

IRRIGATION

WITH ECOCLIMAP SECOND GENERATION IN SURFEX/ISBA

<u>Arsène Druel</u>, Clément Albergel, Simon Munier & Jean-Christophe Calvet SURFEX User Workshop 19-03-2019

IRRIGATION IN ECOCLIMAP-SG (SECOND GENERATION)

The project:

- Agricultural practices like irrigation and its impact on vegetation and water resources need to be better represented
- Aims: be able to test long term scenarii: irrigation sustainability, effect of climate change on the urban heat island
- Inside the project URCLIM (12-month Post-Doctoral fellowship)

In the context of the last update of SURFEX (v8.1) with a new ecosystem and surface database: ECOCLIMAP-SG (300m resolution) https://opensource.umr-cnrm.fr/projects/ecoclimap-sg/wiki

ECOCLIMAP-SG (SECOND GENERATION)

https://opensource.umr-cnrm.fr/projects/ecoclimap-sg/wiki

	ECOCLIMAP-1	ECOCLIMAP-2	ECOCLIMAP-SG
Year	2003	2013	2018
Resolution	1 km * 1 km	1 km * 1 km	300 m * 300 m
Vegetation Types	12 Including C4 irrigated	12 (then 19) Including C4 irrigated	20 (without irrigation)

ECOCLIMAP-SG new characteristics

- Global resolution 300 m x 300 m: 1 surface type / 300 m pixel
- Data include: LAI (36 data/year: 10-day period)
 - Albedo (36 data/year: 10-day period)
 - Tree height
 - Land cover: 33 generic surface types from ESA-CCI-LandCover

THE 33 SURFACES TYPES IN ECOCLIMAP-SG

WATER

- 1. Sea and oceans (cov. 1)
- 2. Lakes (cov. 2)
- 3. Rivers (cov. 3)

URBAN (new)

- 24. urban LCZ1: compact high-rise 25. urban LCZ2: compact midrise 26. urban LCZ3: compact low-rise 27. urban LCZ4: open high-rise 28. urban LCZ5: open midrise 29: urban LCZ6: open low-rise 30: urban LCZ7: lightweight low-rise 31: urban LCZ8: large low-rise 32: urban LCZ9: sparsely built
- 33: urban LCZ10: heavy industry

Legend:

#. Surface type number (ECOCLIMAP2 corresp.)

VEGETATION

- 4. Bare soil (veg. 1)
- Ø- 5. Bare rock (veg. 2)
 - 6. Permanent snow (veg. 3)
 - 7. Boreal broadleaf deciduous (veg. 16)
 - 8. Temperate broadleaf deciduous (veg. 4)
 - 9. Tropical broadleaf deciduous (veg. 13)
 - 10. Temperate broadleaf evergreen (veg. 14)
- TREES 11. Tropical broadleaf evergreen (veg. 6)
 - 12. Boreal needleleaf evergreen (veg. 5)
 - 13. Temperate needleleaf evergreen (veg. 15)
 - 14. Boreal needleleaf deciduous (veg. 17)
- SHRUBS 15. Shrubs (veg. 19)
 - 16. Boreal grassland (veg. 18)
 - 17. Temperate grassland (veg. 10)
 - 18. Tropical grassland (veg. 11)
- HERBACEOUS 19. Winter C3 crops (veg. 7)
 - 20. Summer C3 crops (new)
 - 21. C4 crops (veg. 8)
 - 22. Tree cover, flooded (new)
- 23. Shrub or herbaceous cover, flooded (new)

NB others ECOCLIMAP2: C4 crops irrigated (veg. 9) / Wetlands (veg. 12)

→ Not irrigated

veg. types

> To duplicate irrigated vegetation type: use the vegetation patch principle

Patch principle: merging the standard vegetation type into patches

> To duplicate irrigated vegetation type: use the vegetation patch principle

Patch principle: merging the standard vegetation type into patches

Duplicate irrigated vegetation type:

FRANCE

First, distribute standard vegetation type into non-irrigated and irrigated vegetation type Vegetation type fraction Vegetation type fraction with irrigation patched patch tree (by vegetation type) Primary parameters (by vegetation type)

A.Druel & al. - CNRM - Météo France / CNRS - 19 March 2019

FRANCI

To reduce the number of the potentially 80 vegetation types

1 dominant irrigation / vegetation type / grid point

There is mainly one type of irrigation by region by culture (e.g. flood for rice (irrigated C3) in China) Select which vegetation types

could be irrigated

6 by default:

- Winter C3 crops
- Summer C3 crops,
- C4 crops,
- Temperate broadleaf deciduous,
- Temperate broadleaf evergreen,
- Shrubs.

