
Continuity equation for non-spherical geometries
in mass-coordinates

Pierre Bénard

CNRM/GMAP/ALGO 03 June 2014
file : Continuity_EGA.tex

1 Introduction

The main goal of this paper is to express the continuity equation for a quite general non-spherical geometry, but in

mass coordinate. The framework is similar to the one of White and Wood, 2012 (QJRMS, 138, 980–988, WW12

hereafter), but here, the continuity equation is expressed in mass-coordinates in order to make apparent the

way by which the continuity equation of ARPEGE should be generalized to a non-spherical geometry in various

cases. References are also made to Bénard, 2014, (QJRMS, 140, 170–184, B14a hereafter) and Bénard, 2014

(QJRMS, in Press, 2014b herafter).

2 Notations and framework

As in WW12, a general curvilinear coordinate system attached to the rotating Earth (ξ1,ξ2,ξ3) is considered.

Two main properties are assumed: (i) the coordinate system is orthogonal and axially symmetric; (ii) the coor-

dinate system is "horizontal/vertical" (in B14a’s terminology) or a "geopotential" coordinate system (in WW12’s

terminology).

2.1 Orthogonal axially-symmetric curvilinear coordinate systems

The orthonormal basis along increasing coordinate directions of (ξ1,ξ2,ξ3) respectively is noted (e1,e2,e3).

Hence we have

ei.e j = δi j, (1)

where δi j is the Kronecker symbol.

The metrics of this coordinate system is defined through the metric factors (h1,h2,h3) which may be expressed

by:

h2
i =

(

∂x
∂ξi

)2

+

(

∂y
∂ξi

)2

+

(

∂z
∂ξi

)2

for i = 1,2,3, (2)

where (x,y,z) is a standard Cartesian system also attached to the rotating Earth framework. The distance

element is therefore

ds2 = h2
1dξ2

1+h2
2dξ2

2+h2
3dξ2

3. (3)

And the determinant of the metric is denoted by h = h1h2h3. The axial symmetry (independance of all metric

factors to the longitude) is expressed by:

∂h1

∂ξ1
=

∂h2

∂ξ1
=

∂h3

∂ξ1
=

∂h
∂ξ1

= 0. (4)
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The wind vector V is decomposed in the basis as V = u1 e1+u2 e2+u3 e3, and by definition, we have

u1 = h1 ξ̇1,

u2 = h2 ξ̇2, (5)

u3 = h3 ξ̇3.

Since the coordinate system is orthogonal, the vector calculus operators have simple expressions, without any

non-diagonal metric term. The gradient of a scalar field ψ is

∇ψ =
1
h1

∂ψ
∂ξ1

e1+
1
h2

∂ψ
∂ξ2

e2+
1
h3

∂ψ
∂ξ3

e3. (6)

The divergence of a vector field given by A = A1 e1+A2 e2+A3 e3 is

∇.A =
1
h

[

∂
∂ξ1

(

A1h
h1

)

+
∂

∂ξ2

(

A2h
h2

)

+
∂

∂ξ3

(

A3h
h3

)]

. (7)

2.2 Horizontal/vertical coordinate systems

The coordinate system is assumed to be "horizontal/vertical", which means that surfaces of constant values ξ1

and ξ2 are vertical, and surfaces of constant ξ3 values are horizontal. Moreover, ξ1 points eastward, ξ2 points

northward, and ξ3 upward. This system is not assumed to be limited to the polar spherical coordinates, but is

more general. For instance if the shape of horizontal surfaces is non-spherical, and the vertical lines are curved,

the coordinate system is not the spherical coordinate system. In spherical geometry, ξ1,ξ2 and ξ3 could be

defined as longitude, latitude and geocentric radius respectively. In a non-spherical geometry (i.e. horizontal

surfaces are not spheres), due to the axial symmetry, ξ1 may still be viewed and called as "longitude", but ξ2 and

ξ3 have no standard names or representation. An horizontal surface is, by definition, an iso-geopotential surface:

φ = const. . Hence, the fact that iso-ξ3 surfaces are also horizontal is expressed as:

∂φ
∂ξ1

=
∂φ
∂ξ2

= 0 (8)

which may also be expressed as

∂φ
∂ξ3

=
dφ
dξ3

(9)

or

φ = φ(ξ3) (10)

N.B.: In all this paper, we adopt a "meteorological" convention for the geopotential: the geopotential is assumed

to increasewith geocentric radius. This contasts with "astronomic" contexts, where the geopotential is commonly

assumed to decrease with geocentric radius (in order to asymptotically reach zero at infinite). Hence we define

the "geopotential" φ here as the opposite of the scalar potential field from with the vector gravity field is derived.

From (6), (8) and (9), we therefore have:

g =−∇.φ =−
1
h3

dφ
dξ3

e3. (11)

Projecting this equation along e3 gives the following relationship between the geopotential and the intensity of

gravity g:

g =
1
h3

dφ
dξ3

, (12)
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where all quantities g, h3 and (dφ/dξ3) are positive.

