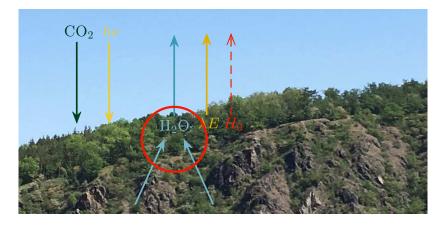
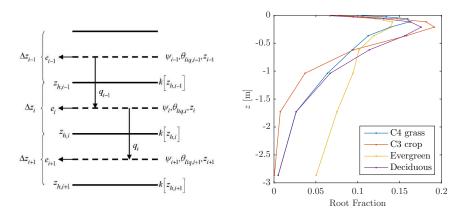

Big Root approximation of site-scale vegetation water uptake

Surfex workshop, Mar. 18, 2019

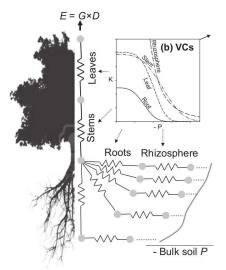
Martin Bouda martin.bouda@ibot.cas.cz



Vegetation as a Land Surface Feature


Canyon of Vltava river at Sedlec

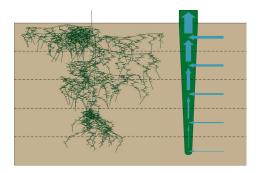
Vegetation as a Land Surface Feature



Canyon of Vltava river at Sedlec

Terrestrial models: soil water and root representation

stress factor
$$\beta = \frac{\psi - \psi_{min}}{\psi_{max} - \psi_{min}}$$

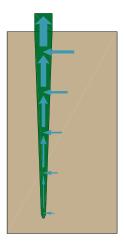


(Sperry et al., 2016, New Phytologist)

Next generation

- Moisture gradient in soil, plant, atmosphere.
- ▶ Ohm's law analogue.
- ► All root resistances assumed in parallel.
- Misrepresentation of root system architecture.
- Known problems, e.g. redistributes water too freely (Kennedy et al., 2019)

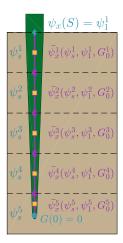
Effects of Root System Architecture



$$Q_{plant}^{i \Rightarrow i-1} - Q_{plant}^{i+1 \Rightarrow i} = Q_{soil \Rightarrow plant}^{i}$$

$$\frac{\Delta^2 \bar{\psi}_x}{\Delta z^2} = \frac{\bar{K}_r^{soil \Rightarrow plant}}{\bar{K}_z^{plant}} \left(\bar{\psi}_x - \psi_s \right)$$

- Flows accumulate upward.
- ► The more inflow in layer i, the greater the difference in water potential across layers i ± 1.
- RSA determines ratio between uptake and potential gradient dissipation.


Governing Equation

$$\frac{d^2\psi_x}{ds^2} = \frac{k_r}{K_x}(\psi_x - \psi_s)$$

- ▶ ψ_x (Pa) 'xylem' water potential
- s (m) length along root
 (0 at tip, S at base)
- ψ_s '(Pa) soil' water potential
- ► k_r (m² s⁻¹ Pa⁻¹) soil-root 'radial' conductance in cross-section
- ► K_x (m⁴ s⁻¹ Pa⁻¹) xylem 'axial' conductance in cross-section

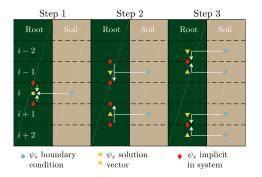
Segment mean water potential

Can find solutions that yield mean water potential in root segments $(\bar{\psi}_x^i)$:

$$\bar{\psi}_x^i = \frac{\int_0^{S^i} \psi_x(s) ds}{S^i}$$

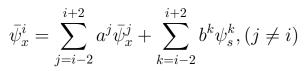
Layer water uptake from Darcian expression using $\bar{\psi}_x$:

$$Q_R^i = -k_r^i S^i (\bar{\psi}_x^i - \psi_s^i)$$

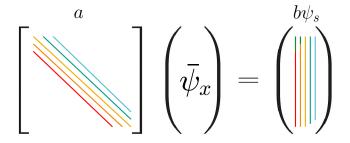

Possible equations for ψ_x^i

$$\begin{split} \bar{\psi}_x^i &= \psi_s^i + (G_1^i - G_0^i) / \beta_2^i \qquad (1a) \\ \bar{\psi}_x^i &= c_1^i \psi_0^i + (1 - c_1^i) \psi_s^i - c_2^i G_0^i \qquad (1b) \\ \bar{\psi}_x^i &= c_3^i \psi_0^i + (1 - c_3^i) \psi_s^i - c_4^i G_1^i \qquad (1c) \\ \bar{\psi}_x^i &= c_1^i \psi_1^i + (1 - c_1^i) \psi_s^i + c_2^i G_1^i \qquad (1d) \\ \bar{\psi}_x^i &= c_3^i \psi_1^i + (1 - c_3^i) \psi_s^i + c_4^i G_0^i \qquad (1e) \\ \bar{\psi}_x^i &= c_5^i (\psi_1^i + \psi_0^i) + (1 - 2c_5^i) \psi_s^i \qquad (1f) \end{split}$$

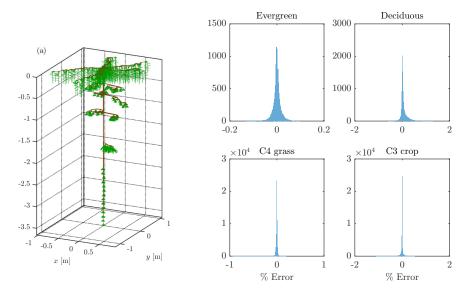
Table: List of variables


Symbol	Expression
$lpha^i$	$\sqrt{k_r^i/K_r^i}$
eta^i	$\sqrt{k_r^i/K_x^i} lpha^i S^i$
β_2^i	$(\alpha^i)^2 S^i$
$egin{array}{ccc} eta_2^i & c_1^i & c_2^i & c_3^i & c_4^i & c_5^i &$	$\sinh(\beta^i)/\beta^i$
c_2^i	$(1 - \cosh(\beta^i))/\beta_2^i$
c_3^i	$\tanh(\beta^i)/\beta^i$
c_4^i	$(\operatorname{sech}(\beta^i) - 1)/\beta_2^i$
c_5^i	$\tanh(\beta^i/2)/\beta^i$

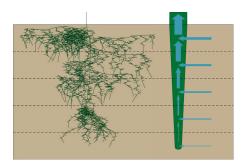
Analytical equation for single root $\bar{\psi}^i_x$



Derivation for layer i:

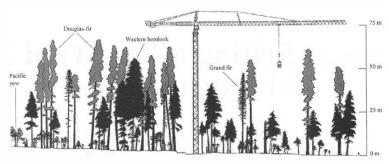

- 1. start from eq. 1f,
- 2. substitute for $\psi_{0/1}^i$ from eq. 1f,
- 3. substitute for $\psi_{0/1}^{i\pm 1}$ from combined eqs. 1b and 1d.

Pentadiagonal system ('RSA Stencil') for $\bar{\psi}_x$



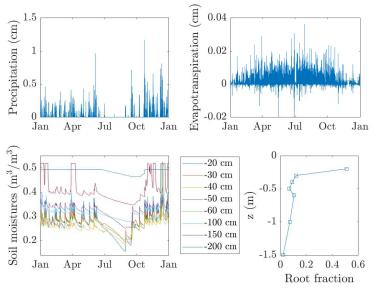
RSA Stencil: accurate $\bar{\psi}_x \& Q_R$ predictions

Bouda and Saiers (2017) Advances in Water Resources

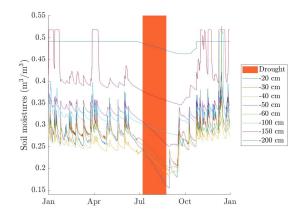

Big Root Model:

Use single-root equations to represent non-trivial RSA

- Lowers model skill as compared to 'unconstrained' RSA-Stencil fit.
- Provides a clear physical basis:
 - helps inverse model convergence
 - more easily interpretable parameters $(k_r S, K_x/S)$
 - greater consistency in prediction beyond calibration data

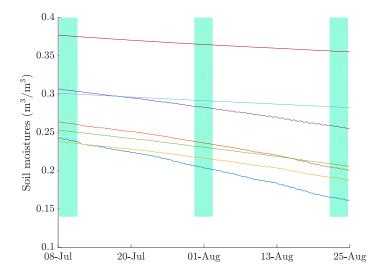

Big Root case study: prediction of field data from Wind River Crane

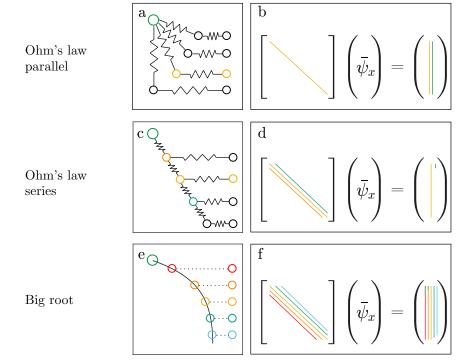
Shaw et al. (2004) Ecosystems


(Extensively studied old growth douglas-fir / hemlock site)

