Crocus - Applications scientifiques

  Descriptions du modèle Crocus

Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M. : The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773-791, doi :10.5194/gmd-5-773-2012, 2012.

Lafaysse, M., Cluzet, B., Dumont, M., Lejeune, Y., Vionnet, V., and Morin, S. : A multiphysical ensemble system of numerical snow modelling, The Cryosphere, 11, 1173-1198, doi:10.5194/tc-11-1173-2017, 2017.

Brun E., P. David, M. Sudul and G. Brunot, A numerical model to simulate snowcover stratigraphy for operational avalanche forecasting, J. Glaciol., 38(128), 13-22, 1992.

Brun E., E. Martin, V. Simon, C. Gendre C. and C. Coléou, An energy and mass model of snow cover suitable for operational avalanche forecasting, J. Glaciol., 35(121), 333-342, 1989.

  Évaluation et intercomparaisons ponctuelles de modèles de manteau neigeux

Krinner, G., Derksen, C., Essery, R., Flanner, M., Hagemann, S., Clark, M., Hall, A., Rott, H., Brutel-Vuilmet, C., Kim, H., Ménard, C. B., Mudryk, L., Thackeray, C., Wang, L., Arduini, G., Balsamo, G., Bartlett, P., Boike, J., Boone, A., Chéruy, F., Colin, J., Cuntz, M., Dai, Y., Decharme, B., Derry, J., Ducharne, A., Dutra, E., Fang, X., Fierz, C., Ghattas, J., Gusev, Y., Haverd, V., Kontu, A., Lafaysse, M., Law, R., Lawrence, D., Li, W., Marke, T., Marks, D., Nasonova, O., Nitta, T., Niwano, M., Pomeroy, J., Raleigh, M. S., Schaedler, G., Semenov, V., Smirnova, T., Stacke, T., Strasser, U., Svenson, S., Turkov, D., Wang, T., Wever, N., Yuan, H., and Zhou, W. : ESM-SnowMIP : Assessing snow models and quantifying snow-related climate feedbacks, Geosci. Model Dev., 11, 5027-5049, https://doi.org/10.5194/gmd-11-5027-2018, 2018.

Thomas Skaugen, Hanneke Luijting, Tuomo Saloranta, Dagrun Vikhamar-Schuler, Karsten Müller ; In search of operational snow model structures for the future – comparing four snow models for 17 catchments in Norway. Hydrology Research nh2018198. doi : https://doi.org/10.2166/nh.2018.198

Avanzi, F., C. De Michele, S. Morin, C. M. Carmagnola, A. Ghezzi and Y. Lejeune, Model complexity and data requirements in snow hydrology : seeking a balance in practical applications, Hydrol. Process., sous presse.

Vikhamar-Schuler, D., K. Müller and T. Engen-Skaugen, Snow modeling using SURFEX with the CROCUS snow scheme, met.no report no. 7/2011, 2011.

Oreiller, M, D. F. Nadeau, M. Minville, and A. N. Rousseau, Modelling snow water equivalent and spring runoff in a boreal watershed, James Bay, Canada, Hydrol. Process., doi :10.1002/hyp.10091, 2013.

Langlois, A., Brucker, L., Kohn, J., Royer, A., Derksen, C., Cliche, P., Picard, G., Willemet, J.-M. and Fily, M., Simulation of Snow Water Equivalent (SWE) Using Thermodynamic Snow Models in Quebec, Canada, J. Hydrometeorol., 10(6), 1447-1463, doi :10.1175/2009JHM1154.1, 2009.

Etchevers P., E. Martin, R. Brown, C. Fierz, Y. Lejeune, E. Bazile, A. Boone, Y.-J. Dai, R. Essery, A. Fernandez, Y. Gusev, R. Jordan, V. Koren, E. Kowalczyk, N. O. Nasonova, R. D. Pyles, A. Schlosser, A. B. Shmakin, T. G. Smirnova, U. Strasser, D. Verseghy, T. Yamazaki and Z.-L. Yang : Intercomparison of the surface energy budget simulated by several snow models (SNOWMIP project), Ann. Glaciol., 38, 150-158, doi :10.3189/172756404781814825, 2004.

Strasser, U., P. Etchevers and Y. Lejeune, Inter-comparison of two snow models with different complexity using data from an alpine site. Nordic Hydrol., 33, 15-26, doi :10.2166/nh.2002.002, 2002.

Bruland, O., Marechal D., Sand K., Killingtveit, A., Energy and water balance studies of a snow cover during snowmelt period at a high arctic site, Theor. Appl. Climatol., 70(1-4), 53-63, doi :10.1007/s007040170005, 2001.

