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Extremes? Why?

Summer 2003: public & scientific awareness.

highest impacts on societies &
ecosystems.
numerous recent examples: signature of
climate change?

Understanding the summer 2003. . .

+2.5°C (+3.2σ) (e.g., Beniston, 2004;
Trigo et al., 2005).
soil–atmosphere feedback (e.g., Fischer
et al., 2007; Seneviratne et al., 2006;
Vautard et al., 2007).
future amplification of summer
heat-waves (e.g., Fischer and Schär,
2009).
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Extremes? Why?

My PhD. . .

Recent & future extremes in European
seasonal temperatures, for all seasons.
Role of the internal variability?
Feedbacks?
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A burning issue. . .
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A concern for future years

IPCC, 2007.

Fate of extremely
warm/cold seasons in
the 21st century?
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A concern for future years

IPCC, 2007.
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Future changes in European summer temperatures

Fate of extremely
warm/cold seasons in
the 21st century?
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Main questions

Question 1
What are the main drivers of recent extremes & trends observed in European
seasonal temperatures?

physical & dynamical mechanisms

Question 2
Does climate change affect the natural variability in the North-Atlantic –
European (NAE) area? How does it contribute to the European warming?

responses to climate change
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Outline

1. Drivers of recent extremes & trends
Introduction: NAE dynamics as the main driver of European climate
Case study of the exceptionally warm autumn of 2006
J. Cattiaux et al. (2009), Origins of the extremely warm European fall of 2006, Geophysical

Research Letters, 36 (6), pp. L06713. DOI: 10.1029/2009GL037339

Generalization to other seasons
J. Cattiaux et al. (2010b), North-Atlantic SST amplified recent wintertime European land
temperature extremes and trends, Climate Dynamics, published online. DOI:
10.1007/s00382-010-0869-0

2. Role of the natural variability in future European warming
Analysis of future climate projections from IPCC-AR4 (2007)
J. Cattiaux et al. (2010a), Dynamics of future seasonal temperature trends and extremes in
Europe: a multi-model analysis from IPCC-AR4, to be submitted to Climate Dynamics, in prep..

Application: case study of the cold winter 2009/10
J. Cattiaux et al. (2010c), Winter 2010 in Europe: A cold extreme in a warming climate,

Geophysical Research Letters, 37 , pp. L20704. DOI: 10.1029/2010GL044613
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European temperatures & NAE dynamics
Introduction

Europe is under the influence of the disturbances in the mid-latitudes jet
stream (strongest in winter).
First mode of variability: the North Atlantic Oscillation (NAO).
NAO influence: NAO+ (NAO−) ↔ warm (cold) weather.

©Lamont-Doherty Earth Observatory.
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European temperatures & NAE dynamics
Recent winter warming: increase in NAO+?

NAO influence: NAO+ (NAO−) ↔ warm (cold) weather.
1980, early 1990s: high frequency of NAO+ winters
→ “European warming is driven by changes in the NAE dynamics” (e.g.,
Corti et al., 1999; Gillett et al., 2003; Hsu and Zwiers, 2001; Palmer, 1999).
since 1995: high frequency of NAO− winters, while temperatures still
increase (e.g., 2006/07) → “inconsistency”.
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Inconsistency NAE dynamics / European temperatures
The example of autumn–winter 2006/07

Flow-analogues
Estimating the
temperature of a given
day by looking at
temperatures associated
with similar atmospheric
circulations in the past
(Lorenz, 1969).

Observed & analog temperatures of SONDJF 2006/07

  

Yiou et al. (2007).
Temperatures: ECA&D stations (Tmin) (Klein-Tank et al., 2002).
Z500: NCEP/NCAR reanalysis (Kistler et al., 2001).
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Contribution of NAE dynamics to the mild autumn of 2006
T2m V500
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Cattiaux et al. (2009).
T2m & V500: NCEP/NCAR reanalysis (Kistler et al., 2001).
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Contribution of NAE SST to the mild autumn of 2006
T2m SST
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Contribution of NAE SST to the mild autumn of 2006
T2m SST
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2.6 Linear regression model
Adding SST improves the fit
(r = 0.8).
The increasing trend in T2m is
reproduced by the SST warming.

