Towards a better understanding of changes in European temperature extremes A multi-model analysis from CMIP5/CFMIP2

Julien Cattiaux, Hervé Douville, Aurélien Ribes and Fabrice Chauvin.

CNRM/Météo-France, Toulouse, France.

January 25, 2012

Temperature extremes?

- Extremely warm/cold days: Tmax/Tmin above/below the 90th/10th centile of a reference pdf (e.g., observations or *historical* runs).
- Highest impacts, responses not necessarily scaled on the mean.

Questions

- Uncertainties in GCMs: Large-scale circulation? Soil processes?
 Cloud feedbacks?
- How to separate dynamical vs. non-dynamical contributions?

Multi-model data (9 GCMs so far)

CMIP5: historical (1979–2008) & rcp85 (2070–2099): 8 GCMs.

CFMIP2: amip & amipFuture: 4 GCMs

Motivations

Temperature extremes?

- Extremely warm/cold days: Tmax/Tmin above/below the 90th/10th centile of a reference pdf (e.g., observations or *historical* runs).
- Highest impacts, responses not necessarily scaled on the mean.

Questions

- Uncertainties in GCMs: Large-scale circulation? Soil processes?
 Cloud feedbacks?
- How to separate dynamical vs. non-dynamical contributions?

Multi-model data (9 GCMs so far)

CMIP5: historical (1979–2008) & rcp85 (2070–2099): 8 GCMs.

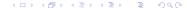
CFMIP2: amip & amipFuture: 4 GCMs

Motivations

Introduction

Temperature extremes?

- Extremely warm/cold days: Tmax/Tmin above/below the 90th/10th centile of a reference pdf (e.g., observations or *historical* runs).
- Highest impacts, responses not necessarily scaled on the mean.

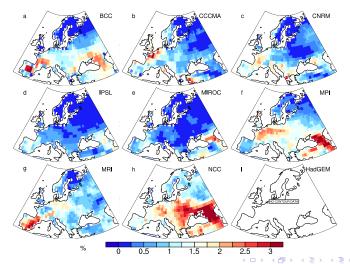

Questions

- Uncertainties in GCMs: Large-scale circulation? Soil processes?
 Cloud feedbacks?
- How to separate dynamical vs. non-dynamical contributions?

Multi-model data (9 GCMs so far)

CMIP5: historical (1979–2008) & rcp85 (2070–2099): 8 GCMs.

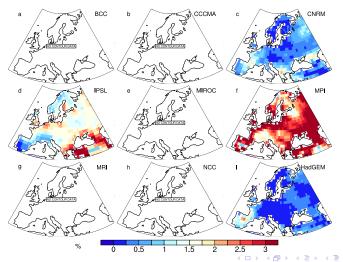
CFMIP2: amip & amipFuture: 4 GCMs.



 Introduction
 Methodology
 Results
 Conclusions

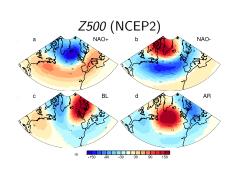
 0 ● 0 0
 ○ 0
 ○ 0
 ○ 0

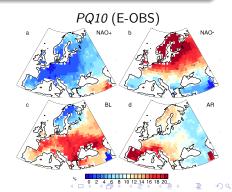
Future changes in wintertime cold days


Probability of exceeding $Q_{10}^{historical}$ in rcp85 (PQ10)

Future changes in wintertime cold days

Probability of exceeding Q_{10}^{amip} in amipFuture (PQ10)

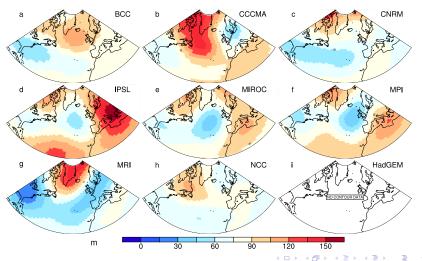




European temperatures & North-Atlantic dynamics

Weather regimes

- Clustering of daily Z500 anomalies. (e.g., Michelangeli et al., 1995)
- Temperatures well discriminated among the 4 classical regimes.
- $\overline{PQ10} = \sum_{k} P(\Omega_k) \cdot P(T < T_{10} \mid \Omega_k).$

