LIBRARY ARCHITECTURE IN ARPEGE/ALADIN (CY36T2). K. YESSAD METEO-FRANCE/CNRM/GMAP/ALGO

ARPEGE, ALADIN, ALARO, HIRALD, AROME.

One code, but several models shared between different European (and also some non-European countries) :

- ARPEGE: spectral global model for METEO-FRANCE applications.
- IFS: spectral global model for ECMWF applications.
- ALADIN: spectral limited area model (mesh-size often between 5 km and 10 km).
- ALARO: cf. ALADIN but for some ALADIN partners, (mesh-size around 5-7 km).
- AROME: non-hydrostatic spectral limited area model for METEO-FRANCE applications (mesh-size 2.5 km); in operations since 2008.
- Around 13000 routines spread among sub-projects.

ARPEGE, ALADIN, ALARO, HIRALD, AROME.

One code, but several models shared between different European (and also some non-European countries) :

- ARPEGE : spectral global model for METEO-FRANCE applications.
- IFS : spectral global model for ECMWF applications.
- ALADIN: spectral limited area model (mesh-size often between 5 km and 10 km).
- ALARO : cf. ALADIN but for some ALADIN partners, (mesh-size around 5-7 km).
- AROME: non-hydrostatic spectral limited area model for METEO-FRANCE applications (mesh-size 2.5 km); in operations since 2008.
- Around 13000 routines spread among sub-projects.

ARPEGE, ALADIN, ALARO, HIRALD, AROME.

One code, but several models shared between different European (and also some non-European countries) :

- ARPEGE : spectral global model for METEO-FRANCE applications.
- IFS : spectral global model for ECMWF applications.
- ALADIN: spectral limited area model (mesh-size often between 5 km and 10 km).
- ALARO : cf. ALADIN but for some ALADIN partners, (mesh-size around 5-7 km).
- AROME: non-hydrostatic spectral limited area model for METEO-FRANCE applications (mesh-size 2.5 km); in operations since 2008.
- Around 13000 routines spread among sub-projects.

- On "merou", under CLEARCASE : cc_getview -u public -r CY36T2
- Available views ... : select arp_public_CY36T2_bf
- Root : merou :/home/marp001/dev : several directories (ald, arp, ...) containing the "projects".

- On "merou", under CLEARCASE : cc_getview -u public -r CY36T2
- Available views ... : select arp_public_CY36T2_bf
- Root : merou :/home/marp001/dev : several directories (ald, arp, ...) containing the "projects".

- On "merou", under CLEARCASE : cc_getview -u public -r CY36T2
- Available views ... : select arp_public_CY36T2_bf
- Root: merou:/home/marp001/dev: several directories (ald, arp, ...) containing the "projects".

- On "merou", under CLEARCASE : cc_getview -u public -r CY36T2
- Available views ... : select arp_public_CY36T2_bf
- Root : merou :/home/marp001/dev : several directories (ald, arp, ...) containing the "projects".

AVAILABLE PROJECTS.

Used in forecasts:

- ARP: ARPEGE or common ARPEGE-ALADIN routines.
- ALD: specific LAM routines (LAM, not used at ECMWF).
- TFL : spectral transforms for spherical geometry.
- TAL: spectral transforms for plane geometry.
- XRD : some application routines (IO on files, DM environment).
- XLA: linear algebra, minimizers other than CONGRAD.
- SUR : ECMWF surface scheme.
- BIP : Bi-periodicisation package (LAM models).
- MPA: upper air MESO-NH/AROME physics (now also used in ARPEGE and ALADIN).
- MSE: surface processes in MESO-NH/AROME (interface for SURFEX).
- SURFEX : surface processes in MESO-NH/AROME.

AVAILABLE PROJECTS.

