COMPARISON BETWEEN TURBULENT EXCHANGE COEFFICIENTS
 C_{H} and C_{D} IN ARPEGE AND SURFEX

Internal report
P. Le Moigne

April 27, 2007

Abstract

The aim of this document is to compare the formulations of the turbulent exchange coefficients C_{H} and C_{D} both in ARPEGE and SURFEX in the different stability cases. For that purpose, the formulations are taken from source code CY25T1_op3 of 1D ARPEGE model containing split of acdifus in order to plug surface energy budget at the level of vertical diffusion computations (work of GMGEC) and version 0.7 of SURFEX. The examined subroutines are achmtls.F90 for ARPEGE and drag.F90, surface_aero_cond.F90 and surface_cd.F90 for SURFEX. The organization of the document will separate the equations from ARPEGE and SURFEX in both stable and unstable cases for the two turbulent exchange coefficients above mentioned. Usually, developers work consists in translating equations of a given parameterization into programming language. The current exercise does the reverse since it tries to identify the basic equations used to compute the turbulent exchange coefficients from fortran source code.

Contents

$1 C_{D}$: turbulent exchange coefficient at surface for momentum 2
1.1 ARPEGE formulation (achmtls.F90) 2
1.1.1 stable case 2
1.1.2 unstable case 3
1.2 SURFEX formulation (surface_cd.F90) 5
1.2.1 stable case 5
1.2.2 unstable case 5
$2 C_{H}$: turbulent exchange coefficient at surface for heat 7
2.1 ARPEGE formulation (achmtls.F90) 7
2.1.1 stable case 7
2.1.2 unstable case 9
2.2 SURFEX formulation (drag.F90, surface_aero_cond.F90) 10
2.2.1 stable case 10
2.2.2 unstable case 11
3 Convergence between SURFEX and ARPEGE codes 13
$3.1 C_{D}$ 13
3.1.1 stable case 13
3.1.2 unstable case 13
$3.2 \quad C_{H}$ 15
3.2.1 stable case 15
3.2.2 unstable case 15

Chapter 1

C_{D} : turbulent exchange coefficient at surface for momentum

1.1 ARPEGE formulation (achmtls.F90)

$$
\begin{equation*}
P C D=\frac{(Z L O I+P S T A B \times(Z L O S-Z L O I)) \times P C D N}{Z U} \tag{1.1}
\end{equation*}
$$

$Z U$ represent the wind speed, $P C D N$ is the neutral surface exchange coefficient for wind, $Z L O S$ and $Z L O I$ are expressed as function of atmospheric stability (Richardson number) and wind speed, $P S T A B$ is an indicator of the stability: $P S T A B=1$ means that the case is stable and $P S T A B=0$ otherwise.

1.1.1 stable case

In the stable case, $\mathrm{PSTAB}=1$ and equation 1.1 becomes:

$$
\begin{equation*}
P C D=\frac{Z L O S \times P C D N}{Z U} \tag{1.2}
\end{equation*}
$$

Following notations are introduced:

$$
\begin{align*}
& Z C I S=u^{2}+v^{2} \tag{1.3}\\
& Z U=\sqrt{Z C I S} \tag{1.4}\\
& Z D S=\sqrt{Z C I S+5|Z S T A|} \tag{1.5}\\
& Z L O S=\frac{Z C I S \times Z D S}{Z U \times Z D S+Z 2 B \times|Z S T A|} \tag{1.6}
\end{align*}
$$

$Z S T A$ characterize the atmosphere stability (expression will be given later).
At this stage, it appears that the possibility to have a critical Richardson number does not exist in SURFEX. To go on with the comparison it's assumed that Richardson critical numbers are set to zero. The consistency between ARPEGE and SURFEX, as far as Richardson critical numbers are concerned will be ensured by introducing these refinements in SURFEX code.

$$
\begin{align*}
U S U R I C & =0 . \tag{1.7}\\
Z I X P & =1 . \tag{1.8}\\
U S U R I D & =0 . \tag{1.9}
\end{align*}
$$

With these assumptions, expression 1.6 becomes:

$$
\begin{equation*}
Z L O S=\frac{Z C I S \times \sqrt{Z C I S+5|Z S T A|}}{Z U \sqrt{Z C I S+5 \mid Z S T A}+Z 2 B \times|Z S T A|} \tag{1.10}
\end{equation*}
$$