Boone, A., and P. Etchevers : An intercomparison of three snow schemes of varying complexity coupled to the same land surface model : local scale evaluation at an Alpine site. J. Hydrometeor., 2, 374-394, doi :10.1175/1525-7541(2001)002<0374%3AAIOTSS>2.0.CO%3B2, 2001.

Essery, R., Martin E., Douville H., Fernandez A., Brun E., A comparison of four snow models using observations from an alpine site. Clim. Dyn., 15(8), 583-593, doi :10.1007/s003820050302, 1999.

  Analyse et prévision en temps réel du manteau neigeux et du risque d’avalanches

Crocus est utilisé pour calculer l’évolution temporelle en temps réel du profil des propriétés physiques du manteau neigeux. Ce profil peut ensuite être analysé par le Modèle Expert pour la Prévision du Risque d’Avalanches (MEPRA) et un indice de risque de déclenchement naturel et accidentel lui est attribué. En France ces applications font le plus souvent appel au forçage météorologique issu du système d’analyse et de descente d’échelle SAFRAN. A titre de recherche, des expériences ont aussi été réalisées en utilisant comme forçage les prévisions du modèle de Prévision Numérique du Temps à haute résolution AROME.

Morin, S., S. Horton, F. Techel, M. Bavay, C. Coléou, C. Fierz, A. Gobiet, P. Hagenmuller, M. Lafaysse, M. Lizar, C. Mitterer, F. Monti, K. Müller, M. Olef, J. S. Snook, A. van Herwijnen and V. Vionnet, Application of physical snowpack models in support of operational avalanche hazard forecasting : a status report on current implementations and prospects for the future, Cold. Reg. Sci. Technol., in press, https://doi.org/10.1016/j.coldregions.2019.102910, 2020

Nousu, J.-P., Lafaysse, M., Vernay, M., Bellier, J., Evin, G., and Joly, B. : Statistical post-processing of ensemble forecasts of the height of new snow, Nonlin. Processes Geophys., 26, 339–357, https://doi.org/10.5194/npg-26-339-2019, 2019

Vionnet, V., Six, D., Auger, L., Dumont, M., Lafaysse, M., Quéno, L., Réveillet, M., Dombrowski-Etchevers I., Thibert, E. and Vincent, C. : Sub-kilometer precipitation datasets for snowpack and glacier modeling in alpine terrain, Front. Earth Sci., 7, 182, https://doi.org/10.3389/feart.2019.00182, 2019

Birman, C., F. Karbou, J. Mahfouf, M. Lafaysse, Y. Durand, G. Giraud, L. Mérindol, and L. Hermozo : Precipitation analysis over the French Alps using a variational approach and study of potential added value of ground based radar observations., J. Hydrometeor., 18, 1425-1451, doi:10.1175/JHM-D-16-0144.1, 2017

Vionnet V., Dombrowski-Etchevers I., Lafaysse M., Quéno L., Seity Y., and Bazile, E. : Numerical weather forecasts at kilometer scale in the French Alps : evaluation and applications for snowpack modelling, J. Hydrometeor., 17, 2591-2614, doi:10.1175/JHM-D-15-0241.1, 2016

Quéno, L., Vionnet, V., Dombrowski-Etchevers, I., Lafaysse, M., Dumont, M., and Karbou, F. : Snowpack modelling in the Pyrenees driven by kilometric-resolution meteorological forecasts, The Cryosphere, 10, 1571-1589, doi:10.5194/tc-10-1571-2016, 2016

Vernay, M., M. Lafaysse, L. Mérindol, G. Giraud and S. Morin, Ensemble forecasting of snowpack conditions and avalanche hazard, Cold Reg. Sci. Technol., 120, 251-262, doi :10.1016/j.coldregions.2015.04.010, 2015.

Lafaysse, M., S. Morin, C. Coléou, M. Vernay, D. Serça, F. Besson, J.-M. Willemet, G. Giraud and Y. Durand, Towards a new chain of models for avalanche hazard forecasting in French mountain ranges, including low altitude mountains, Proceedings of the International Snow Science Workshop, Grenoble - Chamonix, 162 - 166, 2013.

Eckert, N., C. Coleou, H. Castebrunet, M. Deschatres, G. Giraud and J. Gaume, Cross-comparison of meteorological and avalanche data for characterising avalanche cycles : The example of December 2008 in the eastern part of the French Alps, Cold Reg. Sci. Technol., 64(2), 119-136, doi :10.1016/j.coldregions.2010.08.009, 2010.

Rousselot, M., Y. Durand, G. Giraud, L. Merindol and L. Daniel, Analysis and forecast of extreme new-snow avalanches : a numerical study of the avalanche cycles of February 1999 in France, J. Glaciol., 199, 758–770, 2010.