Used in forecasts:

- ARP : ARPEGE or common ARPEGE-ALADIN routines.
- ALD : specific LAM routines (LAM, not used at ECMWF).
- TFL: spectral transforms for spherical geometry.
- TAL: spectral transforms for plane geometry.
- XRD : some application routines (IO on files, DM environment).
- XLA: linear algebra, minimizers other than CONGRAD.
- SUR : ECMWF surface scheme.
- BIP : Bi-periodicisation package (LAM models).
- MPA: upper air MESO-NH/AROME physics (now also used in ARPEGE and ALADIN).
- MSE: surface processes in MESO-NH/AROME (interface for SURFEX).
- SURFEX : surface processes in MESO-NH/AROME.

AVAILABLE PROJECTS (CONT'D).

Used in assimilation:

- AEO: package for pre-processing satellite lidar wind data.
- BLA: package for blacklisting.
- OBT : statistics of observation feedback data (only used at ECMWF).
- ODB: ODB (Observational DataBase software).
- SAT : satellite data handling package.
- SCT : QUICKSCAT scatterometre handling.

Miscellaneous utilitaries:

- UTI: utilitary package, containing for ex. PROGRID (not used at ECMWF).
- SCR: scripts used at ECMWE

AVAILABLE PROJECTS (CONT'D).

Used in assimilation:

- AEO : package for pre-processing satellite lidar wind data.
- BLA: package for blacklisting.
- OBT : statistics of observation feedback data (only used at ECMWF).
- ODB : ODB (Observational DataBase software).
- SAT : satellite data handling package.
- SCT : QUICKSCAT scatterometre handling.

Miscellaneous utilitaries:

- UTI: utilitary package, containing for ex. PROGRID (not used at ECMWF).
- SCR: scripts used at ECMWE

AVAILABLE PROJECTS (CONT'D).

Used in assimilation:

- AEO : package for pre-processing satellite lidar wind data.
- BLA: package for blacklisting.
- OBT : statistics of observation feedback data (only used at ECMWF).
- ODB : ODB (Observational DataBase software).
- SAT : satellite data handling package.
- SCT : QUICKSCAT scatterometre handling.

Miscellaneous utilitaries :

- UTI: utilitary package, containing for ex. PROGRID (not used at ECMWF).
- SCR: scripts used at ECMWF.

PROJECT ARP/IFS.

ARPEGE or common ARPEGE-ALADIN routines.

- adiab : adiabatic dynamics, adiabatic diagnostics, SI scheme, horizontal diffusion.
- c9xx: specific configurations 901 to 999 routines.
- canari : routines used in the CANARI optimal interpolation.
- climate : some specific ARPEGE-CLIMAT routines.
- control: control routines, like CNT4 or STEPO.
- dfi : routines used in the DFI.
- dia : diagnostics other than FULL-POS.
- fullpos: FULL-POS software.
- function : functions (in includes).
- kalman : Kalman filter.
- module : all the types of modules

PROJECT ARP/IFS.

ARPEGE or common ARPEGE-ALADIN routines.

- adiab : adiabatic dynamics, adiabatic diagnostics, SI scheme, horizontal diffusion.
- c9xx : specific configurations 901 to 999 routines.
- canari : routines used in the CANARI optimal interpolation.
- climate : some specific ARPEGE-CLIMAT routines.
- control : control routines, like CNT4 or STEPO.
- dfi : routines used in the DFI.
- dia: diagnostics other than FULL-POS.
- fullpos : FULL-POS software.
- function : functions (in includes).
- kalman : Kalman filter.
- module : all the types of modules.

- mwave : micro-wave observations (SSM/I) treatment
- namelist : all namelists.
- nmi : routines used in the NMI.
- obs_error : treatment of the observation errors in the assim.
- obs_preproc : observation pre-processing.
- ocean : oceanic coupling, for climatic applications.
- onedvar : 1D-VAR assimilation scheme used at ECMWF.
- op_obs : observation horizontal and vertical interpolator.
- parallel : parallel environment, communications between processors.
- phys_dmn : physics parameterizations used at METEO-FRANCE.
- phys_ec : ECMWF physics.
- phys_radi : some ECMWF radiation physics routines

