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Who?

Centre National de Recherches Météorologiques
Marc Pontaud, 300 people, 5 groups.

> Climate & Large-Scale Modelling Group
David Salas y Melia, 80 people, 7 teams.

> > Atmosphere & Climate Sensitivity Team
Hervé Douville, 12 people (Aurélien Ribes, Florent Brient. .. ).

Related teams at CNRM:

Earth System Modelling (Bertrand Decharme, Jeanne Colin, Roland Séférian. .. ),

Regional Modelling (Samuel Somot, Serge Planton. . .),
Predictability (Michel Déqué, Lauriane Batté. . .).

Related labs in France:
CERFACS (Laurent Terray, Christophe Cassou, Julien Boé. ..),
LSCE/IPSL (Robert Vautard, Pascal Yiou, Philippe Naveau. . .).



This talk



This talk

European
= geographical Europe (including Switzerland) (and UK).

Climate
= surface temperature and atmospheric circulation.

Variability
= intra-seasonal to inter-annual time scales.

In a warming world
= in CMIP5 future projections.



Varlablllty In a Warming world - statistical point of view

» Beyond the mean warming (pdf location), changes in variability (pdf shape)
modulate changes in extremes (pdf tails).

Illustration from European summer temperatures
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Plotted from E-OBS data over 1950-2012.

See also: Schér et al. 2004 (Nature).


http://www.ecad.eu/E-OBS/
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Varlablllty In a Warming world - statistical point of view

» Beyond the mean warming (pdf location), changes in variability (pdf shape)
modulate changes in extremes (pdf tails).
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Variability in a warming world - Physical point of view

» Climate change might affect the modes of atmospheric variability that
drives the European weather.

Example of the winter North Atlantic Oscillation

snowy

Warm

Warm

NAO Negative Mode

MNAO Positive Mode
Source: climatology.co.uk



http://climatology.co.uk/north-atlantic-oscillation

The projected warming in Europe - ipcc ARs

ipcc

limate change

It is very likely that temperatures will continue to
increase throughout the 21st century over all of
Europe and the Mediterranean region. It is likely that
winter mean temperature will rise more in NEU than in
CEU or MED, whereas summer warming will likely be
more intense in MED and CEU than in NEU.



The projected warming in Europe - cMIPs ensemble

» AT ~ 5 +1.5 K by 2100 in the RCP8.5 scenario.
» Role of snow cover decline in winter, soil drying in summer.

DJFM JJAS

0123 45867 0123 45867

CMIP5 ensemble-mean (34 models). 2070-2099 vs. 1979-2008 in RCP8.5.
© Cattiaux et al., 2013, Clim. Dyn., Fig. 2.

See also: Kroner et al. 2016 (Clim. Dyn.).



Outline

Summer variability

Winter variability

Seasonal clock



Outline

Summer variability



IPCC ARb

ipcc

wed on climate change

Recent studies have clearly identified a possible
amplification of temperature extremes by changes in
soil moisture (Jaeger and Seneviratne, 2010; Hirschi et
al., 2011), acting as a mechanism that further
magnifies the intensity and frequency of heat waves
given the projected enhance of summer drying
conditions.




Reported increase in day-to-day variability

(d) PRUDENCE raw (e) ENSEMBLES raw (f) ENSEMBLES constrained
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JJA 2070-2099 vs. 1961-1990 in A2 (PRUDENCE) and 1970-1999 in A1B (ENSEMBLES).
© Fischer et al., 2012, GRL, Fig. 1.

See also: Fischer and Schar 2009 (Clim. Dyn.); Kjellstrom et al. 2007 (Clim. Change).



Measuring the day-to-day variability -1/2

» Use a daily variance:

N
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» Use day-to-day variations:
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*|ITV for Inter-diurnal Temperature Variability.

See also: Rosenthal 1960 (J. Meteorol.).