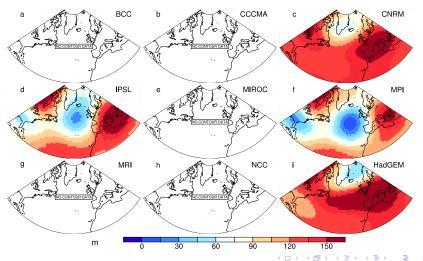


 Introduction
 Methodology
 Results
 Conclusions

 000●
 00
 000
 00

Future changes in mean Z500

Z500, DJFM, rcp85-historical



 Introduction
 Methodology
 Results
 Conclusions

 000 ●
 00
 000
 00

Future changes in mean Z500

Z500, DJFM, amipFuture-amip

Introduction

Evaluating dynamical contributions

Contribution of changes in regimes frequencies:

$$\overline{X} = \sum_{k} f_{k} x_{k} \quad \Rightarrow \quad \Delta^{F-P} \overline{X} \quad = \quad \overline{X}^{F} - \overline{X}^{P} = \sum_{k} f_{k}^{F} x_{k}^{F} - \sum_{k} f_{k}^{P} x_{k}^{P}$$

$$= \quad \underbrace{\sum_{k} \Delta f_{k} \cdot x_{k}^{P}}_{BC} + \underbrace{\sum_{k} f_{k}^{P} \cdot \Delta x_{k}}_{WC} + \underbrace{\sum_{k} \Delta f_{k} \cdot \Delta x_{k}}_{RES}$$

$$\forall k \ x_k = \Phi(d_k) \ \Rightarrow \ \Delta x_k = \Phi^F(d_k^F) - \Phi^P(d_k^P) = [\Phi^F(d_k^F) - \Phi^P(d_k^F)] + [\Phi^P(d_k^F) - \Phi^P(d_k^P)]$$

$$\Delta^{F-P}\overline{X} = \underbrace{\sum_{k} \Delta f_{k} \cdot \Phi^{P}(d_{k}^{P})}_{PC} + \underbrace{\sum_{k} f_{k}^{P} \cdot \Phi^{P}(\Delta d_{k})}_{WC\Phi} + \underbrace{\sum_{k} f_{k}^{P} \cdot \Delta \Phi(d_{k}^{F})}_{WC\Phi} + RES$$

Cattiaux et al., SI Clim. Dyn., submitted.

Evaluating dynamical contributions

Contribution of changes in regimes frequencies:

$$\overline{X} = \sum_{k} f_{k} x_{k} \quad \Rightarrow \quad \Delta^{F-P} \overline{X} \quad = \quad \overline{X}^{F} - \overline{X}^{P} = \sum_{k} f_{k}^{F} x_{k}^{F} - \sum_{k} f_{k}^{P} x_{k}^{P}$$

$$= \quad \underbrace{\sum_{k} \Delta f_{k} \cdot x_{k}^{P}}_{BC} + \underbrace{\sum_{k} f_{k}^{P} \cdot \Delta x_{k}}_{WC} + \underbrace{\sum_{k} \Delta f_{k} \cdot \Delta x_{k}}_{RES}$$

Contribution of changes in regimes structures:

$$\forall k \ x_k = \Phi(d_k) \ \Rightarrow \ \Delta x_k = \Phi^F(d_k^F) - \Phi^P(d_k^P) = [\Phi^F(d_k^F) - \Phi^P(d_k^F)] + [\Phi^P(d_k^F) - \Phi^P(d_k^P)]$$

$$\Delta^{F-P}\overline{X} = \underbrace{\sum_{k} \Delta f_{k} \cdot \Phi^{P}(d_{k}^{P})}_{} + \underbrace{\sum_{k} f_{k}^{P} \cdot \Phi^{P}(\Delta d_{k})}_{} + \underbrace{\sum_{k} f_{k}^{P} \cdot \Delta \Phi(d_{k}^{F})}_{} + RES$$

Cattiaux et al., SI Clim. Dyn., submitted.