Cattiaux et al. (2009).
T2m, V500 & SST: NCEP/NCAR reanalysis (Kistler et al., 2001).
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Contribution of NAE SST to the mild autumn of 2006
T2m SST
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No evidence for any causality.
Dynamics & SST are not
independent.
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Contribution of NAE SST to the mild autumn of 2006
MM5 sensitivity experiment
MM5: regional climate model developed at PSU/NCAR.
Experimental set-up: 2 wind-nudged simulations of SON 2006, only differing by
SST forcing such as ∆SST ≡ observed anomaly. Resolution 0.5×0.5°,
temperature & humidity not nudged.

∆SST forcing ∆T2m response

  

∆T2m response = 0.8°C, consistent with statistical estimate.

Cattiaux et al. (2009).
SST forcings: NCEP/NCAR reanalysis (Kistler et al., 2001).
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Contribution of NAE SST to the mild autumn of 2006
Physical mechanisms

∆↓E = ∆↓LW ′ + ∆↓SW ′ + LH ′↓ + SH ′↓

∆SST advection
sensible heat.
water vapor,
enhancing local
greenhouse effect.

Limits
Difficulty to interpret
sea–air fluxes in
SST-forced experiments
(Barsugli and Battisti,
1998).

See also: M.E. Shongwe et al. (2009), Energy budget of the extreme Autumn 2006 in Europe,
Climate Dynamics, pp. 1–12. DOI: 10.1007/s00382-009-0689-2

J. Cattiaux (LSCE) European temperature extremes under CC December 22, 2010 13 / 41

http://dx.doi.org/10.1007/s00382-009-0689-2


Contribution of NAE SST to the mild autumn of 2006
Physical mechanisms

∆↓E = ∆↓LW ′ + ∆↓SW ′ + LH ′↓ + SH ′↓

∆SST advection
sensible heat.
water vapor,
enhancing local
greenhouse effect.

Limits
Difficulty to interpret
sea–air fluxes in
SST-forced experiments
(Barsugli and Battisti,
1998).

See also: M.E. Shongwe et al. (2009), Energy budget of the extreme Autumn 2006 in Europe,
Climate Dynamics, pp. 1–12. DOI: 10.1007/s00382-009-0689-2

J. Cattiaux (LSCE) European temperature extremes under CC December 22, 2010 13 / 41

http://dx.doi.org/10.1007/s00382-009-0689-2


Contribution of NAE SST to the mild autumn of 2006
Physical mechanisms

∆↓E = ∆↓LW ′ + ∆↓SW ′ + LH ′↓ + SH ′↓

∆SST advection
sensible heat.
water vapor,
enhancing local
greenhouse effect.

Limits
Difficulty to interpret
sea–air fluxes in
SST-forced experiments
(Barsugli and Battisti,
1998).

See also: M.E. Shongwe et al. (2009), Energy budget of the extreme Autumn 2006 in Europe,
Climate Dynamics, pp. 1–12. DOI: 10.1007/s00382-009-0689-2

J. Cattiaux (LSCE) European temperature extremes under CC December 22, 2010 13 / 41

http://dx.doi.org/10.1007/s00382-009-0689-2


Mild autumn 2006 in Europe:
summary

An extremely warm event comparable in seasonal amplitude to the summer
2003.
Record-breaking southly flow: ∼50% of the temperature anomaly.
Record-breaking warm NAE SST: ∼30% more, through the advection of both
water vapor and sensible heat by the westerlies.
∼20% unexplained: non-linearities? Feedbacks (soil moisture, clouds,
aerosols)?
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Back to outline. . .

