4 or Dx $

400 m] typical of 1D simulations, the total subgrid parti-

tioning is well represented by BL89-1D-PMMC09, which

is shown in Fig. 14f (all of the turbulence is subgrid).

However, the intermediate scale [0:2 # Dx/(h 1 h
c
) # 2

or 250 # Dx # 2000 m] is poorly represented for all of

the parameterizations.

FIG. 13. Horizontal cross sections of the vertical velocity at 50-, 500-, 1000-, and 1200-m altitude at 1000-m grid size for the IHOP case.

(a)–(d) Successive means from the LES reference; (e)–(h) 1000-m grid size simulation with a 1D turbulence scheme and BL89 as mixing

length without PMMC09; and (i)–(l) 1000-m grid size simulation with a 1D turbulence scheme and BL89 as mixing length with PMMC09.
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FIG. 14. Méso-NH TKE for IHOP, AMMA, Wangara, ARM, and BOMEX re-

solved (red) and subgrid (blue) partial partitions as functions of the dimensionless

mesh size. Black lines represent partial similarity functions deduced from the reference

LES and the gray box-and-whiskers plots represent the variance of the reference av-

erage data. Red (blue) lines link the median of the resolved (subgrid) data class.
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When the length scale used is BL89 (Figs. 14b,d,f,h),

the 1D or 3D turbulence makes no difference at the

coarse mesh size ($1000 m). Indeed, for these grid sizes,

the turbulent movements are mainly vertical. However,

at the intermediate scale, the subgrid part is larger with

a 3D scheme, since the subgrid mixing is stronger. Thus, if

PMMC09 is not used, the 3D scheme improves the model

with lower differences between the simulation partition-

ing and the partial similarity functions at intermediate

scales (Figs. 14a–d).

As DEAR is the length scale on the order of the mesh

size, while BL89 is on the order of the boundary layer

height, the subgrid mixing is smaller with DEAR at the

intermediate scales. Thus, any instability has to be resolved

and the transition from a mostly resolved to a mostly

subgrid turbulence is rugged in this case, which increases

the variance as seen in Figs. 14a,c,e,g.

The activation of PMMC09 (Figs. 14e–h) has the most

significant effect. Without PMMC09, the resolved mo-

tions are too strong, for the reasons presented above: the

dynamics of the model tend to ‘‘naturally’’ produce

thermals to improve the mixing in the boundary layer.

This discrepancy becomes larger as the grid mesh in-

creases (dynamically created thermals have the same

level of intensity when they should decrease). Such overly

intense resolved motions can take a few hours to form

(not shown). They are not seen here on a 2-km grid mesh,

but such resolved motions were sometimes seen for some

boundary layers during the development of the AROME

weather prediction model at Météo-France, which has

a grid mesh of 2.5 km. This was corrected in the AROME

model at this ‘‘relatively large’’ horizontal scale with the

use of PMMC09. As seen in Figs. 14e–h, PMMC09 tends

to improve the model runs at intermediate scales. How-

ever, this correction is too extreme. It is shown in Figs. 14f

and 14h that the resolved part never dominates when the

mixing length is BL89, and that it only dominates at a grid

size of 125 m using the DEAR mixing length (Figs. 14e,g).

Indeed, when the mesh size becomes smaller than 2000 m

[Dx/(h 1 hc) ’ 2], the parameterized mixing by PMMC09

becomes too strong as this scheme models a wholly sub-

grid thermal, which is not the case at these scales.

To obtain a good representation at intermediate scales

for both dry and cumulus-topped boundary layers, the

subgrid thermal of PMMC09 should be weaker in order

to simulate only a part of this thermal (a part must be

resolved). This could be developed in future works by, for

example, taking the horizontal grid size into account in

entrainment and detrainment rates from the thermal,

based on the physical consideration that when scales (grid

meshes) are smaller, the exchange between the air parcel

and the environment occurs on smaller time scales. In this

way, more air would be extracted from the parameterized

updraft, which as a consequence would become weaker.

Such studies on physical processes in parameterizations

could take full advantage of the present study to validate

the behavior of the improved models.