Haraldsdóttir, S. H., Olafsson, H., Durand, Y., Mérindol, L., and Giraud, G., A system for prediction of avalanche hazard in the windy climate of Iceland, Ann. Glaciol., 38(1), 319-324, doi :10.3189/172756404781815293, 2004.

Haraldsdóttir, S. H., Olafsson, H., Durand, Y., Mérindol, L., and Giraud, G., SAFRAN-Crocus snow simulations in an unstable and windy climate, Ann. Glaciol., 32, 339–344, 2001.

Durand Y., G. Giraud, E. Brun, L. Mérindol L., and E. Martin E., A computer-based system simulating snowpack structures as a tool for regional avalanche forecasting, J. Glaciol., 45(151), 469-484, 1999.

Mingo L., and D. Mc Clung, CROCUS test results for snowpack modeling in two snow climates with respect to avalanche forecasting, Ann. Glaciol., 26, 347-356, 1998.

  Etudes des propriétés internes du manteau neigeux et études de processus

Di Mauro, B., Garzonio, R., Rossini, M., Filippa, G., Pogliotti, P., Galvagno, M., Morra di Cella, U., Migliavacca, M., Baccolo, G., Clemenza, M., Delmonte, B., Maggi, V., Dumont, M., Tuzet, F., Lafaysse, M., Morin, S., Cremonese, E., and Colombo, R. : Saharan dust events in the European Alps : role in snowmelt and geochemical characterization, The Cryosphere, 13, 1147-1165, https://doi.org/10.5194/tc-13-1147-2019, 2019.

Tuzet, F., Dumont, M., Lafaysse, M., Picard, G., Arnaud, L., Voisin, D., Lejeune, Y., Charrois, L., Nabat, P., and Morin, S. : A multilayer physically based snowpack model simulating direct and indirect radiative impacts of light-absorbing impurities in snow, The Cryosphere, 11, 2633-2653, https://doi.org/10.5194/tc-11-2633-2017, 2017.

Barrere, M., Domine, F., Decharme, B., Morin, S., Vionnet, V., and Lafaysse, M. : Evaluating the performance of coupled snow-soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site, Geosci. Model Dev., 10, 3461-3479, https://doi.org/10.5194/gmd-10-3461-2017, 2017.

D’Amboise, C. J. L., Müller, K., Oxarango, L., Morin, S., and Schuler, T. V. : Implementation of a physically based water percolation routine in the Crocus/SURFEX (V7.3) snowpack model, Geosci. Model Dev., 10, 3547-3566, https://doi.org/10.5194/gmd-10-3547-2017, 2017.

Carmagnola, C. M., Morin, S., Lafaysse, M., Domine, F., Lesaffre, B., Lejeune, Y., Picard, G., and Arnaud, L. : Implementation and evaluation of prognostic representations of the optical diameter of snow in the SURFEX/ISBA-Crocus detailed snowpack model, The Cryosphere, 8, 417-437, doi :10.5194/tc-8-417-2014, 2014.

Domine, F., Morin, S., Brun, E., Lafaysse, M., and Carmagnola, C. M. : Seasonal evolution of snow permeability under equi-temperature and temperature-gradient conditions, The Cryosphere, 7, 1915-1929, doi :10.5194/tc-7-1915-2013, 2013.

Morin, S., F. Domine, A. Dufour, Y. Lejeune, B. Lesaffre, J.-M. Willemet, C. M. Carmagnola and H.-W. Jacobi, Measurements and modeling of the vertical profile of specific surface area of an alpine snowpack, Adv. Water Resour., 55, 111–120, doi :10.1016/j.advwatres.2012.01.010, 2013.

Jacobi, H.-W., Lim, S., Ménégoz, M., Ginot, P., Laj, P., Bonasoni, P., Stocchi, P., Marinoni, A., and Arnaud, Y. : Black carbon in snow in the upper Himalayan Khumbu Valley, Nepal : observations and modeling of the impact on snow albedo, melting, and radiative forcing, The Cryosphere, 9, 1685-1699, doi :10.5194/tc-9-1685-2015, 2015.

Jacobi, H.-W., Domine, F., Simpson, W. R., Douglas, T. A., and Sturm, M. : Simulation of the specific surface area of snow using a one-dimensional physical snowpack model : implementation and evaluation for subarctic snow in Alaska, The Cryosphere, 4, 35-51, doi :10.5194/tc-4-35-2010, 2010.

Morin, S., Domine, F., Arnaud, L., Picard, G., Jacobi, H.-W., Willemet, J.-M., In-situ measurements and temporal evolution of the thermal conductivity profile of an alpine snowpack, Proceedings of the International Snow Science Workshop, Davos, Swtizerland, 77-81, 2009.