- mwave : micro-wave observations (SSM/I) treatment.
- namelist : all namelists.
- nmi : routines used in the NMI.
- obs_error : treatment of the observation errors in the assim.
- obs_preproc : observation pre-processing.
- ocean : oceanic coupling, for climatic applications.
- onedvar : 1D-VAR assimilation scheme used at ECMWF.
- op_obs : observation horizontal and vertical interpolator.
- parallel : parallel environment, communications between processors.
- phys_dmn : physics parameterizations used at METEO-FRANCE.
- phys_ec : ECMWF physics.
- phys_radi : some ECMWF radiation physics routines.

- pp_obs : vertical interpolator (FULL-POS, obs interpolator).
- prism : OASIS coupler (for climate applications).
- programs : main programs.
- sekf: simplified extended Kalman filter.
- setup : setup routines not linked with a very specific domain.
- sinvect : singular vectors calculation (configuration 601).
- transform : hat routines for spectral transforms
- utility: miscellaneous utilitaries (lin. algebra, dealloc).
- var : routines involved in the 3DVAR and 4DVAR assimilation

- pp_obs : vertical interpolator (FULL-POS, obs interpolator).
- prism : OASIS coupler (for climate applications).
- o programs: main programs.
- sekf : simplified extended Kalman filter.
- setup : setup routines not linked with a very specific domain.
- sinvect : singular vectors calculation (configuration 601).
- transform : hat routines for spectral transforms.
- utility: miscellaneous utilitaries (lin. algebra, dealloc).
- var: routines involved in the 3DVAR and 4DVAR assimilation.

PROJECTS TFL AND TAL.

Spectral transforms.

- build (in TFL) : contains procedures.
- external : routines which can be called from another project.
- interface : not automatically generated interfaces.
- module : all the types of modules.
- programs: specific entries which can be used for TFL/TAL code validation.

PROJECTS TFL AND TAL.

Spectral transforms.

- build (in TFL): contains procedures.
- external: routines which can be called from another project.
- interface : not automatically generated interfaces.
- module : all the types of modules.
- programs: specific entries which can be used for TFL/TAL code validation.

PROJECT XLA/ALGOR.

Linear algebra.

- external : routines which can be called from another project.
- interface : not automatically generated interfaces.
- external : routines which can be called only by another XLA routine.
- module : all the types of modules.
- inside the previous directories we find :
 - fourier: Fourier transforms routines.
 - lanczos: Lanczos algorith routines.
 - linalg : linear algebra routines
 - o minim : minimizore

PROJECT XLA/ALGOR.

Linear algebra.

- external : routines which can be called from another project.
- interface : not automatically generated interfaces.
- external : routines which can be called only by another XLA routine.
- module : all the types of modules.
- inside the previous directories we find :

PROJECT XLA/ALGOR.

Linear algebra.

- external: routines which can be called from another project.
- interface : not automatically generated interfaces.
- external : routines which can be called only by another XLA routine.
- module : all the types of modules.
- inside the previous directories we find :
 - fourier : Fourier transforms routines.
 - lanczos: Lanczos algorith routines.
 - linalg: linear algebra routines.
 - minim : minimizers.

PROJECT XRD/IFSAUX.

Auxiliary library.

- bufr_io : BUFR format files reading and writing.
- cma: CMA format files reading and writing.
- ddh : DDH diagnostics
- eclite: routines coming from an old ECLIB package.
- fa : ARPEGE (FA) files reading and writing
- grib_io : ECMWF GRIB format files reading and writing.
- grib_mf : METEO-FRANCE GRIB format files reading and writing.
- include : not automatically generated interfaces.
- Ifi: LFI format files reading and writing.
- misc : miscellaneous decks.
- module : all the types of modules ; mpl...F90 modules for parallel environment.
- parallel : parallel environment.
- a programs : main programs
- support : miscellaneous routines
- svipc : contains only svipc.c.
- utilities · miscellaneous utilitaries

PROJECT XRD/IFSAUX.