The expression of Richardson number is given by:

$$
R_{i}=\frac{Z S T A}{Z C I S}
$$

When introducing this variable into the expression of $Z L O S$ one obtain the analytical relationship :

$$
\begin{equation*}
\frac{Z L O S}{Z U}=\frac{1}{1+\frac{10 R_{i}}{\sqrt{1+5 R_{i}}}} \tag{1.11}
\end{equation*}
$$

Neutral coefficient for momentum is given by:

$$
\begin{equation*}
P C D N=\frac{\kappa^{2}}{\left(\ln \left(1+\frac{Z}{Z_{0}}\right)\right)^{2}} \tag{1.12}
\end{equation*}
$$

Where $Z=\frac{\Delta \phi}{g}$ is the height ($\Delta \phi$ is the thickness between full and half-level close to the lowest atmospheric level and g is the gravity) and Z_{0} is the current roughness length that takes into account vegetation and orography. Equation 1.2 that gives expression of exchange turbulent coefficient for momentum may be expressed as follows:

$$
\begin{equation*}
P C D=\frac{P C D N}{1+\frac{10 R_{i}}{\sqrt{1+5 R_{i}}}} \tag{1.13}
\end{equation*}
$$

1.1.2 unstable case

In the unstable case, $P S A T B=0$ and equation 2.1 becomes:

$$
\begin{gather*}
P C D=\frac{Z L O I \times P C D N}{Z U} \tag{1.14}\\
Z L O I=Z U-Z 2 B \times Z S T A \times Z D I D \tag{1.15}\\
Z D I D=\frac{1}{Z U+Z C H \times Z 3 B C \times P C D N \sqrt{|Z S T A| \times Z R Z D}} \tag{1.16}
\end{gather*}
$$

$$
\begin{align*}
Z R Z D & =1+\frac{Z}{Z_{0}} \tag{1.17}\\
Z C D & =Z C D 0 \times\left(1+\frac{Z}{Z_{0 M R}}\right)^{Z P D} \tag{1.18}
\end{align*}
$$

Where $Z_{0 M R}$ is the roughness length without orography. By replacing $Z R Z D, Z C D, Z 2 B$ and $Z 3 B C$ in equation 1.14, we can express $Z L O I$ as follows:

$$
\begin{equation*}
Z L O I=Z U-\frac{7.5 Z S T A}{Z U+5 Z C D 0\left(1+\frac{Z}{Z_{0 M R}}\right)^{Z P D} \times 10 P C D N \sqrt{|Z S T A|\left(1+\frac{Z}{Z_{0}}\right)}} \tag{1.19}
\end{equation*}
$$

Equation 1.14 can be rewritten as a function of Richardson number $R_{i},|\vec{v}|$ the wind modulus, η_{A} and two other functions ψ_{A} and ϕ_{A} defined below:

$$
\begin{align*}
\eta_{A} & =\left(\frac{\kappa}{\ln \left(1+\frac{Z}{Z_{0}}\right)}\right)^{2} \tag{1.20}\\
\phi_{A} & =\overrightarrow{A_{\phi}} \cdot \overrightarrow{X_{Z_{0} M R}} \tag{1.21}\\
\psi_{A} & =Y_{Z}^{A_{\psi}} \cdot \overrightarrow{X_{Z_{0} M R}} \sqrt{1+\frac{Z}{Z_{0}}} \tag{1.22}\\
P C D=(|\vec{v}| & \left.-\frac{10 R_{i}|\vec{v}|^{2}}{|\vec{v}|+10 \eta_{A} \psi_{A} \phi_{A} \sqrt{\left|R_{i}\right||\vec{v}|^{2}}}\right) \times \frac{\eta_{A}}{|\vec{v}|} \tag{1.23}
\end{align*}
$$

Eliminating $|\vec{v}|$ in the expression of PCH gives finally:

$$
\begin{equation*}
P C D=\left(1-\frac{10 R_{i}}{1+10 \eta_{A} \psi_{A} \phi_{A} \sqrt{\left|R_{i}\right|}}\right) \times \eta_{A} \tag{1.24}
\end{equation*}
$$