In the cloudy cases, errors in hc (not shown) are large

and consequently fluxes on the cloud base and in the cloud

layer are poorly represented (not shown). The error of

TKE in the cloud layer (not shown) is up to 50% under all

configurations investigated. In these conditions, when the

total parameters are ill represented, it is not necessary to

investigate further the cloud layer by a comparison with

the partial similarity functions.

5. Conclusions and perspectives

The subgrid/resolved partitioning of several turbu-

lence variables has been examined over a large range of

scales. It is shown for this partitioning that a new scale,

the so-called dimensionless mesh size, which represents

the horizontal mesh size scaled by the boundary layer

height plus the height of the cloud layer Dx/(h 1 hc)

needs to be added to the Deardorff free convection

scaled variables. Similarity functions are assumed to be

the product of the total (subgrid plus resolved) similarity

function, independent of the mesh size, and of a ‘‘partial’’

similarity function that depends only on the scaled mesh

size. In order to clarify the partial functional forms for

convective boundary layers, we used LES from five dry

and cloudy cases. The functions were determined for the

TKE, heat flux, moisture flux, temperature variance, and

moisture variance.

Furthermore, this method partly confirms results by

De Roode et al. (2004) concerning the size of structures,

which is defined by the scale at which the resolved energy

equals the subgrid energy. This scale is Dx/(h 1 h
c
) 5 0:2

in the case of the turbulent kinetic energy, 0.4 for the

potential temperature variance, and 0.8 for the water

vapor mixing ratio variance, indicating smaller structures

for the vertical velocity than for the potential temper-

ature, which are even smaller than those for the water

vapor mixing ratio. Moreover, Dx/(h 1 h
c
) suggests

that clouds influence the underlying boundary layer.

As the thermals stretch from the ground to the top of

the convective clouds, thermals are taller and then

broader in cloudy boundary layers than in dry bound-

ary layers.

Finally, the behavior of a state-of-the-art mesoscale

model is succinctly evaluated at different scales. Dry and

cumulus simulations produce the same errors. Within the

‘‘terra incognita,’’ the model shows some drawbacks. The

resolved part, compared to the adequate partial similarity

function obtained from the LES cases, is too large when

the turbulence scheme is used without the mass-flux
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scheme. Indeed, the turbulence scheme does not mix

the boundary layer well enough. In contrast, the re-

solved part is too weak when the mass-flux scheme is

activated, as it represents a wholly subgrid thermal at

scales 0:8 # Dx/(h 1 h
c
) # 2, for which it should be

partly resolved. This suggests that the mass-flux scheme

can possibly be improved at grid sizes smaller than 2 km

by taking the mesh size into account, for example in the

entrainment/detrainment rates. A similar study could be

realized to investigate the resolved/subgrid partitioning

in forced convective, neutral, and stable boundary layers

both with and without clouds.

TABLE A1. Mean of the difference between LES total fields (at 62.5-m grid size) and boundary layer height, height of the cloud layer,

and total TKE calculated by the Méso-NH model running at several grid sizes (125, 250, 500, 1000, 2000, 4000, and 8000 m). Boldface font

shows the best configuration(s) of one given Dx/(h 1 hc) class. Italic font shows the configuration(s) with an error considered too large for

a given Dx/(h 1 hc) class. For the total TKE, asterisks indicate cases for which boundary layer height is poorly represented (relative error .

10%).

Dx (m) 125 250 500 1000 2000 4000 8000

Boundary layer height error (m)

BL89–1D-PMMC09 221 232 227 218 218 221 221

BL89-1D 22 215 244 276 2134 2185 2185

BL89-3D-PMMC09 224 229 224 218 218 221 221

BL89-3D 223 230 238 281 22 255 2188

DEAR-1D-PMMC09 225 222 222 215 16 92 195

DEAR-1D 13 22 17 27 290 2211 2136

DEAR-3D-PMMC09 234 248 248 245 263 381 240

DEAR-3D 22 224 248 2106 241 265 158

Height of the cloud layer error (m)

BL89-1D-PMMC09 29 28 27 27 28 28 28

BL89-1D 218 217 212 228 256 272 273

BL89-3D-PMMC09 55 40 37 24 12 214 227

BL89-3D 53 43 36 26 0 217 228

DEAR-1D-PMMC09 218 216 299 214 214 215 215

DEAR-1D 223 224 217 232 260 286 299

DEAR-3D-PMMC09 7 36 43 18 7 217 12

DEAR-3D 5 35 36 26 8 210 229

Total TKE error (m2 s22)

