Contribution of large-scale dynamics to recent European temperature extremes

Julien Cattiaux (1,2), Pascal Yiou (2), Robert Vautard (2),

Christophe Cassou (3), Francis Codron (4), Aurélien Ribes (1).
(1) CNRM-GAME/Météo-France, Toulouse, France.
(2) LSCE/IPSL, Gif-sur-Yvette, France.
(3) CERFACS, Toulouse, France.
(4) LMD/IPSL, Paris, France.

September 12, 2012

Introduction

Motivation

What would have been recent European temperature extremes in the absence of longterm warming?

Methodology \& Data

\diamond Estimating temperature anomalies by searching analog synoptic situations in the past.
\diamond Data: ECA\&D temperature observations, NCEP/NCAR reanalysis of Z500/SLP.

Flow-analogues: methodology

Lorenz, J. Atm. Sci. 1969.

First example - Winter 2009/10

January 7, 2010 (NASA).

DJF 2009/10 temperature anomalies.

\diamond Given the record NAO-, winter 2010 is comparable to extremely cold winters of 1940 and 1963.
\diamond The 3.3 K difference between 2010 and 1940 cannot be explained without invoking long-term warming.

Cattiaux et al., GRL 2010 \& Ouzeau et al., GRL 2011.

Second example - Record warm year of 2011

Seasonal temperature anomalies in 2011.

2.5

-0.5
\diamond 2011, warmest year over 1948-2011 (2.1 σ), should have ranked as the $10^{\text {th }}(0.7 \sigma)$.

Cattiaux and Yiou, BAMS 2012, Explaining Extremes of 2011.

Analogues and climate perspective

Yearly temperature anomalies over Europe (σ-levels).

\diamond Disentangle low-frequency variability and inter-annual fluctuations.
\diamond Inter-annual variability mostly driven by North-Atlantic dynamics.
\diamond Low-frequency variability resulting from both North-Atlantic dynamics (e.g., NAO) and background temperature trends (e.g., anthropogenic climate change or Atlantic multi-decadal oscillation).

Some literature

\diamond J. Cattiaux et al. (2010), Winter 2010 in Europe: A cold extreme in a warming climate, Geophysical Research Letters, 37, pp. L20704. DOI: 10.1029/2010GL044613
$\diamond \mathrm{J}$. Cattiaux and P. Yiou (2012), Contribution of atmospheric circulation to remarkable European temperatures of 2011, in "Explaining Extreme Events of 2011 from a Climate Perspective", Bulletin of the American Meteorological Society, 93, pp. 1041-1067. DOI: 10.1075/BAMS-D-12-00021.1
\diamond E.N. Lorenz (1969), Atmospheric predictability as revealed by naturally occurring analogues, Journal of the Atmospheric Sciences, 26 (4), pp. 636-646.
\diamond G. Ouzeau et al. (2011), European cold winter of 2009/10: How unusual in the instrumental record and how reproducible in the Arpege-Climat model?, Geophysical Research Letters, 38, pp. L11706. DOI: 10.1029/2011GL047667
\diamond R. Vautard and P. Yiou (2009), Control of recent European surface climate change by atmospheric flow, Geophysical Research Letters, 36 (22), pp. L22702. DOI: 10.1029/2009GL040480
\diamond P. Yiou et al. (2007), Inconsistency between atmospheric dynamics and temperatures during the exceptional 2006/2007 fall/winter and recent warming in Europe, Geophysical Research Letters, 34, pp. L21808. DOI: 10.1029/2007GL031981

Thanks.