Auxiliary library.

- bufr_io: BUFR format files reading and writing.
- cma : CMA format files reading and writing.
- ddh : DDH diagnostics.
- eclite: routines coming from an old ECLIB package.
- fa : ARPEGE (FA) files reading and writing.
- grib_io : ECMWF GRIB format files reading and writing.
- grib_mf: METEO-FRANCE GRIB format files reading and writing.
- include : not automatically generated interfaces.
- Ifi: LFI format files reading and writing.
- misc : miscellaneous decks.
- module : all the types of modules ; mpl...F90 modules for parallel environment.
- parallel : parallel environment.
- programs : main programs.
- support : miscellaneous routines.
- svipc : contains only svipc.c.
- utilities : miscellaneous utilitaries.

PROJECT BIP.

Bi-periodicisation software.

- build : contains procedures.
- external : routines which can be called from another project.
- interface : not automatically generated interfaces.
- module : all the types of modules.
- programs : main programs.

PROJECT BIP.

Bi-periodicisation software.

- build : contains procedures.
- external : routines which can be called from another project.
- interface : not automatically generated interfaces.
- module : all the types of modules.
- programs : main programs.

PROJECT SUR.

ECMWF surface scheme.

- build : contains procedures.
- external : routines which can be called from another project.
- function : specific functions.
- interface : not automatically generated interfaces.
- module : all the types of modules.
- offline : specific entries which can be used for SUR code validation.

PROJECT SUR.

ECMWF surface scheme.

- build : contains procedures.
- external : routines which can be called from another project.
- function : specific functions.
- interface : not automatically generated interfaces.
- module : all the types of modules.
- offline: specific entries which can be used for SUR code validation.

PROJECT MPA.

Upper air MESO-NH/AROME physics.

- programs : main programs.
- first layer of directories : chem (chemistry), conv (convection), micro (microphysics), turb (turbulence).
- externals : routines which can be called from another project.
- include : all the "include" decks.
- interface : not automatically generated interfaces.
- internals : other non-module routines.
- module : all the types of modules.

PROJECT MPA.

Upper air MESO-NH/AROME physics.

- o programs: main programs.
- first layer of directories: chem (chemistry), conv (convection), micro (microphysics), turb (turbulence).
- externals: routines which can be called from another project.
- include: all the "include" decks.
- interface : not automatically generated interfaces.
- internals : other non-module routines.
- module : all the types of modules.

PROJECT MSE.

Surface processes in MESO-NH/AROME (interface for SURFEX).

- externals : routines which can be called from another project.
- interface : not automatically generated interfaces.
- internals : other non-module routines.
- module : all the types of module.
- programs : main programs.

PROJECT MSE.

Surface processes in MESO-NH/AROME (interface for SURFEX).

- externals : routines which can be called from another project.
- interface : not automatically generated interfaces.
- internals : other non-module routines.
- module : all the types of module.
- programs : main programs.

PROJECT SURFEX.

Surface processes in MESO-NH/AROME.

- aux : auxiliary actions (mostly file I/O).
- canopy: surface boundary layer prognostic scheme.
- dummy : empty versions of some routines.
- flake : lake model
- ideal : idealised configuration.
- include : all the "include" decks.
- isba : ISBA vegetation model.
- pgd : PGD climatologic file preparation.
- prep : initial surface file preparation
- sea : ocean and sea model.
- surf_atm : coupling between surface and atmosphere.
- teb : town model.
- trip: rivers and floodings model.
- water : simple parameterisation of fluxes above lakes and rivers.

PROJECT SURFEX.

Surface processes in MESO-NH/AROME.

- aux : auxiliary actions (mostly file I/O).
- canopy: surface boundary layer prognostic scheme.
- dummy : empty versions of some routines.
- flake : lake model.
- ideal : idealised configuration.
- include : all the "include" decks.
- isba : ISBA vegetation model.
- pgd : PGD climatologic file preparation.
- prep: initial surface file preparation.
- sea : ocean and sea model.
- surf_atm : coupling between surface and atmosphere.
- teb : town model.
- trip: rivers and floodings model.
- water : simple parameterisation of fluxes above lakes and rivers.