Evaluating dynamical contributions

Contribution of changes in regimes frequencies:

$$\overline{X} = \sum_{k} f_{k} x_{k} \quad \Rightarrow \quad \Delta^{F-P} \overline{X} \quad = \quad \overline{X}^{F} - \overline{X}^{P} = \sum_{k} f_{k}^{F} x_{k}^{F} - \sum_{k} f_{k}^{P} x_{k}^{P}$$

$$= \quad \underbrace{\sum_{k} \Delta f_{k} \cdot x_{k}^{P}}_{BC} + \underbrace{\sum_{k} f_{k}^{P} \cdot \Delta x_{k}}_{WC} + \underbrace{\sum_{k} \Delta f_{k} \cdot \Delta x_{k}}_{RES}$$

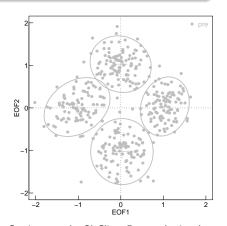
Contribution of changes in regimes structures:

$$\forall k \ x_k = \Phi(d_k) \ \Rightarrow \ \Delta x_k = \Phi^F(d_k^F) - \Phi^P(d_k^P) = [\Phi^F(d_k^F) - \Phi^P(d_k^F)] + [\Phi^P(d_k^F) - \Phi^P(d_k^P)]$$

Final breakdown

$$\Delta^{F-P}\overline{X} = \underbrace{\sum_{k} \Delta f_{k} \cdot \Phi^{P}(d_{k}^{P})}_{BC} + \underbrace{\sum_{k} f_{k}^{P} \cdot \Phi^{P}(\Delta d_{k})}_{WCd} + \underbrace{\sum_{k} f_{k}^{P} \cdot \Delta \Phi(d_{k}^{F})}_{WC\Phi} + RES$$

Cattiaux et al., SI Clim. Dyn., submitted.


I.e. the mean value of X that would produce present-day physics from future circulations.

One way to do it: consider

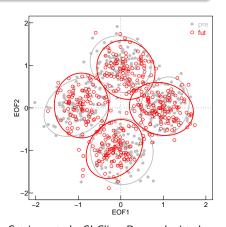
$$\Phi^{P}(d_{k}^{F}) \equiv \Phi^{P}(\widetilde{d_{k}^{P}}) ,$$

where d_k^P are the flow-analogs of d_k^F sampled among the present-day circulations d_k^P .

See, e.g., Lorenz (1969) for flow-analogs.

Cattiaux et al. SI Clim. Dyn., submitted.

Evaluating the term $\Phi^P(d_k^F)$


I.e. the mean value of X that would produce present-day physics from future circulations.

One way to do it: consider

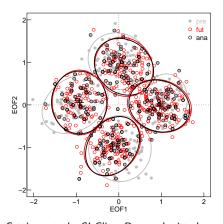
$$\Phi^{P}(d_{k}^{F}) \equiv \Phi^{P}(\widetilde{d_{k}^{P}}) ,$$

where d_k^P are the flow-analogs of d_k^F sampled among the present-day circulations d_k^P .

See, e.g., Lorenz (1969) for flow-analogs.

Cattiaux et al. SI Clim. Dyn., submitted.

Evaluating the term $\Phi^P(d_k^F)$

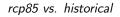

I.e. the mean value of X that would produce present-day physics from future circulations.

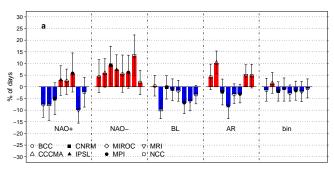
One way to do it: consider

$$\Phi^{P}(d_{k}^{F}) \equiv \Phi^{P}(\widetilde{d_{k}^{P}}) ,$$

where d_k^P are the flow-analogs of d_k^F sampled among the present-day circulations d_k^P .