Measuring the day-to-day variability -2/2

» Locally, day-to-day variations are linked to the daily variance:

ITVy = | Typ1 — Tal = V2 0(Tjg,a41])

» Contrarily to o, ITV is not sensitive to long-term variations:

4| Time series: N(0,1) 4 4} N@©1)+TREND 4} N(,1)+CYCLE i
2t 2t 2t w 1
0 of of /_\’/\_/, :
-2 -2 TN N
-4 -4 -4t 1
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80
25 FT —— T 3 25FT T — T 3 25F —— T
- Runnlng variance — RUI’\I’HI’!Q variance - Runnlng variance
2.0} — Running mean of ITV"2/2 1 20| — Running mean of ITV"2/2 1 20} — Running mean of ITV"2/2
15} 1 15} 4 15F /\/\/\
101 —_— 1 1o} —_— 1 10 B
05k n . . . 4 o5k L L L L .4 05k L L L L
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80

Based on 1000 random simulations of white noises.



Projected change in ITV
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See also: Kim et al. 2013 (Clim. Dyn.).

E-OBS & CMIP5 ensemble. JJAS 2070-2099 vs. 1979-2008.
© Cattiaux et al., 2015, GRL, Fig. 1.



A closer look at day-to-day variations

» Asymmetry of the ITV distribution towards negative values.
Easier to rapidly cool the surface (clouds, rain) than to produce hot increments.

» Widening of the distribution under climate change.
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E-OBS & CMIP5 ensemble. JJAS 2070-2099 vs. 1979-2008.
© Cattiaux et al., 2015, GRL, Fig. 2.



I'TV increase linked to soil drying - stats

» [TV anti-correlated to EF, and AITV anti-correlated to AEF.
EF = Evaporative Fraction = LH / (SH + LH)

AITV vs. AEF (%) France
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© Cattiaux et al., 2015, GRL, Fig. 4. @© Fischer et al., 2012, GRL, Fig. 3.



I'TV increase linked to soil drying - Model exps

— CNRM-CM nudged by PRE/FUT soil moisture in PRE/FUT GHG conditions.

» When the soil moisture feedback is off, the summer T pdf is shifted.
» When the SMF is on, the summer T pdf is re-shaped towards hot values.

(a) Central US (b) Eastern Europe
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PDF of JJA temperatures — (© Douville et al., 2016, GRL, Fig. 2.

See also: GLACE-CMIP5 experiment, Seneviratne et al. 2013 (GRL).



Changes in heat waves - Methodology

» Heat wave definition:
For each model, an event is at least 3 consecutive days with at least 30% of grid points
where Tx exceeds the 98t percentile of the MJJASO 1979-2008 distribution.

» Heat wave characteristics:
Number, duration (days), intensity (K), extent (%), and severity (product of all).

Tx threshold (left) + the 7 events in EOBS 1979-2008 (right, max = Aug 2003)
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© Schoetter et al., 2015, Clim. Dyn., Figs. 1 & 5.



Changes In heat waves - Number of events
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Based on 19 CMIP5 models and 2070—-2099 vs. 1979-2008 periods.

© Schoetter et al., 2015, Clim. Dyn., Fig. 5.



Changes In heat waves - Characteristics

» When using a fixed threshold (present-day Q98), increase in all
characteristics (number, duration, extent, intensity, severity. . .)

Heat wave number
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© Schoetter et al., 2015, Clim. Dyn., Fig. 3.

See also: Fischer and Schéar 2010 (Nature Geoscience).



Contributions of mean and variability

Contribution of mean: threshold QSHIFT = Q98ryT — AQ50.
Contribution of variability: threshold QBROAD = Q98ruyT — A(Q98—Q50).

» The severity increase induced by the mean is about 5 times larger.
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© Schoetter et al., 2015, Clim. Dyn., Fig. 10.

See also: Lau and Nath 2014 (J. Clim.).
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Winter variability



IPCC ARb

ipcc

on climate change

At the other end of the spectrum, studies indicate that
European winter variability may be related to sea ice
reductions in the Barents-Kara Sea (Petoukhov and
Semenov, 2010) [...] Although the mechanism behind
this relation remains unclear this suggests that cold
winters in Europe will continue to occur in coming
decades, despite an overall warming.




Arctic sea ice loss and European cold winters?

» Hypothesis: sea-ice loss > Arctic amplification > NAO— -like pattern >
increased frequency of blockings > increased frequency of cold extremes.

Surface T (K), Z850 (m) and Prob{T < —1.50} (%) responses to sea-ice loss

ECHAMS simulations of a 80-to-40% decline in sea-ice extent, month of February.
© Petoukhov and Semenov, 2010, JGR, Fig. 3.