1. Drivers of recent extremes & trends
Introduction: NAE dynamics as the main driver of European climate
Case study of the exceptionally warm autumn of 2006
J. Cattiaux et al. (2009), Origins of the extremely warm European fall of 2006, Geophysical

Research Letters, 36 (6), pp. L06713. DOI: 10.1029/2009GL037339

Generalization to other seasons
J. Cattiaux et al. (2010b), North-Atlantic SST amplified recent wintertime European land
temperature extremes and trends, Climate Dynamics, published online. DOI:
10.1007/s00382-010-0869-0

2. Role of the natural variability in future European warming
Analysis of future climate projections from IPCC-AR4 (2007)
J. Cattiaux et al. (2010a), Dynamics of future seasonal temperature trends and extremes in
Europe: a multi-model analysis from IPCC-AR4, to be submitted to Climate Dynamics, in prep..

Application: case study of the cold winter 2009/10
J. Cattiaux et al. (2010c), Winter 2010 in Europe: A cold extreme in a warming climate,

Geophysical Research Letters, 37 , pp. L20704. DOI: 10.1029/2010GL044613
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Generalization: dynamics contribution (V500 → SDI)

Cattiaux et al. (2010b): SDI based on Z500–T2m correlation patterns.
Tobs: E-OBS (ECA&D), Z500: NCEP/NCAR reanalysis.
Flow-analogues: Vautard and Yiou (2009), NAO index: Jones et al. (1998).
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Generalization: SST contribution

  

r = 0.81

r = 0.71 r = 0.88

r = 0.78

Cattiaux et al. (2010b).
Tobs: E-OBS (ECA&D), Z500: NCEP/NCAR reanalysis.
SST: NCEP/NCAR reanalysis.
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Generalization: SST contribution

  

r = 0.81  0.83

r = 0.71  0.83 r = 0.88  0.84

r = 0.78  0.90

Cattiaux et al. (2010b).
Tobs: E-OBS (ECA&D), Z500: NCEP/NCAR reanalysis.
SST: NCEP/NCAR reanalysis.
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Generalization: SST contribution
MM5 sensitivity experiments over 2003–2007

∆SST forcings ∆T2m responses

Seasonality
highest (lowest)
SST trend in
autumn (spring).
westerlies advection
more (less) efficient
in autumn–winter
(spring–summer).
spring–summer:
other feedbacks
(e.g., soil
moisture1,
aerosols2, clouds3).

Cattiaux et al. (2010b).
1 Seneviratne et al. (2006), 2 Ruckstuhl et al. (2008), 3 Vautard et al. (2009).
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Recent European temperature extremes and trends:
summary

All seasonal warm records have been broken since 2003, which acts in the
recent long-term increase in European temperatures.
The NAE atmospheric dynamics is the main driver of the temperatures’
interannual variability, but does not explain upward trends.
The simultaneous warming of the NAE SST contributes to the European
warming, through the advection of both water vapor and sensible heat by the
westerlies.
The SST contribution is higher (lower) in autumn–winter (spring–summer).
Other feedbacks amplify European temperatures in spring–summer (e.g.,
deficit in soil moisture, clouds, aerosols).
Main limit: how to identify causality, since both dynamics and SST are
coupled.
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Back to outline II. . .

1. Drivers of recent extremes & trends
Introduction: NAE dynamics as the main driver of European climate
Case study of the exceptionally warm autumn of 2006
J. Cattiaux et al. (2009), Origins of the extremely warm European fall of 2006, Geophysical

Research Letters, 36 (6), pp. L06713. DOI: 10.1029/2009GL037339

Generalization to other seasons
J. Cattiaux et al. (2010b), North-Atlantic SST amplified recent wintertime European land
temperature extremes and trends, Climate Dynamics, published online. DOI:
10.1007/s00382-010-0869-0

2. Role of the natural variability in future European warming
Analysis of future climate projections from IPCC-AR4 (2007)
J. Cattiaux et al. (2010a), Dynamics of future seasonal temperature trends and extremes in
Europe: a multi-model analysis from IPCC-AR4, to be submitted to Climate Dynamics, in prep..