With the following notations:

$$
\overrightarrow{X_{Z_{0} M R}}=\left(\begin{array}{c}
1 \\
\mu \\
\mu^{2} \\
\mu^{3}
\end{array}\right) \quad \mu=\ln \left(\frac{Z_{0 M R}}{Z_{0 H}}\right) \quad Y_{Z}=\left(1+\frac{Z}{Z_{0 M R}}\right)
$$

and vectors $\overrightarrow{A_{\phi}}$ and $\overrightarrow{A_{\psi}}$ are:

$$
\begin{align*}
& \overrightarrow{A_{\phi}}=\left(\begin{array}{llll}
7.5 & 2.39 & -0.2858 & 0.01074
\end{array}\right) \tag{1.25}\\
& \overrightarrow{A_{\psi}}=\left(\begin{array}{llll}
0 . & -0.07028 & 0.01023 & -0.00067
\end{array}\right) \tag{1.26}
\end{align*}
$$

$$
\begin{equation*}
P C D=P C D N \times Z F M \tag{1.27}
\end{equation*}
$$

$Z F M$ is expressed differently according to stability and $P C D N$ is given by:

$$
\begin{equation*}
P C D N=\left(\frac{\kappa}{\ln \left(\frac{Z}{Z_{0}}\right)}\right)^{2} \tag{1.28}
\end{equation*}
$$

Be carefull, meaning of $Z 0$ differs from ARPEGE since it represents the vegetation roughness length without orography.

1.2.1 stable case

$$
\begin{equation*}
Z F M=\frac{1}{1+\frac{10 R_{i}}{\sqrt{1+5 R_{i}}}} \tag{1.29}
\end{equation*}
$$

$P C D$ is then expressed as:

$$
\begin{equation*}
P C D=\frac{P C D N}{1+\frac{10 R_{i}}{\sqrt{1+5 R_{i}}}} \tag{1.30}
\end{equation*}
$$

1.2.2 unstable case

In this case, $Z F M$ is given by:

$$
\begin{align*}
Z F M & =1-\frac{10 R_{i}}{1+Z C M \sqrt{-R_{i}}} \tag{1.31}\\
Z C M & =10 . \times Z C M S T A R \times P C D N \times\left(\frac{Z}{Z_{0 e f f}}\right)^{Z P M} \tag{1.32}
\end{align*}
$$

$Z_{0 e f f}$ is the effective roughness length that takes into account the effect of snow and the effect of orography (possibly subscale orography if option is selected). By replacing $Z F M$ and $P C D N$ in equation 1.27 , the expression of $P C D$ becomes:

$$
\begin{align*}
P C D= & \left(1-\frac{10 R_{i}}{1+10 \eta_{S} \psi_{S} \phi_{S} \sqrt{\left|R_{i}\right|}}\right) \times \eta_{S} \tag{1.33}\\
\eta_{S} & =\left(\frac{\kappa}{\ln \left(\frac{Z}{Z_{0}}\right)}\right)^{2} \tag{1.34}\\
\phi_{S} & =\overrightarrow{S_{\phi}} \cdot \overrightarrow{X_{Z_{0}}} \tag{1.35}\\
\psi_{S} & =Y_{Z}^{\overrightarrow{S_{\psi}} \cdot \overrightarrow{X_{Z_{0}}}} \tag{1.36}
\end{align*}
$$

With the following notations:

$$
\overrightarrow{X_{Z_{0}}}=\left(\begin{array}{c}
1 \\
\mu \\
\mu^{2} \\
\mu^{3}
\end{array}\right) \quad \mu=\ln \left(\frac{Z_{0 e f f}}{Z_{0 H}}\right) \quad Y_{Z}=\frac{Z}{Z_{0 e f f}}
$$

and vectors $\overrightarrow{S_{\phi}}$ and $\overrightarrow{S_{\psi}}$ are:

$$
\begin{align*}
& \overrightarrow{S_{\phi}}=\left(\begin{array}{llrl}
6.8741 & 2.6933 & -0.3601 & 0.0154
\end{array}\right) \tag{1.37}\\
& \overrightarrow{S_{\psi}}=\left(\begin{array}{llll}
0.5233 & -0.0815 & 0.0135 & -0.0010
\end{array}\right) \tag{1.38}
\end{align*}
$$

Chapter 2

C_{H} : turbulent exchange coefficient at surface for heat

2.1 ARPEGE formulation (achmtls.F90)

$$
\begin{equation*}
P C H=\frac{(Z L O I+P S T A B \times(Z L O S-Z L O I)) \times Z C D N H}{Z U} \tag{2.1}
\end{equation*}
$$

$Z U$ represent the wind speed, $Z C D N H$ is the neutral surface thermal exchange coefficient, $Z L O S$ and $Z L O I$ are expressed as function of atmospheric stability (Richardson number) and wind speed, $P S T A B$ is an indicator of the stability: $P S T A B=1$ means that the case is stable and $P S T A B=0$ otherwise.