Semadeni-Davies, A., Marechal, D., Bruland, O., Kodama, Y. and Sand, K., Estimating latent heat over a melting arctic snow cover, Nordic Hydrol., 35(3), 175-190, 2004.

Hachikubo, A., Numerical modelling of sublimation on snow and comparison with field measurements, Ann. Glaciol., 32, 27-32, doi :10.3189/172756401781819265, 2001.

McElwaine, J., Hachikubo, A., Nemoto, M., Kaihara, T., Yamada, T., Nishimura, K., Observations and simulations of the formation of the faceted snow crystals in the weak-layer of the 1998 Niseko Haru no Taki avalanche, Cold Reg. Sci. Technol., 31(3), 235-247, doi :10.1016/S0165-232X(00)00018-5, 2000.

Fierz C., Plüss C., Martin E., Modelling the snow cover in a complex alpine topography, Ann. Glaciol., 25, 312-316, 1997.

  Transport de neige par le vent et hétérogénéité de surface

Vionnet, V., Guyomarc’h G., Lafaysse, M., Naaim-Bouvet, F., Giraud, G. and Deliot, Y. : Operational implementation and evaluation of a blowing snow scheme for avalanche hazard forecasting, Cold Reg. Sci. Technol. 147, 1-10, Doi : 10.1016/j.coldregions.2017.12.006, 2018.

Revuelto, J., V Vionnet, J.-I. López-Moreno, M. Lafaysse and S. Morin, Combining snowpack modeling and terrestrial laser scanner observations improves the simulation of small scale snow dynamics, J. Hydrol.,doi :10.1016/j.jhydrol.2015.12.015, sous presse.

Vionnet, V., Martin, E., Masson, V., Guyomarc’h, G., Naaim-Bouvet, F., Prokop, A., Durand, Y., and Lac, C. : Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model, The Cryosphere, 8, 395-415, doi :10.5194/tc-8-395-2014, 2014.

Vionnet V., G. Guyomarc’h, F. Naaim Bouvet, E. Martin, Y. Durand, C. Bel, H. Bellot, et P. Puglièse, Occurrence of blowing snow events at an alpine site over a 10-year period : observations and modeling, Adv. Water Res., 55, 53-63, http://dx.doi.org/10.1016/j.advwatr..., 2013.

Durand, Y., Guyomarc’h, G., Merindol, L., and Corripio, J., Improvement of a numerical snow drift model and field validation, Cold Reg. Sci. Technol., 43, 93–103, 2005.

Durand, Y., Guyomarc’h, G., Merindol, L., and Corripio, J., Two-dimensional numerical modelling of surface wind velocity and associated snowdrift effects over complex mountainous topography, Ann. Glaciol., 38(1), 59-70, doi :10.3189/172756404781814771, 2004.

Durand, Y., Guyomarc’h, G., and Merindol, L., Numerical experiments of wind transport over a mountainous instrumented site : I. Regional scale, Ann. Glaciol., 32, 187–194, 2001.

  Télédétection des propriétés physiques du manteau neigeux et assimilation de données

Cluzet, B., Revuelto, J., Lafaysse, M., Tuzet, F., Cosme, E., Picard, G., Arnaud, L., and Dumont, M., DumontaTowards the assimilation of satellite reflectance into semi-distributed ensemble snowpack simulations, Cold Reg. Sci. Technol., 170, 102918, https://doi.org/10.1016/j.coldregions.2019.102918, 2020

Veyssière, G., F. Karbou, S. Morin, M. Lafaysse and V. Vionnet, Evaluation of Sub-Kilometric Numerical Simulations of C-Band Radar Backscatter over the French Alps against Sentinel-1 Observations, Remote Sens. 11(1), 8, https://doi.org/10.3390/rs11010008, 2019.

Pellarin, T., A. Mialon, R. Biron, C. Coulaud, F. Gibon, Y. Kerr, M. Lafaysse, B. Mercier, S. Morin, I. Redor, M. Schwank, I. Völksch, 2016. Three years of L-band brightness temperature measurements in a mountainous area : Topography, vegetation and snowmelt issues, Remote Sens. Environ., 180, 85–98, doi:10.1016/j.rse.2016.02.047, 2016.

Charrois L., E. Cosme, M. Dumont, M. Lafaysse, S. Morin, Q. Libois, and G. Picard, 2016. On the assimilation of optical reflectances and snow depth observations into a detailed snowpack model, The Cryosphere, 10, 1021-1038, doi:10.5194/tc-10-1021-2016, 2016.

Phan, X. V., Ferro-Famil, L., Gay, M., Durand, Y., Dumont, M., Morin, S., Allain, S., D’Urso, G., and Girard, A. : 1D-Var multilayer assimilation of X-band SAR data into a detailed snowpack model, The Cryosphere, 8, 1975-1987, doi :10.5194/tc-8-1975-2014, 2014.