See other modelling studies: Deser et al. 2010, 2015; Screen et al. 2013; Peings and
Magnusdottir 2014; Blackport and Kushner 2016 (all in J. Clim.).

+ CNRM-CM exps: Oudar et al. 2017 (Clim. Dyn.).



The NAO in CMIP projections -1/2

» IPCC-AR4: “it is likely that the NAM [NAO] index would not notably

decrease in a future warmer climate (Miller et al. 2006)".

NH (Oct.—Mar.) Multi—Model Annular Index
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© Miller et al., 2006, JGR, Fig. 8.

2100



The NAO in CMIP projections -2/2

» Since Miller et al. 2006, baroclinicity (SLP vs. Z500) and shift towards
NAM/NAO— (CMIP5 vs CMIP3), partly attributed to the Arctic sea ice loss.
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© Cattiaux & Cassou, 2013, GRL, Fig. 1.

See also: Woollings 2008 (GRL); Barnes and Polvani 2015 (J. Clim.).



Is the flow becoming wavier?



Is the flow becoming wavier?

Francis and Vavrus 2012 (GRL)

Evidence linking Arctic amplification to extreme weather

in mid-latitudes

Jennifer A. Francis' and Stephen J. Vavrus*

Received 17 January 2012; revised 20 February 2012; accepted 21 February 2012; published 17 March 2012.

[1] Arctic amplification (AA) — the obscrved enhanced
warming in high northern latitudes relative to the northern
— is evident in s i
and in 1000-to-500 hPa thicknesses. Daily fields of 500 hPa
heights from the National Centers for Environmental Pre-
diction Reanalysis are analyzed over N. America and the
N. Atlantic to assess changes in north-south (Rossby) wave
characteristics associated with AA and the relaxation of pole-
ward thickness gradients. Two effects are identified that
cach contribute to a slower castward progression of Rossby
waves in the upper-level flow: 1) weakened zonal winds,
and 2) increased wave amplitude. These effects are particu-
larly evident in autmn and winter consistent with sea-ice

[5] Exploration of the atmospl
change has been an active area of
decade. Both observational and
identified a variety of large-scale ¢l
circulation associated with sea-ic
melt, which in turn affect precipi
tures, storm tracks, and surface wi
Budikova, 2009; Honda et al., 20
Overland and Wang, 2010; Petoul
Deser et al., 2010; Alexander et
2012; Bliithgen et al., 2012]. Wt
greenhouse-gas-induced troposphe
increase in atmacnherie water conti

weather patterns in mid-latitudes more
persistent [...] increased probability of
extreme weather events that result from

prolonged conditions.
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Barnes, 2013 (GRL)

Revisiting the evidence linking Arctic amplification to extreme

weather in midlatitudes
Elizabeth A. Barnes'

Received 17 July 2013; revised § August 2013; accepted 14 August 2013; published 4 September 2013,

[1] Previous studies have suggested that Arctic ampli-
fication has caused planetary-scale waves to clongate
meridionally and slow down, resulting in more frequent
blocking patterns and extreme weather. Here trends in the
meridional extent of atmospheric waves over North America
and the North Atlantic are investigated in three reanaly-
ses, and it is demonstrated that previously reported posi-
tive trends are likely an artifact of the methodology. No
significant decrease in planetary-scale wave phase speeds
are found except in October-November-December, but this
trend is sensitive to the analysis parameters. Moreover, the
frequency of blocking occurrence exhibits no significant

previously reported trends are

hereafter) suggest that atmospheric
ated meridionally in recent decadc
tion. They hypothesize that these ¢
more slowly and favor more extt
They speculate that as the earth ¢
amplification will increasingly inf
atmospheric circulation, potential
weather in association with the slo

[5] Motivated by these previot
amplification to increased slow-1
patterns, we seek to answer the fi
(1) Have wave extents increased

likely an artifact

of the methodology [...] the frequency of
blocking occurrence exhibits no significant

increase.



Is the flow becoming wavier?