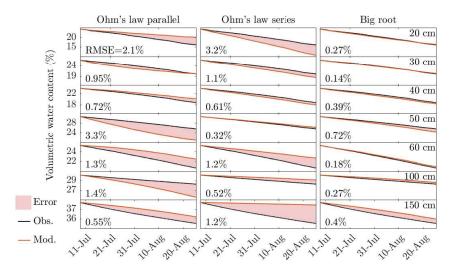
2010 Data Overview

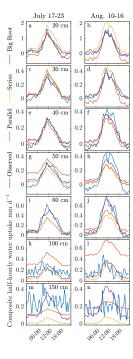
Sonia Wharton AmeriFlux US-Wrc Wind River Crane Site, doi:10.17190/AMF/1246114 Warren et al. (2005) Agr. & For. Meteorol.

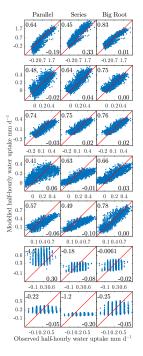

2010 Drought



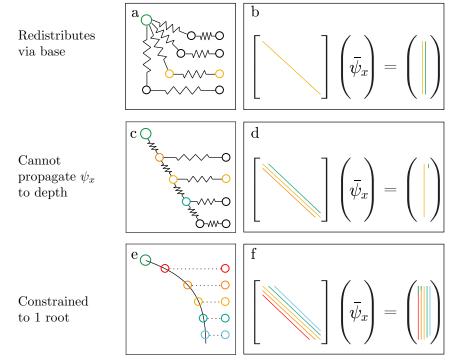
Assumptions:


- all water movement is through plant
- all ET is transpiration
- published $\psi_s \theta$ relations
- published basal area


Big root calibration data subset



Soil Moisture Predictions



Water Uptake Predictions

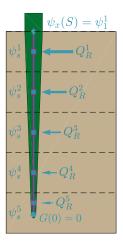
- Ohm's law parallel: overly redistributes dry bias in wet wet bias in dry
- Ohm's law series: shallow dry bias deep wet bias
- Big root: more flexible RSA no systematic bias

bioRXiv https://doi.org/10.1101/559237

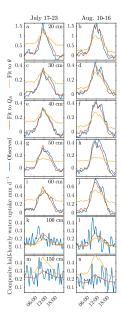
Conclusions

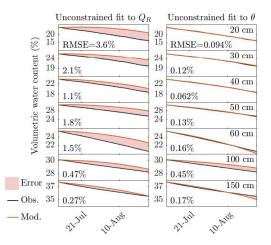
- RSA imposed by Ohm's law analogue models leads to biases.
- Big root model includes interactions between layers, is more flexible at represening RSA.
- Systematic biases eliminated; errors due to assumption of single effective root; but this also puts predictions on a physical basis, increasing robustness.
- ▶ Next steps (in cooperation with CNRM, Météo France):
 - implement big root model in SurfEx,
 - show impact of root scheme on soil moistures and surface fluxes at scale.

Acknowledgements


- ▶ Many thanks to Sonia Wharton and the Wind River Crane team!
- This work is supported by the Ministry of Education, Youth and Sports (Czech Republic) projects
 CZ.02.2.69/0.0/0.0/18_070/0009075,
 CZ.02.1.01/0.0/0.0/16_019/0000803, and LM2015070.

IT4Innovations national01\$#&0 supercomputing center@#01%101


Model inversion



- Cannot uniquely resolve k_r^i, K_x^i, S^i without further constraint.
- ▶ Inversion yields $k_r^i S^i$ and K_x^i / S^i or just stencil *a* and *b*, predicting flows (Q_R) :

Data	Boundary conditions	Inversion yields:	
$\bar{\psi}_x, Q_R$	$\psi_1^1, G_0^n = 0$	$k_r S, K_x/S$	
$\bar{\psi}_x, Q_R$	$\psi_1^1, G_0^n = 0 \ G_1^1, G_0^n = 0$	$k_r S, K_x/S$	
Q_R	$\psi_1^1, G_0^n = 0$	$k_r S, K_x/S *$	
Q_R	$G_1^1, G_0^n = 0$	stencil a, b	
* arroant larron m			

* except layer n

