

Setup and first evaluation of the coupled hydrometeorological MESCAN-SURFEX-CTRIP modelling system over Europe

Szczypta, C., P. Le Moigne, B. Decharme, A. Verrelle, F. Besson, E. Bazile and R. Abida

Project overview and objectives

UERRA (Uncertainties in Ensembles of Regional ReAnalyses)

- European project
- Production and development of an ensemble system of regional reanalysis

- Europe - 2006-2010

- Estimation of ECVs uncertainties
- Production of a regional reanalysis over the 1961-2010 period

Objectives

- Setup of a coupled hydro-meteorological modelling system

 \rightarrow Long term reanalysis of land surface variables

- \rightarrow Long time series of discharges over the main European rivers
- Evaluation of the system (in situ observations)

SUW2017 - 28/02/2017

¢

SUW2017 – 28/02/2017

2

SUW2017 - 28/02/2017

URRA Uncertainties in Ensembles of Regional ReAnalyses

FRANCE

Uncertainties in Ensembles of Regional ReAnalyses

SUW2017 - 28/02/2017

Ó

FRANCE

The different atmospheric forcing

MODEL DOWNSCALED

Atmospheric data

- \rightarrow Radiation (SW, LW)
- \longrightarrow Wind speed and direction
- \rightarrow Pressure
- \rightarrow T2m, Hu2m
 - Precipitation (Rainf, Snowf)

The different atmospheric forcing

MODEL DOWNSCALED

0

The different atmospheric forcing

MODEL DOWNSCALED

\rightarrow Aladin DS with Mescan analysis based on the reference density network

PRECIPITATION

In comparison to SAFRAN

- the MESCAN analysis improves the Aladin downscaled precipitation
- the precipitation observation network impacts the MESCAN analysis
- the MESCAN precipitation is a little underestimated over France
- SAFRAN and MESCAN present very different diurnal cycles

Fig. 1. Comparison of the mean SAFRAN and MESCAN precipitation diurnal cycle computed over France from the 2007-2008 2-year period.

4

\rightarrow Aladin DS with Mescan analysis based on the reference density network

INCOMING SOLAR RADIATION

Fig. 2. Scatterplots of the daily SAFRAN vs. MESCAN incoming solar radiation obtained for each season over the 2007-2008 period.

- Aladin ISR is overestimated over France during spring and summer
- In summer : the variability of ISR from one day to another is greater with observations and with SAFRAN than with Aladin.
- Aladin tends to overestimate the smallest daily ISR during summer.
- Bad representation of cloud cover ?

→ Aladin DS with Mescan analysis based on the reference density network TEMPERATURE, HUMIDITY, WIND

Fig. 3. Comparison between the mean annual SAFRAN and MESCAN (left) temperature, (middle) specific humidity and (right) wind speed over the 2007-2008 period.

SUW2017 - 28/02/2017

Ó

6

/

→ Aladin DS with Mescan analysis based on the reference density network TEMPERATURE, HUMIDITY, WIND

Fig. 3. Comparison between the mean annual SAFRAN and MESCAN (left) temperature, (middle) specific humidity and (right) wind speed over the 2007-2008 period.

Ó

→ Aladin DS with Mescan analysis based on the reference density network **TEMPERATURE, HUMIDITY, WIND**

Fig. 4. Scatterplots of the daily SAFRAN vs. MESCAN wind speed for the 4 main French catchments over the 2007-2008 period.

6

→ Aladin DS with Mescan analysis based on the reference density network New T2m analysis method : for the 50-year reanalysis

Fig. 5. Comparison between the SAFRAN and the MESCAN (left) temperature and (right) associated snowfall over the 2007-2008 period, with the initial and new temperature analysis methods.

Ó

Forcing impact on the French river discharge simulations

Fig. 6. Comparison of river discharges obtained with the SAFRAN forcing, with SAFRAN combined with MESCAN meteorological variables and observations on the Loire and Garonne rivers over the 2007-2008 period

SUW2017 - 28/02/2017

Forcing impact on the French river discharge simulations

Fig. 7. Comparison of river discharges obtained with the SAFRAN forcing, with SAFRAN combined with MESCAN meteorological variables and observations on the Seine and Rhone rivers over the 2007-2008 period

SUW2017 - 28/02/2017

Ċ

Forcing impact on the ISBA water fluxes over France

Evaluation of TRIP river discharge simulations over Europe

60°N 50°N 40°N 30°N 0° 20°E 40°E

GRDC STATIONS

GRDC Network

Global Runoff Data Center observations

For the 2006-2010 period

- 101 stations with daily observations
- Monthly observations on Spanish and Italian rivers

Fig. 9. Map of GRDC stations available between 2006 and 2010 over the UERRA domain

River discharge simulations with the Member 1 (2006-2008)

- Production of the ensemble of land surface variables (8 members)
- Evaluation of the different simulation data sets
 - simulated snow depth vs. observation network
 - TRIP river discharge vs. the GRDC data
 - the latent and sensible heat fluxes vs. the fluxnet product
- Quantification of uncertainties
- Improvement of the TRIP resolution from 0.5° to 1/12° (0.083°)
- Impact study on the river discharge simulations
- Production of a 1961-2010 regional reanalysis over Europe

Thank you for your attention!

The research leading to these results have received funding from the European Union, Seventh Framework Program (FP7-SPACE-2013-1) under grant agreement n°607193

SUW2017

