
Short-term optimizations of PREP

Tayfun Dalkılıç, Daan Degrauwe

March 11, 2013

1 Introduction

The 2012 SURFEX working week in Brussels resulted in some proposals for short-term and long-term
actions to transform PREP into a code that is suitable for operations. In this document we will discuss
the ongoing work (4-week stay of Tayfun in Brussels) on the short-term actions:

• OpenMP parallelization of the most expensive parts

• avoidance of NWP-useless computations

• patch averaging

The use of binary LFI files instead of ASCII also resolved the namelist anomaly that was encountered
during the WW.

2 Profiling results

2.1 Large domain

We performed a profiling of PREP (cy37t1) on a 500×500 domain on a SGI UV2000 (1TB shared memory,
256 cores) machine:

1 78.59 223.887 223.887 223.887 36 6219.07 6219.08 MODI_AV_PGD:AV_PATCH_PGD_1D_3@1
2 12.27 258.856 34.970 34.970 924 37.85 37.85 MODI_BILIN:BILIN_4@1
3 3.35 268.391 9.535 9.535 66 144.47 144.48 MODI_AV_PGD:AV_PGD_1D_2@1
4 1.81 273.556 5.165 5.166 371 13.92 13.92 MODI_HOR_EXTRAPOL_SURF:HOR_EXTRAPOL_SURF@1
5 1.34 277.388 3.832 3.832 133 28.81 28.81 MODE_GRIDTYPE_CONF_PROJ:XY_CONF_PROJ@1
6 0.22 278.014 0.626 0.626 50 12.52 12.53 MODI_COEF_VER_INTERP_LIN_SURF:COEF_VER_INTERP_LIN_SURF@1
7 0.21 278.615 0.601 5.767 924 0.65 6.24 MODI_BILIN:BILIN_5@1

(to our surprise) patch averaging remains the most expensive routine, also for moderate to
large domains. We were expecting to see interpolations become relatively more important for such
domains.

Apparently, 3 routines take 90% of the runtime: patch averaging, bilinear interpolations, and another
type of cover averaging. The good news is that optimizing these routines will significantly improve PREP
runtimes. Therefore, we had a look at using OpenMP parallelization of these 3 routines (see infra).

2.2 FP2SX1 versus offline PREP

When converting ISBA to SURFEX, one can either use offline PREP, or run an ee927 configuration with
NFPSURFEX>0. Applying both of them to the same domain sizes, we get following profiling results:

FP2SX1:

FP2SX1:
1 84.54 109.470 109.470 109.470 15 7297.98 7297.99 MODI_AV_PGD:AV_PATCH_PGD_1D:PART2@1
2 7.32 118.946 9.477 9.477 54 175.49 175.50 MODI_AV_PGD:AV_PGD_1D_2@1
3 0.96 120.189 1.243 5.152 7 177.51 735.99 PREP_HOR_ISBA_FIELD@1
4 0.95 121.425 1.236 1.493 5 247.26 298.52 MODI_READ_SURF:READ_SURFX2COV@1
5 0.83 122.495 1.070 1.851 3 356.64 617.14 SOIL_PROFILE_BUFFER@1

1



PREP:

PREP:
1 63.29 115.211 115.211 115.211 21 5486.23 5486.24 MODI_AV_PGD:AV_PATCH_PGD_1D:PART2@1
2 22.39 155.968 40.758 40.758 924 44.11 44.11 BILIN_2@1
3 5.65 166.253 10.285 10.285 63 163.25 163.26 MODI_AV_PGD:AV_PGD_1D_2@1
4 2.62 171.023 4.769 4.770 371 12.86 12.86 HOR_EXTRAPOL_SURF@1
5 0.88 172.623 1.600 2.497 10 160.04 249.72 MODI_READ_SURF:READ_SURFX2COV@1
6 0.84 174.148 1.525 1.525 133 11.46 11.47 MODE_GRIDTYPE_CONF_PROJ:XY_CONF_PROJ@1
7 0.77 175.551 1.404 1.404 924 1.52 1.52 BILIN_1@1
8 0.47 176.398 0.847 5.617 924 0.92 6.08 BILIN_3@1

From these results, we conclude that:

• interpolations in FullPos are much more efficient (routine fpint12 taking 0.075 s) than the
PREP interpolations (∼ 47 s).

• there is also a small difference (6 s) due to fewer calls to patch averaging (no averaging on departure
domain for ISBA scheme). Since the departure domain usually has a relatively low resolution, this
doesn’t matter too much.

3 Application of OpenMP

We focused on the 3 most expensive routines (av pgd patch 1d, bilin and av pgd 1d), and parallelized
the gridpoint loops with OpenMP. This required only minimal code changes on specific hot-spots.

Figure 1 shows the speed-up when using up to 64 processors for different domain sizes.

1

2

4

8

16

32

64

1 2 4 8 16 32 64

sp
ee

du
p 

fa
ct

or

number of threads

300 x 300 domain
500 x 500 domain
800 x 800 domain

linear speedup

Figure 1: Speed-up of PREP using OpenMP.

Conclusions:

• Up to 8 processors, scaling is quite good

• For the 800 × 800 domain, which is comparable to the largest domains currently in operational use,
the runtime of PREP reduces from 11m (1 thread) to 1m26 (64 threads). This seems acceptable
for operational use.

2



• Scaling seems to be better for larger domains

We would like to remark that bilin scales nearly perfect (also beyond 64 threads), while the other two
lose their scalability beyond 8 threads. However, since we only used the most basic OpenMP directives,
we believe that is possible to further increase the scalability of these two routines.

Note that FP2SX1 can also benefit from the introduction of OpenMP in the patch averaging. This was
confirmed by profiling.

4 First glance at application of MPI

For large domains, the memory consumption of PREP may become problematic. This cannot be resolved
by OpenMP. Therefore, using MPI parallelization should be considered in the longer term.

A first look at the largest arrays points at the XCOVER array. For instance, it uses about 3GB of memory
for a 800 × 800 domain. However, since this is a module variable (which also could be used by PGD and
OFFLINE), distributing it between several MPI tasks doesn’t seem easy.

3