Mary, A., Dumont, M., Dedieu, J.-P., Durand, Y., Sirguey, P., Milhem, H., Mestre, O., Negi, H. S., Kokhanovsky, A. A., Lafaysse, M., and Morin, S. : Intercomparison of retrieval algorithms for the specific surface area of snow from near-infrared satellite data in mountainous terrain, and comparison with the output of a semi-distributed snowpack model, The Cryosphere, 7, 741-761, doi :10.5194/tc-7-741-2013, 2013.

Navari, M., Margulis, S. A., Bateni, S. M., Tedesco, M., Alexander, P., and Fettweis, X. : Feasibility of improving a priori regional climate model estimates of Greenland ice sheet surface mass loss through assimilation of measured ice surface temperatures, The Cryosphere, 10, 103-120, doi :10.5194/tc-10-103-2016, 2016.

Dumont, M., Durand, Y., Arnaud, Y. and Six, D., Variational assimilation of albedo in a snowpack model and reconstruction of the spatial mass-balance distribution of an alpine glacier, J. Glaciol. , 58, 207, 151–164, doi :10.3189/2012JoG11J163, 2012.

Brucker, L. Royer, A., Picard, G., Langlois, A., Fily, M., Hourly simulations of the microwave brightness temperature of seasonal snow in Quebec, Canada, using a coupled snow evolution-emission model, Remote Sens. Environ., 115(8), 1966-1977, doi :10.1016/j.rse.2011.03.019, 2011.

Toure, A.M., Goita, K., Royer, R., Kim, E.J., Durand, M., Margulis, S.A., Huizhong Lu, A case study of using a multilayered thermodynamical snow model for radiance assimilation, IEEE Trans. Geosci. Remote Sens., 49(8), 2828 - 2837, doi :10.1109/TGRS.2011.2118761, 2011.

Lyapustin, A., Tedesco, M., Wang, Y.-J., Aoki, T., Hori, M., Kokhanovsky, A., Retrieval of snow grain size over Greenland from MODIS, Remote Sens. Environ., 113(9), 1976-1987, doi :10.1016/j.rse.2009.05.008, 2009.

Longepe, N., Allain, S., Ferro-Famil, L., Pottier, E., Durand, Y., Snowpack characterization in mountainous regions using C-Band SAR data and a meteorological model, IEEE Trans. Geosci. Remote Sens., 47(2), 406 - 418, doi :10.1109/TGRS.2008.2006048, 2009.

Longepe, N., Allain, S., Pottier, E., Snow wetness monitoring using multi-temporal polarimetric ASAR data and multi-layer hybrid model, Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing (IGARSS), Barcelona, Spain, 2007.

Corripio, J. G., Y. Durand, G. Guyomarc’h, L. Mérindol, D. Lecorps and P. Puglièse, Land-based remote sensing of snow for the validation of a snow transport model, Cold Reg. Sci. Technol., 39(2–3), 93 - 104, 10.1016/j.coldregions.2004.03.007, 2004.

Genthon C., Fily M., Martin E., Numerical simulations of Greenland snow pack and comparison with passive microwave spectral signatures, Ann. Glaciol.,32, 109-115, 2001.

Wiesmann, A., Fierz, C., Mätzler, C., Simulation of microwave emission from physically modeled snowpacks, Ann. Glaciol., 31, 1, 397-405, 2000.

Fily, M., Dedieu, J.-P., Durand, Y., Sergent, C., Remote sensing of snow in the solar spectrum : Experiments in the french Alps, Def. Sci. J., 50(2), 217-229, 2000.

Fily, M., Dedieu, J.-P., Durand, Y., Comparison between the results of a snow metamorphism model and remote sensing derived snow parameters in the Alps, Remote Sens. Environ., 68 (3), 254-263, doi :10.1016/S0034-4257(98)00116-3, 1999.

  Hydrologie

A condition de disposer de données météorologiques de forçage distribuées à l’échelle d’un bassin versant, Crocus peut être utilisé pour simuler de façon détaillée la composante nivale du cycle hydrologique. Les fondements physiques de Crocus lui permettent également d’être utilisés pour projeter l’impact de changements climatiques sur l’hydrologie.

Revuelto, J., Lecourt, G., Lafaysse, M., Zin, I., Charrois, L., Vionnet, V., Dumont, M., Rabatel, A., Six, D., Condom, T., Morin, S., Viani, A., and Sirguey, P. : Multi-criteria evaluation of snowpack simulations in complex alpine terrain using satellite and in situ observations, Remote Sensing, 10, 1171, doi:10.3390/rs10081171, 2018.