See, e.g., Lorenz (1969) for flow-analogs.



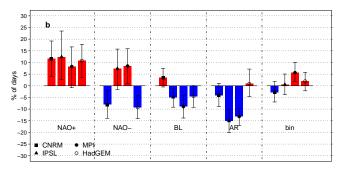

Cattiaux et al. SI Clim. Dyn., submitted.

 Introduction
 Methodology
 Results
 Conclusions
 ++

 ○○○○
 ○○○
 ○○○
 ○○○
 ○○○

Changes in regimes frequencies

- Increase of NAO—, while all previous CMIP concluded to increase of NAO+...(Boé, 2007; Cattiaux, 2010; Najac, 2008; Stephenson et al., 2006; van Ulden and van Oldenborgh, 2006, among many others)
- Opposite behaviour for CNRM in amip-type runs.
 Run forced by SST derived from rcp85? amipFuture in other GCMs?

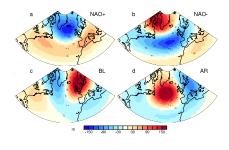


 Introduction
 Methodology
 Results
 Conclusions
 ++

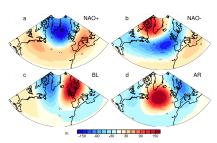
 ○○○○
 ○○○
 ○○○
 ○○○
 ○○○

Changes in regimes frequencies

amipFuture vs. amip

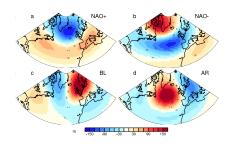


- Increase of NAO—, while all previous CMIP concluded to increase of NAO+...(Boé, 2007; Cattiaux, 2010; Najac, 2008; Stephenson et al., 2006; van Ulden and van Oldenborgh, 2006, among many others)
- Opposite behaviour for CNRM in amip-type runs.
 Run forced by SST derived from rcp85? amipFuture in other GCMs?

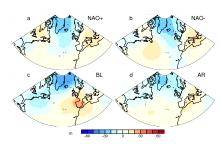


Changes in regimes structures

 $\overline{d_k^P}$, ensemble mean (historical analogs of rcp85)



- Only slight changes...
- ... but a general increase of westerlies (or decrease in easterlies) for all regimes.



Changes in regimes structures

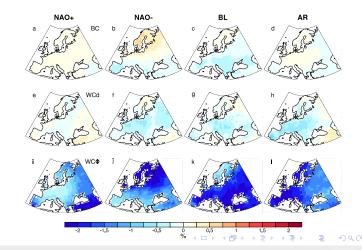
 $\overline{d_k^P}$, ensemble mean (historical)

 $\overline{\widetilde{d_k^P}} - \overline{d_k^P}$, ensemble mean (historical analogs of rcp85)

- Only slight changes...
- ... but a general increase of westerlies (or decrease in easterlies) for all regimes.

Methodology Results Conclusions Introduction 0000

Contributions to temperature extremes Mean changes


Ensemble mean of each term in:

$$\Delta^{F-P}\overline{X} = \sum_{k} \Delta f_{k} \cdot \Phi^{P}(d_{k}^{P}) + \sum_{k} f_{k}^{P} \cdot \Phi^{P}(\Delta d_{k}) + \sum_{k} f_{k}^{P} \cdot \Delta \Phi(d_{k}^{F}) + RES$$

Regimes frequencies (Δf_k)

Regimes structures (Δd_k)