Vegetation type reduction: 80 to 40

40 to 26

Well documented: Lawston & al., 2015 Ozdogan & al., 2010 Evans & Zaitchik, 2008

Irrigation:

Apply a **quantity of water** distributed over a **period of time**, distinguishing the irrigation method:

- Like rain to represent sprinkler irrigation
- Directly on soil to represent drip or flood irrigation

I. Fields equipped for irrigation?

Irrigation maps*

II. Irrigation period?

Between germination and reaping*

III. Irrigation needed?

Irrigation trigger threshold*

Irrigated fields

VI. Minimum return time ?

Between two irrigations*

IV. Link to water availability?

Through the **coupling with** the **TRIP** hydrological system:

- Check the resources available
- Take into account scenarii

(water sustainability, leave a minimum flow in rivers...)

V. Irrigation

Water quantity and application period*

CITS CO METEO FRANCE

*For each vegetation

type and according to

irrigation technique

IMPLEMENTATION OF IRRIGATION

Done <u>Accepted input:</u> maps, constants by crops or for all, or default

To do Couple with TRIP Compute variables by the model

VI. Minimum return time ?

Between two irrigations*

*For each vegetation type and according to irrigation technique

RESULTS : CASE OF USA (0.25° resolution)

Irrigation distribution

Fraction of irrigated summer C3 crops

RESULTS : CASE OF USA (0.25° resolution)

LAI C4 (non-irrigated vs irrigated)

Impact of irrigation on LAI
 agricultural practice (germination & harvest) on seasonality
 water supply on amplitude

COTS METEO FRANCE

RESULTS : CASE OF USA (0.25° resolution)

LAI C3 (non-irrigated vs irrigated)

Impact of irrigation on LAI
 agricultural practice (germination & harvest) on seasonality water supply on amplitude

Results: Case of USA (0.25° resolution)

LAI statistics (non-irrigation vs irrigation and LAI-G0-V2 (obs. from Copernicus)

Correlation:

→ Better correlation & RMSD with irrigation

Results: Case of USA (0.25° resolution)

Irrigation distribution

Fraction of irrigated summer C3 crops

LAI C4 (non-irrigated vs irrigated)

Still impact of irrigation on LAI - agricultural practice (germination & harvest) on seasonality water supply on amplitude

METEC

LAI daily series (simulations -vs- observations with LAI G0-V2 from Copernicus)

LAI statistics (no irrigation vs irrigation and obs. LAI (G0-V2 from Copernicus))

RMSD:

With irrigation:

→ Better correlation
 → Better RMSD

LAI seasonal Statistics (no irrigation vs irrigation and obs. LAI (G0-V2 from Copernicus) -

LAI seasonal Statistics (no irrigation vs irrigation and obs. LAI (G0-V2 from Copernicus)

LAI C4 (non-irrigated vs irrigated vs unlimited irrigation, with TRIP): Sensitivity test

LAI daily series (simulations -vs- observations with LAI G0-V2 from Copernicus)

→ Maxima better respected with unlimited irrigation.