Savary S., Fortin J.P, Bernier M., Martin E., Modélisation du couvert nival, sur le sous-bassin LG4 de la rivière La Grande dans le nord du Québec, à l’aide du modèle français CROCUS, Revue des sciences de l’eau, 17(3), 395-417, 2004 .

Etchevers P., Golaz C., Habets F., Noilhan J., Impact of climate change on the Rhone river catchment hydrology, J. Geophys. Res., 107, D16, doi:10.1029/2001JD000490, 2002.

Etchevers P., Golaz C., Habets F. : Simulation of the water budget and the river flows of the Rhone basin from 1981 to 1994, J. Hydrol., 244, 60-85, 2001.

Etchevers P. Durand Y., Habets F. Martin E ., Noilhan J. : Impact of spatial resolution on the hydrological simulation of the Durance high–Alpine catchment, France, Ann. Glaciol., 32, 87-92, 2001.

Etchevers, P. : Modélisation de la phase continentale du cycle de l’eau à l’échelle régionale. Impact de la modélisation de la neige sur l’hydrologie du Rhône. Thèse de doctorat de l’université Paul Sabatier, 361p, 2000.

Braun, L. N., Brun, E., Durand, Y., Martin E., Tourasse, P., Simulation of discharge using different methods of meteorological data distribution, basin discretization and snow modeling, Nordic Hydrol., 25(1-2), 129-144, 1994.

  Simulation de l’enneigement dans les stations de sports d’hiver

Spandre, P., S. Morin, M. Lafaysse, Y. Lejeune, H. François and E. George-Marcelpoil, 2016. Integration of snow management processes into a detailed snowpack model, Cold Reg. Sci. Technol., 125, 48-64, doi:10.1016/j.coldregions.2016.01.002, 2016.

François, H., S. Morin, M. Lafaysse and E. George-Marcelpoil, Crossing numerical simulations of snow conditions with a spatially-resolved socio-economic database of ski resorts : a proof of concept in the French Alps, Cold Reg. Sci. Technol., 108, 98–112, doi : 10.1016/j.coldregions.2014.08.005, 2014.

  Impact du changement climatique sur le manteau neigeux

Spandre, P., H. François, D. Verfaillie, M. Lafaysse, M. Déqué, N. Eckert, E. George and S. Morin, Climate controls on snow reliability in French Alps ski resorts, Sci. Rep., 9, 8043, https://doi.org/10.1038/s41598-019-44068-8, 2019.

Spandre, P., François, H., Verfaillie, D., Pons, M., Vernay, M., Lafaysse, M., George, E., and Morin, S. : Winter tourism under climate change in the Pyrenees and the French Alps : relevance of snowmaking as a technical adaptation, The Cryosphere, 13, 1325-1347, https://doi.org/10.5194/tc-13-1325-2019, 2019.

Verfaillie, D., Lafaysse, M., Déqué, M., Eckert, N., Lejeune, Y., and Morin, S. : Multi-components ensembles of future meteorological and natural snow conditions in the Northern French Alps, The Cryosphere, 12, 1249-1271, https://doi.org/10.5194/tc-12-1249-2018, 2018.

Castebrunet, H., Eckert, N., Giraud, G., Durand, Y., and Morin, S. : Projected changes of snow conditions and avalanche activity in a warming climate : the French Alps over the 2020–2050 and 2070–2100 periods, The Cryosphere, 8, 1673-1697, doi :10.5194/tc-8-1673-2014, 2014.

Castebrunet, H., Eckert, N., and Giraud, G. : Snow and weather climatic control on snow avalanche occurrence fluctuations over 50 yr in the French Alps, Clim. Past, 8, 855-875, doi :10.5194/cp-8-855-2012, 2012.

Rousselot, M., Durand, Y., Giraud, G., Mérindol, L., Dombrowski-Etchevers, I., Déqué, M., and Castebrunet, H. : Statistical adaptation of ALADIN RCM outputs over the French Alps – application to future climate and snow cover, The Cryosphere, 6, 785-805, doi :10.5194/tc-6-785-2012, 2012.

Durand, Y., G. Giraud, M. Laternser, P. Etchevers, L. Mérindol and B. Lesaffre, Reanalysis of 47 years of climate in the French Alps (1958–2005) : climatology and trends for snow cover. J. Appl. Meteor. Climatol., 48, 2487–2512.
doi :10.1175/2009JAMC1810.1, 2009.

Durand, Y., Giraud, G., Laternser, M., Etchevers, P., Mérindol, L., and Lesaffre, B. : Reanalysis of 44 yr of climate in the French Alps (1958–2002) : methodology, model validation, climatology, and trends for air temperature and precipitation, J. Appl. Meteor. Climat., 48, 429–449, doi :10.1175/2008JAMC1808.1, 2009.