Francis and Vavrus 2015 (ERL)

LETTER
Evidence for a wavier jet stream in response to rapid Arctic warming

Jennifer A Francis and Stephen | Vavrus®

New Brunswick, New Jersey, USA
Center for Climatic Research, University of Wisconsin- Madison, Madison, Wisconsin, USA

Email: francis@imes.rutgers.cdu

Keywords:jet stream, Arctc amplifcaton, extreme weather

Abstract
N d evid presented i rapid relative
to Northern hemisphere mid-latitudes, and more frequent high-amplitude (wavy) jet-stream config-

favor per:

tent weather patterns. W

regional patterns of weaker poleward thickness gradients, weaker zonal upper-level winds, and a more
meridional flow direction. These results suggest that as the Arctic continues to warm faster than else-
wherein response h h
caused by persistent jet-stream patterns will increase.

as the Arctic continues to warm faster than
elsewhere [...] the frequency of extreme
weather events caused by persistent
jet-stream patterns will increase.
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Measuring flow waviness through sinuosity -1/2

» Sinuosity: length of a trajectory divided by length of the straight line.

Illustrations from Wikipedia.

» Use an iso-contour of Z500 (isohypse) to isolate the trajectory.

it : Won, [4MAR2016 122 Valid: Tue,15UAR2016 122 Init : Sat25MAR2017 122 Valid: Tus,04APR2017 122
500 )lPu Geopot. dm, oden hPa,) 500 hPa k (hPa,

Examples of Z500 for March 15, 2016 and Apr|| 4, 2017 © Wetterzentrale.


https://en.wikipedia.org/wiki/Sinuosity
http://www.wetterzentrale.de/

Measuring flow waviness through sinuosity -2/2

» Selected isohypse: for each day, the Z500 average over 30—70 °N.

Latitude (° N)
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O

Example of January 6, 2010 (ERAI Z500)
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Isohypse Valu
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PR I 1
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-60

L
60

Longitude (° W)
© Cattiaux et al., 2016, GRL, Fig. 1.

See also: Martin et al., in review (J. Clim.).
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Link with more classical indices

» In the North-Atlantic in winter, the sinuosity is highly correlated with
blocking®, zonal?> and NAQ? indices at the inter-annual time scale.

o
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T
30day
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1.4
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1
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1 1 1 1 1 1 1 1
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© Cattiaux et al., 2016, GRL, Fig. 1.

! Tibaldi and Molteni index computed on ERAI Z500 (link).
2 ERAI Z500 difference between 20-50 °N and 60—90 °N (Woollings 2008).
3 Station-based Hurrell index (link).


http://www.cpc.ncep.noaa.gov/products/precip/CWlink/blocking/index/index.nh.shtml
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based

Projected changes in sinuosity

a CMIP5 changes
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24 CMIP5 models. RCP85 2070-2099 vs HIST 1979-2008. Only 90%-level significant changes.
© Cattiaux et al., 2016, GRL, Fig. 3.

See also: Peings et al., in review (J. Clim.); Vavrus et al. 2017 (J. Clim.).



Projected changes in sinuosity

a CMIP5 changes
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24 CMIP5 models. RCP85 2070-2099 vs HIST 1979-2008. Only 90%-level significant changes.
© Cattiaux et al., 2016, GRL, Fig. 3.

See also: Peings et al., in review (J. Clim.); Vavrus et al. 2017 (J. Clim.).



Why does the sinuosity decrease? - stats

» Models with stronger sinuosity decrease (ENS1) have stronger tropical
warming, stronger polar-stratospheric cooling and weaker Arctic Amplification,

i.e. a stronger increase in the equator-to-pole

¢ ENS1-ENS2[JFM] Cont:U(mis) ¢
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Why does the sinuosity decrease? - Model exps

— CNRM-CM coupled runs with PRE/FUT sea ice in PRE/FUT GHG conditions.

» Competing effects of GHG (tropical warming) and sea-ice (AA).
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Recent trends in sinuosity

» Slight increase in sinuosity since the mid-1980s.
Internal variability or different timings of the sinuosity forcings?
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© Cattiaux et al., 2016, GRL, Fig. 2.



Recent trends in sinuosity

» Slight increase in sinuosity since the mid-1980s.
Internal variability or different timings of the sinuosity forcings?
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Back to the European temperature variability

» Projected decrease in ITV, albeit no model agreement over WEU.

» Reduced efficiency of the advection from both westerlies (land/sea
contrast) and easterlies (snow cover decline).
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Consequence for cold spells

» When using a fixed threshold (present-day Q10), decrease in frequency.
» When using a relative threshold (future Q10), decrease in severity.

