Intro		
•0		

European temperatures in CMIP5: origins of present-day biases and future uncertainties

Julien Cattiaux, Hervé Douville, Yannick Peings (CNRM-GAME / CNRS - Météo-France)

12th IMSC — June 24, 2013

Intro				
00	00	000	000000	0
Motiva	tions			

- Skill of CMIP5 GCMs at simulating European temperatures?
- Future changes under RCP 8.5? Uncertainties?
- Links between biases and sensitivity? Regional and global?
- Ontribution of large-scale atmospheric dynamics?
- Other contributions (non-dynamical)?
- \rightarrow 33 CMIP5 GCMs, *tas* (+ other variables);
- \rightarrow Biases: HIST vs. E-OBS (1979–2008);
- \rightarrow Changes: R85 (2070–2099) vs. HIST (1979–2008);
- \rightarrow Seasonal approach: DJFM & JJAS.

00	•0	000	000000	0
00	00	000	000000	0
	Biases			

HIST vs. E-OBS (1979-2008).

- ∢ ⊒ ⊳

Intro Biases				
00	00	000	000000	0
_				

Extremes vs. mean

- ♦ Percentage of cold/hot days wrt. 10th/90th EOBS percentiles.
- Extremes scale on mean biases at the first order.

		Changes		
00	00	000	000000	0
		and an and a		

Ensemble mean and spread

R85 (2070-2099) vs. HIST (1979-2008).

		Changes		
00	00	000	000000	0

Extremes vs. mean

- ♦ Percentage of cold/hot days wrt. 10th/90th HIST percentiles.
- ♦ Decrease (increase) of intra-seasonal variability in winter (summer).

J. Cattiaux et al. (CNRM) - European temperatures in CMIP5

IMSC - June 2013

	Dynamical vs. non-dynamical ●00000	
•		

Weather regimes

- ♦ Quasi-stationnary patterns, clustering of daily Z500 anomalies (*k-means*).
- ♦ Temperatures well discriminated, especially in winter (>50% of explained variance).

$$\diamond \ \overline{T} = \sum_k f_k \cdot t_k = \sum f_k \cdot \Phi(z_k)$$

Intro	Biases	Changes	Dynamical vs. non-dynamical	Summary
00	OO	000	O●OOOO	O
D				

Breakdown methodology

Recall $\overline{T} = \sum_k f_k \cdot \Phi(z_k)$,

 $\Rightarrow \Delta^{R85-HIST} \overline{T} = \sum_{k} \Delta f_{k} \cdot \Phi(z_{k}) + \sum_{k} f_{k} \cdot \Phi(\Delta z_{k}) + \sum_{k} f_{k} \cdot \Delta \Phi(z_{k}) + \varepsilon$

- Δf_k Contribution of changes in regimes' frequencies (BC).
- Δz_k Contribution of changes in regimes' structures (WCd).
- $\Delta \Phi$ Contribution of non-dynamical processes (WC Φ).
 - ε Residual (second-order terms).

Cattiaux et al. (2013), Clim Dyn, Special Issue on CNRM & IPSL models.

・ 同 ト ・ ヨ ト ・ ヨ ト

			Dynamical vs. non-dynamical	
00	00	000	00000	0
Changes	in frequer	ncies (f_k)		

- ♦ General increase in NAO- frequency (see previous talk).
- ♦ General decrease in other regimes, except NAO+ in GFDL and MIROC models.

			Dynamical vs. non-dynamical	
00	00	000	000000	0
Change	s in <mark>struct</mark>	ures (z_k)		

Ensemble-mean HIST

Ensemble-mean R85-HIST difference

イロト イヨト イヨト イヨト

Dynamical vs. non-dynamical 000000

Breakdown of mean and spread

- Projected warming dominated by non-dynamical processes. \diamond
- Dynamics contribute up to 50% to the warming spread. \diamond

			Dynamical vs. non-dynamical	
00	00	000	00000	0

Non-dynamical contributors

J. Cattiaux et al. (CNRM) - European temperatures in CMIP5

				Summary
00	00	000	000000	•
Conclu	usions			

- ✓ No major change since CMIP3 in simulating European temperatures;
- ✓ Extremes mostly scale on mean, but decrease (increase) in winter (summer) variability;
- ✓ Link between biases and sensitivities in winter (snow cover?);
- ✓ Future warming dominated by non-dynamical processes (also in summer);
- \checkmark Dynamics contribute up to 50% to the warming spread (40% in summer);
- ✓ Other contributors include Atlantic SST, snow cover (winter) and clouds (summer).
- \longrightarrow Further analysis of non-dynamical contributors?
- \rightarrow Application to other variables (eg. precipitation)?

Cattiaux, J., H. Douville and Y. Peings (2013), European temperatures in CMIP5: origins of present-day biases and future uncertainties, *Clim. Dyn.*, in press. doi:10.1007/s00382-013-1731-y.