2.1.1 stable case

In the stable case, $P S T A B=1$ and equation 2.1 becomes:

$$
\begin{equation*}
P C H=\frac{Z L O S \times Z C D N H}{Z U} \tag{2.2}
\end{equation*}
$$

Following notations are introduced:

$$
\begin{gather*}
Z C I S=u^{2}+v^{2} \tag{2.3}\\
Z U=\sqrt{Z C I S} \tag{2.4}\\
Z H S=\sqrt{Z C I S+5|Z S T A H|} \tag{2.5}\\
Z S T A H=\frac{Z S T A}{\left(1+Z I X P \times Z U S U R I C \times \frac{Z S T A}{Z C I S}\right)^{\frac{1}{Z I X P}}} \tag{2.6}\\
Z L O S=\frac{Z C I S^{2}}{Z U \times Z C I S+Z 3 B \times|Z S T A H| \times Z H S} \tag{2.7}
\end{gather*}
$$

At this stage, it appears that the possibility to have a critical Richardson numbers does not exist in SURFEX. To go on with the comparison, it's assumed that Richardson critical numbers

$$
\begin{align*}
U S U R I C & =0 . \tag{2.8}\\
U S U R I D & =0 . \tag{2.9}\\
Z I X P & =1 . \tag{2.10}
\end{align*}
$$

With these assumptions,

$$
\begin{align*}
Z S T A H & =Z S T A \tag{2.11}\\
Z H S & =\sqrt{Z C I S+5|Z S T A|} \tag{2.12}
\end{align*}
$$

And expression 2.7 is simplified into:

$$
\begin{gather*}
Z L O S=\frac{Z C I S^{2}}{Z U \times Z C I S+Z 3 B \times|Z S T A| \times Z H S} \tag{2.13}\\
\Leftrightarrow \\
Z L O S=\frac{Z C I S^{2}}{Z U \times Z C I S+Z 3 B \times|Z S T A| \sqrt{Z C I S+5 \mid Z S T A}} \tag{2.14}
\end{gather*}
$$

The expression of Richardson number is given by:

$$
R_{i}=\frac{Z S T A}{Z C I S}
$$

When introducing this variable into the expression of $Z L O S$ one obtain the analytical relationship :

$$
\begin{equation*}
\frac{Z L O S}{Z U}=\frac{1}{1+15 R_{i} \sqrt{1+5 R_{i}}} \tag{2.15}
\end{equation*}
$$

As established in previous chapter,

$$
\begin{equation*}
Z C D N H=\frac{\kappa^{2}}{\ln \left(1+\frac{Z}{Z_{0 H}}\right) \ln \left(1+\frac{Z}{Z_{0 M R}}\right)} \tag{2.16}
\end{equation*}
$$

Equation 2.2 that gives expression of exchange turbulent coefficient for heat may be expressed as follows:

$$
\begin{align*}
P C H & =\frac{Z C D N H}{1+15 R_{i} \sqrt{1+5 R_{i}}} \tag{2.17}\\
Z C D N H & =\frac{\kappa^{2}}{\ln \left(1+\frac{Z}{Z_{0 H}}\right) \ln \left(1+\frac{Z}{Z_{0 M R}}\right)} \tag{2.18}
\end{align*}
$$

In the unstable case, $P S A T B=0$ and equation 2.1 becomes:

$$
\begin{equation*}
P C H=\frac{Z L O I \times Z C D N H}{Z U} \tag{2.19}
\end{equation*}
$$

$$
\begin{align*}
Z L O I & =Z U-Z 3 B \times Z S T A \times Z D I H \tag{2.20}\\
Z D I H & =\frac{1}{Z U+Z C H \times Z 3 B C \times Z C D N H \sqrt{|Z S T A| \times Z R Z H}} \tag{2.21}
\end{align*}
$$

In these equations $Z 3 B=15$. and $Z 3 B C=5 \times Z 3 B$ and

$$
\begin{align*}
Z R Z H & =1+\frac{Z}{Z_{0 H}} \tag{2.22}\\
Z C H & =Z C H 0 \times\left(1+\frac{Z}{Z_{0 H}}\right)^{Z P H} \tag{2.23}
\end{align*}
$$