BL89-1D-PMMC09 20.037 20.054 20.081 20.12 20.13 20.12 20.12
BL89-1D 0.067 0.073 0.06 0.066 0.02* 20.049* 20.043*

BL89-3D-PMMC09 20.085 20.088 20.1 20.12 20.12 20.12 20.12

BL89-3D 0.11 0.091 0.058 0.063 0.006 0.021 20.042*

DEAR-1D-PMMC09 20.23 20.26 20.29 20.31 20.31 20.32 20.33*

DEAR-1D 0.026 0.032 20.005 20.03 20.19 20.30* 20.33*

DEAR-3D-PMMC09 20.19 20.16 20.15 20.17 20.11* 20.14* 20.23*

DEAR-3D 0.014 0.026 0.01 20.031* 0.002* 0.035* 20.27*

TABLE A2. Mean of the difference between resolved TKE and Peres
per class of Dx. Statistics for the classes: minimum, mean, and

maximum Dx/(h 1 h
c
) per class of Dx are shown. Boldface font shows the best configuration(s) of one given Dx/(h 1 h

c
) class. Italic font

shows the configuration(s) with an error considered too large for a given Dx/(h 1 h
c
) class. Asterisks indicate configuration(s) that are not

taken into account because they are meaningless (see text).

Dx (m) 125 250 500 1000 2000 4000 8000

min[Dx/(h 1 h
c
)] 0.09 0.18 0.37 0.72 0.90 1.5 3.7

mean[Dx/(h 1 hc)] 0.14 0.27 0.53 1.13 2.1 4.3 9.0

max[Dx/(h 1 hc)] 0.45 0.91 2.23 4.48 9.0 17.8 36.6

BL89–1D-PMMC09 0.37 0.24 0.12 0.060 0.043 0.017 0.0062

BL89–1D 0.11 20.11 20.30 20.23 20.043* 0.013* 0.0046*

BL89–3D-PMMC09 0.52 0.34 0.16 0.078 0.046 0.017 0.0062

BL89–3D 0.20 20.044 20.25 20.18 20.12 20.13 0.0045*

DEAR-1D-PMMC09 0.19* 0.14* 0.037* 0.037* 0.048* 0.019* 0.0077*

DEAR-1D 20.21 20.43 20.56 20.46 20.24 0.013* 0.0050*

DEAR-3D-PMMC09 0.24 0.13 0.090 0.072 20.059* 20.13* 20.050*

DEAR-3D 20.11 20.29 20.35 20.089* 20.15* 20.17* 20.042*
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APPENDIX

Error Analysis based on Grid Size and Model
Configuration

The mathematical form of the partial similarity functions,

expressed as a function of Dx/(h 1 hc), cannot be directly

used by atmospheric models, which attempt to simulate the

atmosphere at a given field grid size Dx. Thus, we propose

a summary of the errors of the boundary layer height, the

total TKE, and the resolved part of TKE simulated by the

Méso-NH model for each grid size Dx and each configu-

ration of the model in Table A1. Italic numbers indicate

relative errors greater than 10% for the boundary layer

height and 30% for the other parameters. The error is ex-

pressed in the units of each parameter. For the total TKE,

asterisks indicate cases for which boundary layer height is

poorly represented (relative error greater than 10%). For

the resolved TKE in Table A2, asterisks indicate cases for

which the relative error of the boundary layer height is

greater than 10% or the relative error of the total TKE is

greater than 30%. These cells are not taken into account in

the analysis of the defaults of the partition. The errors of the

resolved ratio of TKE are calculated using partial similarity

functions. Minimum, mean, and maximum Dx/(h 1 hc) per

class of Dx are in the top three rows of Table A2. The cells

with asterisks in the total TKE table correspond to

boundary layer height errors greater than 100 m (Table

A1), and in the resolved TKE table, they correspond to

boundary layer height errors greater than 100 m and total

TKE errors greater than 20% (cf. Tables A1 and A2).
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