Martin E., G. Giraud, Y. Lejeune, and G. Boudart, Impact of climate change on avalanche hazard, Ann. Glaciol., 32, 163-167, 2001.

Brun E., Martin E., Spiridonov V. : The coupling of a multi-layered snow model with a GCM, Ann. Glaciol., 25, 66-72, 1997.

Martin E., Timbal B., Brun E., Downscaling of general circulation models outputs : simulation of the snow climatology of the French Alps. Sensitivity to climate changes, Climate Dyn., 13, 45-56, 1997.

Martin E., Durand Y., Lejeune Y., Giraud G., Mérindol L., Validation de la chaîne SAFRAN/CROCUS sur les Pyrénées. Sensibilité aux variations du climat, Note du Centre d’études de la Neige, 7, 1996 .

Martin E. (1995) : Modélisation de la climatologie nivale des Alpes françaises, application des techniques de régionalisation à l’étude de l’impact d’un changement climatique sur l’enneigement. Thèse de doctorat de l’université Paul Sabatier, 244p.

  Applications à grande échelle (neige saisonnière)

Brun, E., V. Vionnet, A. Boone, B. Decharme, Y. Peings, R. Valette, F. Karbou and S. Morin, Simulation of northern Eurasian local snow depth, mass and density using a detailed snowpack model and meteorological reanalyses, J. Hydrometeorol., 14, 203–219, doi :10.1175/JHM-D-12-012.1, 2013.

  Etude du bilan de masse et d’énergie des glaciers alpins et tropicaux

A condition de disposer de données météorologiques de forçage distribuées à l’échelle d’un bassin versant englacé, Crocus peut être utilisé pour simuler de façon détaillée le bilan d’énergie et de masse des glaciers alpins et tropicaux. Les fondements physiques de Crocus lui permettent également d’être utilisés pour projeter l’impact de changements climatiques sur le bilan de masse des glaciers.

Réveillet, M., Six, D., Vincent, C., Rabatel, A., Dumont, M., Lafaysse, M., Morin, S., Vionnet, V., and Litt, M. : Relative performance of empirical and physical models in assessing the seasonal and annual glacier surface mass balance of Saint-Sorlin Glacier (French Alps), The Cryosphere, 12, 1367-1386, https://doi.org/10.5194/tc-12-1367-2018, 2018.

Lejeune, Y., J.-M. Bertrand, P. Wagnon and S. Morin, A physically-based model for the year-round surface energy and mass balance of debris-covered glaciers, J. Glaciol., 59(214), doi :10.3189/2013JoG12J149, 2013.

Wagnon, P., M. Lafaysse, Y. Lejeune, L. Maisincho, M. Rojas, and J. P. Chazarin, Understanding and modeling the physical processes that govern the melting of snow cover in a tropical mountain environment in Ecuador. J. Geophys. Res., 114, D19113, doi:10.1029/2009JD012292, 2009.

Lejeune, Y., P. Wagnon, L. Bouilloud, P. Chevallier, P. Etchevers, E. Martin, E. Sicart and F. Habets : Melting of snow cover in a tropical mountain environment in Bolivia : Processes and modeling, J. Hydromet., 8(4), 922-937, 2007.

Le Meur, E., M. Gerbaux, M. Schäfer and C. Vincent, Disappearance of an Alpine glacier over the 21st Century simulated from modeling its future surface mass balance. Earth Planet. Sci. Lett., 261, 367-374, doi :10.1016/j.epsl.2007.07.022, 2007.

Gerbaux, M., C. Genthon, P. Etchevers, C. Vincent, and J. P. Dedieu : Surface mass balance of glaciers in the French Alps : Distributed modelling and sensitivity to climate change, J. Glaciol., 51, 561–572, 2005.

Martin, E., Lejeune, Y., Leblois, E., Collombet, M., Valla, F., Bironneau, D., Ledoux, E., and Cavazzi, C. : Étude hydrométrique du bassin de Sarennes. Présentation du projet et premiers résultats, La Houille Blanche, 5, 66–70, 1996.

  Simulation du manteau neigeux sur les calottes polaires

Touzeau, A., Landais, A., Morin, S., Arnaud, L., and Picard, G. : Numerical experiments on vapor diffusion in polar snow and firn and its impact on isotopes using the multi-layer energy balance model Crocus in SURFEX v8.0, Geosci. Model Dev., 11, 2393-2418, https://doi.org/10.5194/gmd-11-2393-2018, 2018.

Libois, Q., Picard, G., Arnaud, L., Dumont, M., Lafaysse, M., Morin, S., and Lefebvre, E. : Summertime evolution of snow specific surface area close to the surface on the Antarctic Plateau, The Cryosphere, 9, 2383-2398, doi :10.5194/tc-9-2383-2015, 2015.