By replacing $Z R Z H, Z C H$ and $Z 3 B C$ in equation 2.21 , we can express $Z L O I$ as follows:

$$
\begin{align*}
& Z L O I=Z U-\frac{15 Z S T A}{Z U+5 Z C H 0\left(1+\frac{Z}{Z_{0 H}}\right)^{Z P H} \times 15 Z C D N H \sqrt{|Z S T A| \times\left(1+\frac{Z}{Z_{0 H}}\right)}} \tag{2.24}\\
& \Leftrightarrow \\
& \quad Z L O I=Z U-\frac{15 Z S T A}{Z U+5 Z C H 0\left(1+\frac{Z}{Z_{0 H}}\right)^{Z P H+\frac{1}{2}} \times 15 Z C D N H \sqrt{|Z S T A|}} \tag{2.25}
\end{align*}
$$

Equation 2.18 gives the expression of ZCDNH the neutral surface thermal exchange coefficient noted η_{A}, thus one can write $P C H$ as a function of Richardson number $R_{i},|\vec{v}|$ the wind modulus, η_{A} and two other functions ψ_{A} and ϕ_{A} defined below:

$$
\left.\begin{array}{rl}
\eta_{A} & =\frac{\kappa^{2}}{\ln \left(1+\frac{Z}{Z_{0 H}}\right) \ln \left(1+\frac{Z}{Z_{0 M R}}\right)} \\
\phi_{A} & =\overrightarrow{A_{\phi}} \cdot \overrightarrow{X_{Z_{0}}} \\
\psi_{A} & =Y_{Z}^{A_{\psi}} \cdot \overrightarrow{X_{Z_{0}}}
\end{array}\right] \begin{aligned}
& P C H=\left(|\vec{v}|-\frac{15 R_{i}|\vec{v}|^{2}}{|\vec{v}|+15 \eta_{A} \psi_{A} \phi_{A} \sqrt{\left|R_{i}\right||\vec{v}|^{2}}}\right) \times \frac{\eta_{A}}{|\vec{v}|}
\end{aligned}
$$

Eliminating $|\vec{v}|$ in the expression of PCH gives finally:

$$
\begin{equation*}
P C H=\left(1-\frac{15 R_{i}}{1+15 \eta_{A} \psi_{A} \phi_{A} \sqrt{\left|R_{i}\right|}}\right) \times \eta_{A} \tag{2.30}
\end{equation*}
$$

With the following notations:

$$
\overrightarrow{X_{Z_{0}}}=\left(\begin{array}{c}
1 \\
\mu \\
\mu^{2} \\
\mu^{3}
\end{array}\right) \quad \mu=\ln \left(\frac{Z_{0 M R}}{Z_{0 H}}\right) \quad Y_{Z}=\left(1+\frac{Z}{Z_{0 H}}\right)
$$

and vectors $\overrightarrow{A_{\phi}}$ and $\overrightarrow{A_{\psi}}$ are:

$$
\begin{align*}
& \overrightarrow{A_{\phi}}=\left(\begin{array}{llll}
5 . & 4.513 & 0.3401 & -0.0533
\end{array}\right) \tag{2.31}\\
& \overrightarrow{A_{\psi}}=\left(\begin{array}{llll}
0.5 & -0.09421 & 0.01463 & -0.00099
\end{array}\right) \tag{2.32}
\end{align*}
$$

2.2 SURFEX formulation (drag.F90, surface_aero_cond.F90)

$$
\begin{equation*}
P C H=\frac{P A C}{P V M O D} \tag{2.33}
\end{equation*}
$$

$P V M O D$ represents the wind speed and $P A C$ is the aerodynamical conductance.

2.2.1 stable case

Aerodynamical conductance is given by:

$$
\begin{equation*}
P A C=\frac{Z C D N \times P V M O D}{1+\frac{15 \times Z S T A \times Z D I}{P V M O D^{3}}} \times \frac{\ln \left(\frac{Z}{Z_{0}}\right)}{\ln \left(\frac{Z}{Z_{0 H}}\right)} \tag{2.34}
\end{equation*}
$$

where

$$
\begin{align*}
Z C D N & =\frac{\kappa^{2}}{\left(\ln \left(\frac{Z}{Z_{0}}\right)\right)^{2}} \tag{2.35}\\
Z D I & =\sqrt{P V M O D^{2}+5 Z S T A} \tag{2.36}\\
Z S T A & =R_{i} \times P V M O D^{2} \tag{2.37}
\end{align*}
$$

At this stage we can express PCH given in equation 2.33 as a function of R_{i} :

$$
\begin{align*}
P C H & =\frac{Z C D N H}{1+15 R_{i} \sqrt{1+5 R_{i}}} \tag{2.38}\\
Z C D N H & =\frac{\kappa^{2}}{\ln \left(\frac{Z}{Z_{0 H}}\right) \ln \left(\frac{Z}{Z_{0}}\right)} \tag{2.39}
\end{align*}
$$