Application: case study of the cold winter 2009/10
J. Cattiaux et al. (2010c), Winter 2010 in Europe: A cold extreme in a warming climate,

Geophysical Research Letters, 37 , pp. L20704. DOI: 10.1029/2010GL044613
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In the future?
Questions:

Is the dynamics/temperature inconsistency expected to continue/amplify?

How to estimate the contribution of changes in internal variability to the
temperature increase?

What are the atmospheric circulations associated with projected extremes?

Methodology:
Multi-model analysis from 13 CMIP3 GCMs: T2m & SLP.
Periods 1961–2000 (20c3m) 2046–2065 & 2081–2100, in SRES A2.
Technique: flow-analogues & weather regimes (not shown today).
Selection of “best” models: skillful model-ensembles per season.

Cattiaux et al. (2010a), submitted.
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Models selection per season
Criterion: ability to reproduce observed SLP–T2m correlation patterns.

ERA-40

Cattiaux et al. (2010a), submitted.
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Models selection per season
Criterion: ability to reproduce observed SLP–T2m correlation patterns.

ERA-40 “Best models”

MAM JJA
1 CCC47 MIR32
2 GFDL21 GFDL21
3 GISSer ECH5
4 MRI232 CCC47
5 ECHOg ECH4

SON DJF
1 ECHOg CCC47
2 CNRM3 GFDL20
3 GFDL21 CNRM3
4 CSI30 MRI232
5 IPSL4 ECH4

Cattiaux et al. (2010a), submitted.
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Models selection per season
Criterion: ability to reproduce observed SLP–T2m correlation patterns.

ERA-40 Model-ensembles

Cattiaux et al. (2010a), submitted.
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Projected changes in European temperatures
From seasonal model-ensembles
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Projected changes in NAE dynamics
From seasonal model-ensembles

Difference 2081–2100 & 1961–2000
SLP (hPa): Mean Variance

Strengthening and
northward shift of the jet
stream → increase in
NAO+ conditions (e.g.,
Terray et al., 2004).
Generalized decrease in
interannual variability.
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NAE dynamics & future temperature increase
Flow-analogues: method
SLP Dec 22, 2060 (CNRM-CM3)

  

⇒

Flow-analogues in 1961–2000

⇓ ⇓
“Reference” temperature. ⇔

??
N “analog” temperatures.

Limit?
Is a 40-year sampling period sufficient?
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NAE dynamics & future temperature increase
Flow-analogues: correlations

Correlations of the 5th flow-analogue
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NAE dynamics & future temperature increase
Flow-analogues: temperatures
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NAE dynamics & future temperature increase
Flow-analogues: temperatures
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Focus on extremely warm/cold seasons
Exceeding ±1σ of detrended temperature distributions.
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NAE dynamics & future temperature increase:
summary

CMIP3 models generally perform well in reproducing NAE
dynamics/temperature relationships.
Changes in temperatures: increase in the mean. Widening (tightening) of
summer (winter) distribution (see also Christensen et al., 2007; Fischer and
Schär, 2009).
Changes in dynamics: northward shift of the jet stream & decrease in the
variability → increase in NAO+ (see also Terray et al., 2004).
NAE dynamics is and remains the main driver of European temperatures
variability, but only a minor part of long-term warming can be attributed to
circulation changes (confirmed by weather-regime approach, not shown).
Circulations associated with warm/cold seasons do not change. But feedbacks
may change (e.g., amplify summer extremes (Fischer and Schär, 2009)).
Main limit: are flow-analogues able to capture any trend?
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Back to outline III. . .

1. Drivers of recent extremes & trends
Introduction: NAE dynamics as the main driver of European climate
Case study of the exceptionally warm autumn of 2006
J. Cattiaux et al. (2009), Origins of the extremely warm European fall of 2006, Geophysical

Research Letters, 36 (6), pp. L06713. DOI: 10.1029/2009GL037339

Generalization to other seasons
J. Cattiaux et al. (2010b), North-Atlantic SST amplified recent wintertime European land
temperature extremes and trends, Climate Dynamics, published online. DOI:
10.1007/s00382-010-0869-0

2. Role of the natural variability in future European warming
Analysis of future climate projections from IPCC-AR4 (2007)
J. Cattiaux et al. (2010a), Dynamics of future seasonal temperature trends and extremes in
Europe: a multi-model analysis from IPCC-AR4, to be submitted to Climate Dynamics, in prep..