Libois, Q., G. Picard, L. Arnaud, S. Morin, and E. Brun, Modeling the impact of snow drift on the decameter-scale variability of snow properties on the Antarctic Plateau, J. Geophys. Res., 119, 11662-11681, doi :10.1002/2014JD022361, 2014.

Sauter, T. and Obleitner, F. : Assessing the uncertainty of glacier mass-balance simulations in the European Arctic based on variance decomposition, Geosci. Model Dev., 8, 3911-3928, doi :10.5194/gmd-8-3911-2015, 2015.

Gallet, J.-C., Domine, F., Savarino, J., Dumont, M., and Brun, E. : The growth of sublimation crystals and surface hoar on the Antarctic plateau, The Cryosphere, 8, 1205-1215, doi :10.5194/tc-8-1205-2014, 2014.

Gascon, G., Sharp, M., Burgess, D., Bezeau, P., Bush, A. B., Morin, S., and Lafaysse, M., How well is firn densification represented by a physically-based multilayer model ? Model evaluation for the Devon Ice Cap, Nunavut, Canada, J. Glaciol., 60(222), 694 - 704, doi : 10.3189/2014JoG13J209, 2014.

Dumont, M., E. Brun, G. Picard, M. Michou, Q. Libois, J-R. Petit, M. Geyer, S. Morin, and B. Josse, Contribution of light-absorbing impurities in snow to Greenland’s darkening since 2009, Nature Geosci., 7, 509–512, doi :10.1038/ngeo2180, 2014.

Fréville, H., Brun, E., Picard, G., Tatarinova, N., Arnaud, L., Lanconelli, C., Reijmer, C., and van den Broeke, M. : Using MODIS land surface temperatures and the Crocus snow model to understand the warm bias of ERA-Interim reanalyses at the surface in Antarctica, The Cryosphere, 8, 1361-1373, doi :10.5194/tc-8-1361-2014, 2014.

Gallet, J.-C., Domine, F., Savarino, J., Dumont, M., and Brun, E. : The growth of sublimation crystals and surface hoar on the Antarctic plateau, The Cryosphere, 8, 1205-1215, doi :10.5194/tc-8-1205-2014, 2014.

Geyer, M., Salas Y Melia, D., Brun, E., and Dumont, M. : The Greenland ice sheet : modelling the surface mass balance from GCM output with a new statistical downscaling technique, The Cryosphere Discuss., 7, 3163-3207, doi :10.5194/tcd-7-3163-2013, 2013.

Steen-Larsen, H. C., Masson-Delmotte, V., Hirabayashi, M., Winkler, R., Satow, K., Prié, F., Bayou, N., Brun, E., Cuffey, K. M., Dahl-Jensen, D., Dumont, M., Guillevic, M., Kipfstuhl, S., Landais, A., Popp, T., Risi, C., Steffen, K., Stenni, B., and Sveinbjörnsdottír, A. E. : What controls the isotopic composition of Greenland surface snow ?, Clim. Past, 10, 377-392, doi :10.5194/cp-10-377-2014, 2014.

Brun, E., D. Six, G. Picard, V. Vionnet, L. Arnaud, E. Bazile, A. Boone, A. Bouchard, C. Genthon, V. Guidard, P. Le Moigne, F. Rabier and Y. Seity, Snowatmosphere coupled simulation at Dome C, Antarctica. J. Glaciol., 52 (211), 721- 736, 2011.

Dang H., Genthon C., Martin E., Snow cover studies in Greenland : snow pits observations and numerical modelling, Ann. Gaciol., 26, 1998.

Dang, H., Genthon, C., Martin, E., Numerical modeling of snow cover over polar ice sheets, Ann. Glaciol., 25, 170-176, 1997.

  Simulation du couvert neigeux sur les routes

Bouilloud, L. and E. Martin, A coupled model to simulate snow behavior on roads, J. Appl. Met., 45(3), 500-516, 2006.

Bouilloud, L., Modélisation des caractéristiques de surface d’une chaussée en condition hivernale en fonction des conditions météorologiques, Thèse de l’Université Paul Sabatier, Toulouse .

  Autres applications

Saccone, P., S. Morin, C. Colomb, F. Baptist, J.-M. Bonneville, M. P. Colace, F. Domine, M. Faure, R. Geremia, J. Lochet, F. Poly, S. Lavorel and J.-C. Clément, The effects of snowpack properties and plant strategies on litter decomposition during winter in subalpine meadows, Plant and Soil, 363, 215–229, doi :10.1007/s11104-012-1307-3, 2013.

Naaim, M., Durand, Y., Eckert, N. and G. Chambon, Dense avalanche friction coefficients : influence of physical properties of snow, J. Glaciol., 59(216), 771-782, doi :10.3189/2013JoG12J205, 2013.