2.2.2 unstable case

In this case, aerodynamical conductance is given by:

$$
\begin{equation*}
P A C=Z C D N \times(P V M O D-15 Z S T A \times Z D I) \tag{2.40}
\end{equation*}
$$

where

$$
\begin{equation*}
Z D I=\frac{1}{P V M O D+15 \times Z C H S T A R \times Z C D N\left(\frac{Z}{Z_{0 H}}\right)^{Z P H} \times Z F H \sqrt{-Z S T A}} \tag{2.41}
\end{equation*}
$$

With the same approach as it was done for the Arpege case, we introduce the following quantities: $|\vec{v}|$ for wind speed (the equivalent of PVMOD), η_{S} for $Z C D N H$ (cf equation 2.39) and two other functions ψ_{S} and ϕ_{S} defined below. We can express $P C H$ as follows:

$$
\begin{align*}
& \eta_{S}=\frac{\kappa^{2}}{\ln \left(\frac{Z}{Z_{0 H}}\right) \ln \left(\frac{Z}{Z_{0}}\right)} \tag{2.42}\\
& \phi_{S}=\overrightarrow{S_{\phi} \cdot \overrightarrow{X_{Z_{0}}}} \tag{2.43}\\
& \psi_{S}=Y_{Z}^{\overrightarrow{S_{\psi}} \cdot \overrightarrow{X_{Z_{0}}}} \tag{2.44}\\
& P C H=\left(|\vec{v}|-\frac{15 R_{i}|\vec{v}|^{2}}{|\vec{v}|+15 \eta_{S} \psi_{S} \phi \phi_{S} \sqrt{\left|R_{i}\right||\vec{v}|^{2}}}\right) \times \frac{\eta_{S}}{|\vec{v}|} \tag{2.45}
\end{align*}
$$

Eliminating $|\vec{v}|$ in the expression of PCH gives finally:

$$
\begin{equation*}
P C H=\left(1-\frac{15 R_{i}}{1+15 \eta_{S} \psi_{S} \phi_{S} \sqrt{\left|R_{i}\right|}}\right) \times \eta_{S} \tag{2.46}
\end{equation*}
$$

$$
\overrightarrow{X_{Z_{0}}}=\left(\begin{array}{c}
1 \\
\mu \\
\mu^{2} \\
\mu^{3}
\end{array}\right) \quad \mu=\ln \left(\frac{Z_{0}}{Z_{0 H}}\right) \quad Y_{Z}=\frac{Z}{Z_{0 H}}
$$

and vectors $\overrightarrow{S_{\phi}}$ and $\overrightarrow{S_{\psi}}$ are:

$$
\begin{align*}
& \overrightarrow{S_{\phi}}=\left(\begin{array}{llll}
3.2165 & 4.3431 & 0.5360 & -0.0781
\end{array}\right) \tag{2.47}\\
& \overrightarrow{S_{\psi}}=\left(\begin{array}{llll}
0.5802 & -0.1571 & 0.0327 & -0.0026
\end{array}\right) \tag{2.48}
\end{align*}
$$

Chapter 3

Convergence between SURFEX and ARPEGE codes

In this chapter, we're going to compare the formulations of C_{D} and C_{H} that have been established in the previous chapters. For that purpose, we need the same naming convention, especially for roughness length: in ARPEGE, Z_{0} is the current roughness length: it takes into account the effects of vegetation, snow and orography while $Z_{0 M R}$ is the roughness length without the effect of the orography. In SURFEX, Z_{0} is the the vegetation roughness length (no orography) and $Z_{0 e f f}$ is the roughness length of vegetation plus snow and orography. In this part of the document, the SURFEX notation for roughness length is used. A second difference of convention concerns the height at which computations are done: from ground in SURFEX, above Z_{0} in ARPEGE. We call Z^{*} the reference height, it goes from 0 . to Z in SURFEX and from Z_{0} to Z in ARPEGE. Considering that Z is sufficiently large compared to Z_{0} or $Z_{0 H}$ or $Z_{0 M R}$, we can assume that $1+\frac{Z}{Z_{0}}, 1+\frac{Z}{Z_{0 H}}$ and $1+\frac{Z}{Z_{0 M R}}$ are respectively close to $\frac{Z}{Z_{0}}, \frac{Z}{Z_{0 H}}$ and $\frac{Z}{Z_{0 M R}}$.