Application: case study of the cold winter 2009/10
J. Cattiaux et al. (2010c), Winter 2010 in Europe: A cold extreme in a warming climate,

Geophysical Research Letters, 37 , pp. L20704. DOI: 10.1029/2010GL044613
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Winter 2009/10: what happened?

January 7, 2010 (NASA).

Are European cold spells
of winter 2009/10
incompatible with global
warming?
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Winter 2009/10: locally cold, globally warm

GISS-temp (http://data.giss.nasa.gov/cgi-bin/gistemp/).

  

5th warmest DJF on record since 1880 (NOAA, see Cohen et al. (2010)).
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Winter 2009/10: an extreme persistence of NAO−

  

(a)
(m)

Cattiaux et al. (2010c).
Z500: NCEP/NCAR reanalysis. NAO index: Jones et al. (1998).
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Winter 2009/10: an extreme persistence of NAO−

  

(a)
(m)

Cattiaux et al. (2010c).
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Winter 2009/10 in Europe
Cold, but not extreme
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Cattiaux et al. (2010c).
Tobs: E-OBS (ECA&D).
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Winter 2009/10 in Europe
Warmer than flow-analogues
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Cattiaux et al. (2010c).
Tobs: E-OBS (ECA&D), Flow-analogues from NCEP/NCAR Z500.

J. Cattiaux (LSCE) European temperature extremes under CC December 22, 2010 35 / 41



Winter 2009/10 in Europe
Warmer than flow-analogues
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Cattiaux et al. (2010c).
Tobs: E-OBS (ECA&D), Flow-analogues from NCEP/NCAR Z500.
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Winter 2009/10 in Europe
Less snowy than flow-analogues
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Snow cover: E-OBS (ECA&D), Flow-analogues from NCEP/NCAR Z500.
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Cold winter 2009/2010 in Europe:
summary

Regionally cold and snowy, globally warm (Cohen et al., 2010).
Caused by an exceptional persistence of negative NAO conditions.
In Europe, winter 2010 was cold (especially Tmax), but not extreme . . .
. . . and warmer than expected from flow-analogues estimates.
“Observed−analog” difference consistent with the 1980–2009 long-term
observed trend.
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Main conclusions

Recent trends & extremes in European seasonal temperatures are not
explained by the NAE atmospheric dynamics.
Seasonality in the amplifying mechanisms: local feedbacks in spring–summer,
heat & water vapor advection from Atlantic in autumn–winter.
Projected changes in NAE circulations (enhanced NAO+) only have a minor
contribution to projected temperature increase.
Future warm/cold extremes are associated with similar circulations as recent
warm/cold extremes.
Recent wintertime cold spells in Europe are all but incompatible with global
warming.
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Limits

Difficulty to isolate individual signatures in coupled systems:
I Linear regression model? No evidence for causality.
I Sensitivity experiments? Physics must be broken somewhere.

Flow-analogues method: could analog temperatures show up any trend, given
that flow-analogues days are sampled in a quite stationary climate?
Simplistic hypothesis in multi-model approach:

I Selection of “best” models: arbitrary.
I Equi-probability of models in combining future climate projections.
I Using multi-model range as an estimate for uncertainties.
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Prospects

Methodology, statistical & modeling tools could be applied to:
I CMIP5 models (IPCC-AR5) → Post-doc at CNRM.
I other regions → Arctic (with V. Masson-Delmotte), Asia (P. Yiou).
I other variables (snow, rainfall (Vautard and Yiou, 2009)).
I other periods (last millenium, volcanic eruptions (T. Salameh)).
I model development → IPSL-CM4/5 analysis (with LMD people).