PROJECT BLA.

Package for blacklisting.

- o compiler.
- include : not automatically generated interfaces, functions, and some other includes.
- library : the only containing .F90 decks.
- old2new.
- scripts.

PROJECT BLA.

Package for blacklisting.

- o compiler.
- include : not automatically generated interfaces, functions, and some other includes.
- library : the only containing .F90 decks.
- old2new.
- scripts.

PROJECT OBT.

Statistics of observation feedback data.

- bias_sat.
- data
- o doc.
- examples.
- module.
- satmon
- o src

PROJECT OBT.

Statistics of observation feedback data.

- bias_sat.
- data.
- doc.
- examples.
- module.
- satmon.
- src.

PROJECT SAT.

Satellite data handling package.

- bias
- emiss.
- Interface.
- module.
- mwave.
- onedvar.
- pre_screen.
- programs : main programs.
- a rtlimb
- a rttov

PROJECT SAT.

Satellite data handling package.

- bias.
- emiss.
- interface.
- module.
- mwave.
- onedvar.
- pre_screen.
- o programs: main programs.
- rtlimb.
- rttov.
- satim.

PROJECT UTI.

Utilitary package.

- add_cloud_fields : program to add 4 cloud variables in ARPEGE files.
- addozoaer : program to add ozone and aerosols constants in ARPEGE files.
- addsurf: programs to add fields in ARPEGE files
- o combi: combination of perturbations in an ensemble forecast (PEARP).
- ctpini : routines for CTPINI applications (inversion of potential vorticity fields)
- gobptout : PROGRIB.
- pinuts : PINUTS applications, for example to create ALADIN domains.
- pregpssol : surface GPS processing.
- progrid : PROGRIE
- progrid_cadre : cf. progrid ?
- rdc : former configuration 911 (makes dilatation/contraction matrices).
- sst_nesdis : program to read the SST on the BDAP.

PROJECT UTI.

Utilitary package.

- add_cloud_fields : program to add 4 cloud variables in ARPEGE files.
- addozoaer: program to add ozone and aerosols constants in ARPEGE files.
- addsurf: programs to add fields in ARPEGE files.
- combi : combination of perturbations in an ensemble forecast (PEARP).
- ctpini : routines for CTPINI applications (inversion of potential vorticity fields).
- gobptout : PROGRIB.
- pinuts : PINUTS applications, for example to create ALADIN domains.
- pregpssol : surface GPS processing.
- progrid : PROGRID.
- progrid_cadre : cf. progrid ?
- rdc : former configuration 911 (makes dilatation/contraction matrices).
- sst_nesdis : program to read the SST on the BDAP.

GROUPS OF PROJECTS INVOLVED TO MAKE EXECUTABLES.

We should be able to make executables with only the following subsets of projects (=> restrictions about the interdependencies):

- ARP+TFL+XRD+XLA+MPA+MSE+SURFEX: for ARPEGE forecasts with METEO-FRANCE physics.
- ARP+ALD+TFL+TAL+XRD+XLA+BIP+MPA+MSE+SURFEX: for ALADIN or AROME forecasts.
- ARP+TFL+XRD+XLA+SUR: for IFS forecasts with ECMWF physics.
- ARP+TFL+XRD+XLA+MPA+MSE+SURFEX+BLA+ODB+SAT: for ARPEGE assimilations with METEO-FRANCE physics.
- ARP+ALD+TFL+TAL+XRD+XLA+BIP+MPA+MSE+SURFEX +BLA+ODB+SAT: for ALADIN or AROME assimilations.
- ARP+TFL+XRD+XLA+SUR+BLA+ODB+SAT+OBT+SCR+AEO: for IFS assimilations with ECMWF physics.

GROUPS OF PROJECTS INVOLVED TO MAKE EXECUTABLES.