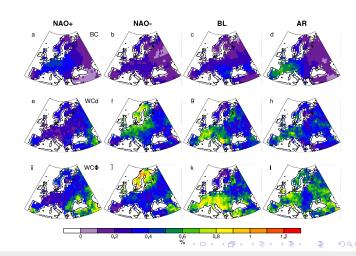
Non-dynamical processes $(\Delta \Phi)$

J. Cattiaux et al. (CNRM)

 Introduction
 Methodology
 Results
 Conclusions

 ○○○○
 ○○
 ○○○
 ○○

Contributions to temperature extremes Uncertainties


Ensemble standard deviation of each term in:

$$\Delta^{F-P}\overline{X} = \sum_{k} \Delta f_{k} \cdot \Phi^{P}(d_{k}^{F}) + \sum_{k} f_{k}^{F} \cdot \Phi^{P}(\Delta d_{k}) + \sum_{k} f_{k}^{F} \cdot \Delta \Phi(d_{k}^{F}) + RES$$

Regimes frequencies (Δf_k)

Regimes structures (Δd_k)

Non-dynamical processes $(\Delta\Phi)$

J. Cattiaux et al. (CNRM)

Results

Concluding remarks

Summary

- Original methodology to separate dynamical vs. non-dynamical contributions to temperature changes.
- CMIP5: surprising future increase in NAO— conditions (to be confirmed...).
- Dynamical contribution: minor on mean changes, substantial on uncertainties.

- Understanding of physical contributions: radiative budgets, heat
- Estimating uncertainties due to cloud feedbacks & soil processes
- Extend the methodology to other seasons (e.g., summer) and/or

Results

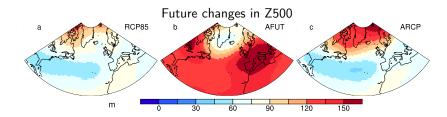
Concluding remarks

Summary

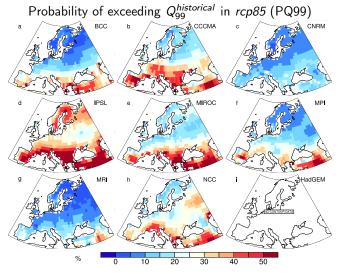
Introduction

- Original methodology to separate dynamical vs. non-dynamical contributions to temperature changes.
- CMIP5: surprising future increase in NAO— conditions (to be confirmed...).
- Dynamical contribution: minor on mean changes, substantial on uncertainties.

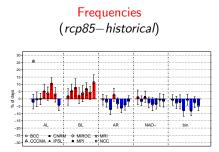
Work in progress...

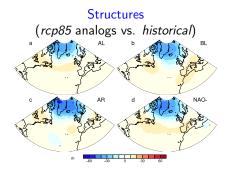

- Understanding of physical contributions: radiative budgets, heat fluxes, surface variables...
- Estimating uncertainties due to cloud feedbacks & soil processes (soil moisture/snow).
- Extend the methodology to other seasons (e.g., summer) and/or variables (e.g., precipitations).

Conclusions


Thanks.

CNRM-CM5: Future increase of NAO+? NAO-?

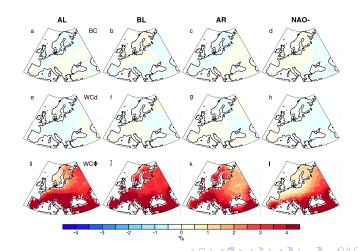



Future changes in summertime hot days

Changes in regimes frequencies and structures

 Introduction
 Methodology
 Results
 Conclusions

 0000
 00
 000
 00


Contributions to summertime temperature extremes

Mean changes (ensemble mean)

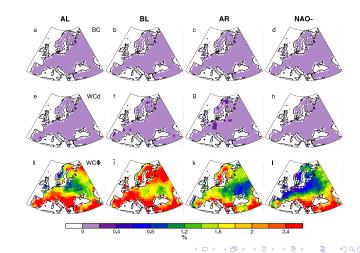
Regimes frequencies (Δf_k)

Regimes structures (Δd_k)

Non-dynamical processes $(\Delta\Phi)$

 Introduction
 Methodology
 Results
 Conclusions

 0000
 00
 000
 00


Contributions to summertime temperature extremes

Uncertainties (ensemble standard deviation)

Regimes frequencies (Δf_k)

Regimes structures (Δd_k)

Non-dynamical processes $(\Delta\Phi)$