Need for going to higher time & spatial scales (downscaling):
I sub-seasonal scale: persistance/intensity of heat-waves & cold spells (PhD B.

Quesada), weather-regime approach (with M. Vrac).
I more local scale: regional climate projections (projects DRIAS, CORDEX,

SALUTAIR).

Towards prediction of temperature extreme events?
I operational: looking for precursors (e.g., spring soil moisture, autumn arctic

sea ice). Not shown today: discussion about different forcings of the NAO
(case study of winter 2009/10).

I statistical: probabilistic methods for weighted combinations of multi-model
projections, wrt. individual model skills.
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Thanks for your attention.
Questions?
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Energy budget of the mild autumn of 2006
Physical mechanisms

∆↓E = ∆↓LW ′ + ∆↓SW ′ + LH ′↓ + SH ′↓

increased solar flux
caused by the
anticyclonic
circulation.
water vapor from
warm SST,
enhancing local
greenhouse effect.
sensible heat
advected from
warm SST.

See also: Shongwe et al. (2009) & Philipona et al. (2005).

J. Cattiaux (LSCE) European temperature extremes under CC December 22, 2010 41 / 41



Warming of North Atlantic ocean
Natural or anthropogenic?

North-Atlantic SST trend
natural multi-decadal oscillation (60
years): the AMO (Kerr, 2000).
global warming, very likely due to
human activities (IPCC-AR4).

→ Great debate in recent years! Knight
et al. (2005) vs.
Trenberth and Shea (2006) or Ting et al.
(2009).   

(a) SST North-Atlantic

(b) SST Atlantic

(c) SST AMO

Trenberth and Shea (2006).
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European temperatures & NAE dynamics
Winter weather regimes

Preferential states of the NAE daily atmospheric circulation.
Clustering algorithms → 4 winter regimes.
Associated temperatures: composites.

Sea-Level Pressure (SLP), ERA-40
NDJFM 1961–2000.

2m-temperature (T2m), ERA-40
NDJFM 1961–2000.
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Winter weather regimes

Preferential states of the NAE daily atmospheric circulation.
Clustering algorithms → 4 winter regimes.
Associated temperatures: composites.

Sea-Level Pressure (SLP), ERA-40
NDJFM 1961–2000.

Sea-Level Pressure (SLP), IPSL-CM4
NDJFM 1961–2000.
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European temperatures & NAE dynamics
Winter weather regimes

Preferential states of the NAE daily atmospheric circulation.
Clustering algorithms → 4 winter regimes.
Associated temperatures: composites.

Summer Winter
1 ECHOg CCC47
2 MRI232 GFDL21
3 IPSL4 CSI35
4 CSI35 ECHOg
5 ECH5 IPSL4

Sea-Level Pressure (SLP), ERA-40
NDJFM 1961–2000.
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European temperatures & NAE dynamics
Winter weather regimes

Preferential states of the NAE daily atmospheric circulation.
Clustering algorithms → 4 winter regimes.
Associated temperatures: composites.

Sea-Level Pressure (SLP), ERA-40
NDJFM 1961–2000.

Sea-Level Pressure (SLP), Ensemble
NDJFM 1961–2000.
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Temperature increase: changes in WR occurrences?
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Temperature increase: changes in WR occurrences?
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Winter 2009/10: why such an NAO−?

Forcings
ENSO (Cassou, 2001).
Tropical-Atlantic SST (Cassou et al.,
2004).
Eurasian snow over in October (Cohen
et al., 2010).
Late-summer Arctic sea-ice extent
(Francis et al., 2009).

/!\ Not systematic!
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Winter 2009/10: a unbreakable record for future years?
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Probability of below-2010 T2m

Pr
(
T̃y ≤ T̃2010

) = 0.21 si y ∈ 20c3m
≤ 0.01 si 2046 ≤ y ≤ 2065
� 0.001 si 2081 ≤ y ≤ 2100

Hypothesis
Gaussian distributions.
equi-probable models.
models range as
uncertainties.
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