(a) QU10 in EOBS

°c
I T T T [ e
2 6 14

(b) Coldevents in EOBS

50+

{40

g 30 10

X 20 4
10 2
0

0 3 6 10 2040+
Duration (days)

See also: De Vries et al.

(c) Severlty in RCP8.5 w/ Q10F

100 71— T T T T T T (O severy]| ]
;\o\ 80~ X Intensity | ]
: 60 — O Duration |
o 40 - O  Extent —
T 20 ]
o o = i
2 N ]
0 -20 r ! D ]
O -40- I ]
& N ]
G -60[ =25
© sop L
-100
O
> & ov S

2012 (GRL).

Similar methodology as for heat waves.
© Peings et al., 2012, Clim. Dyn., Figs 1 and 5.



Outline

Seasonal clock



Context

» W-European T extremes are associated with persistent H systems (blockings).
Cassou et al. 2005, Schneidereit et al. 2012, Sillmann et al. 2012...

Jul 20-25, 2006

SLP anomaly of cold spell Feb 2012 & heat wave July 2006

© Cassou and Cattiaux, 2016, Nature Climate Change.



Context
» W-European T extremes are associated with persistent H systems (blockings).
Cassou et al. 2005, Schneidereit et al. 2012, Sillmann et al. 2012...

» The Scandinavian blocking is a recurrent pattern throughout the year (EOF 3).
Barnston & Livezey 1987, Wettstein & Wallace 2010...
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EOF 1, 2 & 3 of daily SLP anomalies | NCEP-NCAR reanalysis 1950-2012

© Cassou and Cattiaux, 2016, Nature Climate Change.



Context

» W-European T extremes are associated with persistent H systems (blockings).

Cassou et al. 2005, Schneidereit et al. 2012, Sillmann et al. 2012...

» The Scandinavian blocking is a recurrent pattern throughout the year (EOF 3).

Barnston & Livezey 1987, Wettstein & Wallace 2010...

» It blocks the westerlies and induces cold episodes in winter / warm in summer.

Rex 1950, Slonosky et al. 2001...
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Context

» W-European T extremes are associated with persistent H systems (blockings).
Cassou et al. 2005, Schneidereit et al. 2012, Sillmann et al. 2012...

» The Scandinavian blocking is a recurrent pattern throughout the year (EOF 3).

Barnston & Livezey 1987, Wettstein & Wallace 2010...

» It blocks the westerlies and induces cold episodes in winter / warm in summer.
Rex 1950, Slonosky et al. 2001...

» This season-dependent SLP-T relationship is well captured by climate models.
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Context

» W-European T extremes are associated with persistent H systems (blockings).
Cassou et al. 2005, Schneidereit et al. 2012, Sillmann et al. 2012...

» The Scandinavian blocking is a recurrent pattern throughout the year (EOF 3).

Barnston & Livezey 1987, Wettstein & Wallace 2010...

» It blocks the westerlies and induces cold episodes in winter / warm in summer.
Rex 1950, Slonosky et al. 2001...

» This season-dependent SLP-T relationship is well captured by climate models.

» The SLP-T regression is —1.4K/10hPa in January & 2.0K/10hPa in July.
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The European climate seasonal clock

b. DJF 2m-Temperature anomalies
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The European climate seasonal clock
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The European climate seasonal clock
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The European climate seasonal clock
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The seasonal clock in a warmer world
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The seasonal clock in a warmer world
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The seasonal clock in a warmer world
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The winter onset
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Earlier summertime weather conditions

» Detectable trend of ~ —2.5 days/decade since the 1960s.
» Attributed to NEU snow cover decline induced by ANT forcing (not shown).

Summer start dates for 30-yr running periods
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Summary



So far.

Europe is projected to warm, with distinct summer/winter patterns.
Summer T variability is projected to increase in line with the soil drying.
Winter T variability is projected to decrease in line with the snow retreat.
Summertime conditions are projected to occur earlier in the year.

Projected changes in the atmospheric dynamics are uncertain, and recently
observed trends might result from internal variability.

Next?

Reduce uncertainties in future projections through emergent constraints.

Generalize the day-to-day index both spatially (global scale) and temporally
(week-to-week, month-to-month, year-to-year, etc.).

Investigate changes in the persistence of the mid-latitude flow, rather than in
its trajectory (e.g. Yiou et al., in prep, using flow-analogues).
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