parameters that account in roughness length definition	ARPEGE notation	SURFEX notation
vegetation	$Z_{0}-Z_{0 M R}$	Z_{0}
vegetation + orography	Z_{0}	$Z_{0 e f f}$

$3.1 C_{D}$

3.1.1 stable case

ARPEGE and SURFEX formulations are the same in the stable case:

$$
\begin{equation*}
C_{D}=\frac{1}{1+\frac{10 R_{i}}{\sqrt{1+5 R_{i}}}} \times \frac{\kappa^{2}}{\left(\ln \left(\frac{Z^{*}}{Z_{0 \text { eef }}}\right)\right)^{2}} \tag{3.1}
\end{equation*}
$$

3.1.2 unstable case

ARPEGE and SURFEX formulations are different. If we remind the expression of C_{D} found in unstable case for ARPEGE and SURFEX, we have the same formula:

$$
\begin{equation*}
P C D=\left(1-\frac{10 R_{i}}{1+10 \eta \psi \phi \sqrt{\left|R_{i}\right|}}\right) \times \eta \tag{3.2}
\end{equation*}
$$

But, if we can assume that η function is the same for ARPEGE and SURFEX $\left(\ln \left(\frac{Z^{*}}{Z_{0 \text { eff }}}\right)\right.$, this is not the case for ψ and ϕ. First main difference concerns definition of: $\overrightarrow{X_{Z_{0} M R}(\mu)}$ since in ARPEGE $\mu=\ln \left(\frac{Z_{0 M R}}{Z_{0 H}}\right)$ while in SURFEX for definition of C_{D} the expression is $\mu=\ln \left(\frac{Z_{0 \text { eff }}}{Z_{0 H}}\right)$. It means that in one case, the orography roughness length is taken into account but not in the other case. If we look to the other terms: ϕ and ψ we have:

$$
\begin{align*}
\phi_{A} & =\overrightarrow{A_{\phi}} \cdot \overrightarrow{X_{Z_{0}} M R} \tag{3.3}\\
\phi_{S} & =\overrightarrow{S_{\phi}} \cdot \overrightarrow{X_{Z_{0}}} \tag{3.4}\\
\psi_{A} & =Y_{Z}^{\overrightarrow{A_{\psi}} \cdot} \cdot \overrightarrow{X_{Z_{0} M R}} \sqrt{1+\frac{Z}{Z_{0}}} \tag{3.5}\\
\psi_{S} & =Y_{Z}^{\overrightarrow{S_{\psi}} \cdot \overrightarrow{X_{Z_{0}}}} \tag{3.6}
\end{align*}
$$

Even if we can adjust the coefficients of A_{ϕ} and S_{ϕ} or A_{ψ} and S_{ψ}, since they're not applied on the same variable, there's no possible convergence. Situation is even more difficult for ψ function since Y_{Z} is different and there's multiplication by $\sqrt{1+\frac{Z}{Z_{0}}}$ that appears in the ARPEGE formulation.

Let's come back to the operational formulation of C_{D} as computed in achmt.F90 and not achmtls.F90. According to the code and with the same approach that was made in previous chapters, it can be expressed as:

$$
\begin{align*}
P C D= & \left(1-\frac{10 R_{i}}{1+10 \eta_{A} \psi_{A} \phi_{A} \sqrt{\left|R_{i}\right|}}\right) \times \eta_{A} \tag{3.7}\\
\eta_{A} & =\left(\frac{\kappa}{\ln \left(1+\frac{Z}{Z_{0}}\right)}\right)^{2} \tag{3.8}\\
\phi_{A} & =\overrightarrow{A_{\phi}} \cdot \overrightarrow{X_{Z_{0}}} \tag{3.9}\\
\psi_{A} & =Y_{Z}^{\overrightarrow{A_{\psi}} \cdot \overrightarrow{X_{Z_{0}}}} \tag{3.10}
\end{align*}
$$

With the following notations:

$$
\overrightarrow{X_{Z_{0}}}=\left(\begin{array}{c}
1 \\
\mu \\
\mu^{2} \\
\mu^{3}
\end{array}\right) \quad \mu=\ln \left(\frac{Z_{0}}{Z_{0 H}}\right) \quad Y_{Z}=1+\frac{Z}{Z_{0}}
$$

and vectors $\overrightarrow{A_{\phi}}$ and $\overrightarrow{A_{\psi}}$ are:

$$
\begin{align*}
& \overrightarrow{A_{\phi}}=\left(\begin{array}{llll}
7.5 & 2.39 & 0.2858 & 0.01074
\end{array}\right) \tag{3.11}\\
& \overrightarrow{A_{\psi}}=\left(\begin{array}{llll}
0.5 & -0.07028 & 0.01023 & -0.00067
\end{array}\right) \tag{3.12}
\end{align*}
$$

This set of equations is comparable to the one obtained in SURFEX unstable case. The adjustment needed can be made at the level of coefficients of $A_{\phi \mid \psi}$ and $S_{\phi \mid \psi}$ functions (note that coefficients differ slightly).