LAI Statistics (Irrigation vs unlimited irrigation and obs. LAI (G0-V2 from Copernicus)

RMSD: Irigation (standard) Unlimited irrigation Unlimited irrigation –Irrigation (standard) Unlimited irrigation Unlimited irrigation (standard) Unlimited irrigation - Unlimited irrigation (standard) Unlimited irrigation - Unlimited irrigation (standard) Unlimited irrigation - Unlimited irrigation - Unlimited irrigation (standard) Unlimited irrigation - Unlimited irrigation - Unlimited irrigation - Unlimited irrigation (standard) Unlimited irrigation - Unlimited irrigati

→ Better correlation with more water → RMSD less good (but depends on the season)

Number of irrigation for C4 (Irrigation (standard) vs unlimited irrigation, and observations)

Thanks for your attention

THE 33 SURFACE TYPES IN ECOCLIMAP-SG

WATER

- 1. Sea and oceans (cov. 1)
- 2. Lakes (cov. 2)
- 3. Rivers (cov. 3)

URBAN (new)

24. urban LCZ1: compact high-rise
25. urban LCZ2: compact midrise
26. urban LCZ3: compact low-rise
27. urban LCZ4: open high-rise
28. urban LCZ5: open midrise
29: urban LCZ6: open low-rise
30: urban LCZ7: lightweight low-rise
31: urban LCZ8: large low-rise
32: urban LCZ9: sparsely built
33: urban LCZ10: heavy industry

Legend:

- 1. Surface type number
- 1. Vegtype number
- **5. 8. Irrigated** (ECOCLIMAP2 corresp.)

VEGETATION

v. 1)	1. 4. Bare soil (veg. 1)	NVT_NO
	ø-2. 5. Bare rock (veg. 2)	NVT_ROCK
	3. 6. Permanent snow (veg. 3)	NVT_SNOW
	4. 7. Boreal broadleaf deciduous (veg. 16)	NVT_BOBD
	5. 8. Temperate broadleaf deciduous (veg. 4)	NVT_TEBD
	6. 9. Tropical broadleaf deciduous (veg. 13)	NVT_TRBD
act high-rise	7. 10. Temperate broadleaf evergreen (veg. 14).	NVT_TEBE
act midrise	$\stackrel{\mathbb{Z}}{\vdash}$ 8. 11. Tropical broadleaf evergreen (veg. 6)	NVT_TRBE
act low-rise	9. 12. Boreal needleleaf evergreen (veg. 5)	NVT_BONE
high-rise	10.13. Temperate needleleaf evergreen (veg. 15)	NVT_TENE
midrise	² 11.14. Boreal needleleaf deciduous (veg. 17)	NVT_BOND
	12.15. Shrubs (veg. 19)	NVT_SHRB
voight low rice	^{<i>o</i>} [13.16. Boreal grassland (veg. 18)	NVT_BOGR
	م 14.17 . Temperate grassland (veg. 10)	NVT_GRAS
low-rise	⁶ 15.18. Tropical grassland (veg. 11)	NVT_TROG
ely built	16.19. Winter C3 crops (veg. 7)	NVT_C3W
y industry	[±] 17.20. Summer C3 crops (new)	NVT_C3S
	18.21. C4 crops (veg. 8)	NVT_C4
	19.22. Tree cover, flooded (new)	NVT_FLTR
A.Druel & al CNF	RM 20 28 Sharude OC NERS a cooker crozer 9 flooded (new)	NVT FLGR

NB others ECOCLIMAP2: C4 crops irrigated (veg. 9) / Wetlands (veg. 12)

NB patches:

Current NPATCH tree (historical)

Proposal for a complete NPATCH tree overhaul

NPATCH tree proposal for SURFEX v9

Irrigation map

→ Very high resolution map needed (for 300m ECOCLIMAP-SG)

• At world scale:

Use of *MEIER & al, 2018* irrigated area map available at 1km resolution (*based on FAO statistical map, ESA-CCI-Land Cover (v1.6.1), NDVI and agricultural suitability*), downscaled with majority rules:

 \succ Crosse with surface type map \rightarrow irrigation map by vegetation type

Irrigation map

→ Very high resolution map needed (for 300m ECOCLIMAP-SG)

• At world scale:

Use of *MEIER & al, 2018* irrigated area map available at 1km resolution (*based on FAO statistical map, ESA-CCI-Land Cover (v1.6.1), NDVI and agricultural suitability*), downscaled with majority rules:

- Crosse with surface type map
 irrigation map by vegetation type
- Possibility (in a second time) to cross this map with dominant irrigation method by region from FAO statistics
- At shorter scale: possible to use other regional maps (as for USA in Lawston & al, 2015)

Irrigation map: By vegetation type in the model

Irrigated fraction