We should be able to make executables with only the following subsets of projects (=> restrictions about the interdependencies):

- ARP+TFL+XRD+XLA+MPA+MSE+SURFEX: for ARPEGE forecasts with METEO-FRANCE physics.
- ARP+ALD+TFL+TAL+XRD+XLA+BIP+MPA+MSE+SURFEX: for ALADIN or AROME forecasts.
- ARP+TFL+XRD+XLA+SUR: for IFS forecasts with ECMWF physics.
- ARP+TFL+XRD+XLA+MPA+MSE+SURFEX+BLA+ODB+SAT: for ARPEGE assimilations with METEO-FRANCE physics.
- ARP+ALD+TFL+TAL+XRD+XLA+BIP+MPA+MSE+SURFEX +BLA+ODB+SAT: for ALADIN or AROME assimilations.
- ARP+TFL+XRD+XLA+SUR+BLA+ODB+SAT+OBT+SCR+AEO: for IFS assimilations with ECMWF physics.

GROUPS OF PROJECTS INVOLVED TO MAKE EXECUTABLES.

We should be able to make executables with only the following subsets of projects (=> restrictions about the interdependencies) :

- ARP+TFL+XRD+XLA+MPA+MSE+SURFEX: for ARPEGE forecasts with METEO-FRANCE physics.
- ARP+ALD+TFL+TAL+XRD+XLA+BIP+MPA+MSE+SURFEX : for ALADIN or AROME forecasts.
- ARP+TFL+XRD+XLA+SUR : for IFS forecasts with ECMWF physics.
- ARP+TFL+XRD+XLA+MPA+MSE+SURFEX+BLA+ODB+SAT: for ARPEGE assimilations with METEO-FRANCE physics.
- ARP+ALD+TFL+TAL+XRD+XLA+BIP+MPA+MSE+SURFEX +BLA+ODB+SAT: for ALADIN or AROME assimilations.
- ARP+TFL+XRD+XLA+SUR+BLA+ODB+SAT+OBT+SCR+AEO: for IFS assimilations with ECMWF physics.

ALLOWED/FORBIDDEN INTERDEPENDENCIES.

- Tricky to list extensively; mentioned in some documentation.
- There is a sort of hierarchy, saying that some projects can or cannot call routines of other projects, or saying that modules of other projects can or cannot be used.
- For example routines of project ARP should not directly call a TAL routine.
- For example routines of project TFL should not call a ARP routine or use a ARP module.

ALLOWED/FORBIDDEN INTERDEPENDENCIES.

- Tricky to list extensively; mentioned in some documentation.
- There is a sort of hierarchy, saying that some projects can or cannot call routines of other projects, or saying that modules of other projects can or cannot be used.
- For example routines of project ARP should not directly call a TAL routine.
- For example routines of project TFL should not call a ARP routine or use a ARP module.

ALLOWED/FORBIDDEN INTERDEPENDENCIES.

- Tricky to list extensively; mentioned in some documentation.
- There is a sort of hierarchy, saying that some projects can or cannot call routines of other projects, or saying that modules of other projects can or cannot be used.
- For example routines of project ARP should not directly call a TAL routine.
- For example routines of project TFL should not call a ARP routine or use a ARP module.

MORE DOCUMENTATION.

Where to find it?.

- http://www.cnrm.meteo.fr/gmapdoc (ARPEGE, ALADIN, AROME doc).
- Yessad, K., 2009: Library architecture and history of the technical aspects in ARPEGE/IFS, ALADIN and AROME in the cycle 36 of ARPEGE/IFS.

MORE DOCUMENTATION.

Where to find it?.

- http://www.cnrm.meteo.fr/gmapdoc (ARPEGE, ALADIN, AROME doc).
- Yessad, K., 2009: Library architecture and history of the technical aspects in ARPEGE/IFS, ALADIN and AROME in the cycle 36 of ARPEGE/IFS.

THANK YOU / MERCI.