The question here concerns the formulation of C_{D} in achmtls.F90 which appears to be different as the one written in achmt.F90 and its counterpart from SURFEX. Note that we obtain the same formulations for achmtls and achmt if the orography roughness length is set to zero.

$3.2 C_{H}$

3.2.1 stable case

ARPEGE and SURFEX formulations are the same in the stable case:

$$
\begin{equation*}
C_{H}=\frac{1}{1+\frac{15 R_{i}}{\sqrt{1+5 R_{i}}}} \times \frac{\kappa^{2}}{\ln \left(\frac{Z^{*}}{Z_{0 H}}\right) \ln \left(\frac{Z^{*}}{Z_{0}}\right)} \tag{3.13}
\end{equation*}
$$

3.2.2 unstable case

For C_{H} coefficient, the problem found for the expression of C_{D} does not exist and C_{H} coefficient may be written like this:

$$
\begin{equation*}
P C H=\left(1-\frac{15 R_{i}}{1+15 \eta \psi \phi \sqrt{\left|R_{i}\right|}}\right) \times \eta \tag{3.14}
\end{equation*}
$$

With the following notations:

$$
\begin{align*}
\eta_{A} & =\frac{\kappa^{2}}{\ln \left(1+\frac{Z}{Z_{0 H}}\right) \ln \left(1+\frac{Z}{Z_{0 M R}}\right)} \tag{3.15}\\
\phi_{A} & =\overrightarrow{A_{\phi}} \cdot \overrightarrow{X_{Z_{0}}} \tag{3.16}\\
\psi_{A} & =Y_{Z}^{A_{\psi}} \cdot \overrightarrow{X_{Z_{0}}} \tag{3.17}\\
\eta_{S} & =\frac{\kappa^{2}}{\ln \left(\frac{Z}{Z_{0 H}}\right) \ln \left(\frac{Z}{Z_{0}}\right)} \tag{3.18}\\
\phi_{S} & =\overrightarrow{S_{\phi}} \cdot \overrightarrow{X_{Z_{0}}} \tag{3.19}\\
\psi_{S} & =Y_{Z}^{S_{\psi}} \cdot \overrightarrow{X_{Z_{0}}} \tag{3.20}
\end{align*}
$$

If we apply the assumptions for Z^{*}, this system becomes:

$$
\begin{align*}
\eta_{A}=\eta_{S} & =\frac{\kappa^{2}}{\ln \left(\frac{Z^{*}}{Z_{0 H}}\right) \ln \left(\frac{Z^{*}}{Z_{0}}\right)} \tag{3.21}\\
\phi_{A} & =\overrightarrow{A_{\phi}} \cdot \overrightarrow{X_{Z_{0}}} \tag{3.22}\\
\phi_{S} & =\overrightarrow{S_{\phi}} \cdot \overrightarrow{X_{Z_{0}}} \tag{3.23}\\
\psi_{A} & =Y_{Z}^{\overrightarrow{A_{\psi}} \cdot \overrightarrow{X_{Z_{0}}}} \tag{3.24}\\
\psi_{S} & =Y_{Z}^{\overrightarrow{S_{\psi}} \cdot \overrightarrow{X_{Z_{0}}}} \tag{3.25}
\end{align*}
$$

$X_{Z_{0}}$ and Y_{Z} have the same definition in the two systems:

$$
\overrightarrow{X_{Z_{0}}}=\left(\begin{array}{c}
1 \\
\mu \\
\mu^{2} \\
\mu^{3}
\end{array}\right) \quad \mu=\ln \left(\frac{Z_{0}}{Z_{0 H}}\right) \quad Y_{Z}=\frac{Z}{Z_{0 H}}
$$

The adjustment of coefficients of functions A_{ϕ}, S_{ϕ} in one hand and A_{ψ}, S_{ψ} on the other hand for ARPEGE and SURFEX will return the same value of C_{H} coefficient.

Figure 3.1: Comparison between ARPEGE and SURFEX of C_{D} (left picture) and C_{H} (right picture) coefficients