The product gh3 is given by

gh3 =
dφ
dξ3

. (13)

Consequently, in the most general non-spherical deep-atmosphere framework, all metric factors exhibit horizontal

and vertical variations as well as the apparent gravity g, but the product gh3 is only vertically varying

∂(gh3)

∂ξ1
=

∂(gh3)

∂ξ2
= 0. (14)

However, if ξ3 is chosen as being proportional to φ, this product gh3 is a constant in space and time. If, in

particular, we choose exactly ξ3 = φ, then gh3 is constant in space and time and equal to one, as indicated by

(13).

3 Mass-based coordinates: transformation formulae

A new space-time coordinate system (ξ′1,ξ
′
2,s, t

′) is assumed in addition to (ξ1,ξ2,ξ3, t). The only difference

between the two systems is in the vertical coordinate hence we have

ξ′1(ξ1,ξ2,ξ3, t) = ξ1,

ξ′2(ξ1,ξ2,ξ3, t) = ξ2,

t ′(ξ1,ξ2,ξ3, t) = t.

In terms of derivatives, we therefore have:

(∂/∂s)|(ξ1,ξ2,t)
= (∂/∂s)|(ξ′1,ξ′2,t ′)

(∂/∂ξ3)|(ξ1,ξ2,t)
= (∂/∂ξ3)|(ξ′1,ξ

′
2,t

′) ,

where the subscripts indicate what is held constant. The time and horizontal coordinates do not need to be

distinguished any longer between the two systems, and the primes are therefore dropped from now on. In a

partial derivative symbol, the only possible ambiguity about what is held constant involves s or ξ3 in horizontal or

time derivatives, hence in the following, the subscript notation is kept only for these two coordinates. The method

to introduce a new time-dependent vertical coordinate is not original, and exactly follows Kasahara (1974), except

that the framework is not Cartesian.

For any scalar ψ, the total differential is given by

dψ =

(

∂ψ
∂t

)

ξ3

dt +

(

∂ψ
∂ξ1

)

ξ3

dξ1+

(

∂ψ
∂ξ2

)

ξ3

dξ2+

(

∂ψ
∂ξ3

)

dξ3 (15)

dψ =

(

∂ψ
∂t

)

s
dt +

(

∂ψ
∂ξ1

)

s
dξ1+

(

∂ψ
∂ξ2

)

s
dξ2+

(

∂ψ
∂s

)

ds (16)

Applying the two previous equations to s and ξ3 respectively yields

ds =

(

∂s
∂t

)

ξ3

dt +

(

∂s
∂ξ1

)

ξ3

dξ1+

(

∂s
∂ξ2

)

ξ3

dξ2+

(

∂s
∂ξ3

)

dξ3 (17)

dξ3 =

(

∂ξ3

∂t

)

s
dt +

(

∂ξ3

∂ξ1

)

s
dξ1+

(

∂ξ3

∂ξ2

)

s
dξ2+

(

∂ξ3

∂s

)

ds (18)
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From (15) and (18):

dψ =

(

∂ψ
∂t

)

ξ3

dt +

(

∂ψ
∂ξ1

)

ξ3

dξ1+

(

∂ψ
∂ξ2

)

ξ3

dξ2

+

(

∂ψ
∂ξ3

)[(

∂ξ3

∂t

)

s
dt +

(

∂ξ3

∂ξ1

)

s
dξ1+

(

∂ξ3

∂ξ2

)

s
dξ2+

(

∂ξ3

∂s

)

ds

]

=

[

(

∂ψ
∂t

)

ξ3

+

(

∂ψ
∂ξ3

)(

∂ξ3

∂t

)

s

]

dt +

[

(

∂ψ
∂ξ1

)

ξ3

+

(

∂ψ
∂ξ3

)(

∂ξ3

∂ξ1

)

s

]

dξ1

+

[

(

∂ψ
∂ξ2

)

ξ3

+

(

∂ψ
∂ξ3

)(

∂ξ3

∂ξ2

)

s

]

dξ2+

(

∂ψ
∂ξ3

)(

∂ξ3

∂s

)

ds (19)

Similarly, from (16) and (17):

dψ =

(

∂ψ
∂t

)

s
dt +

(

∂ψ
∂ξ1

)

s
dξ1+

(

∂ψ
∂ξ2

)

s
dξ2

+

(

∂ψ
∂s

)

[

(

∂s
∂t

)

ξ3

dt +

(

∂s
∂ξ1

)

ξ3

dξ1+

(

∂s
∂ξ2

)

ξ3

dξ2+

(

∂s
∂ξ3

)

dξ3

]

=

[

(

∂ψ
∂t

)

s
+

(

∂ψ
∂s

)(

∂s
∂t

)

ξ3

]

dt +

[

(

∂ψ
∂ξ1

)

s
+

(

∂ψ
∂s

)(

∂s
∂ξ1

)

ξ3

]

dξ1

+

[

(

∂ψ
∂ξ2

)

s
+

(

∂ψ
∂s

)(

∂s
∂ξ2

)

ξ3

]

dξ2+

(

∂ψ
∂s

)(

∂s
∂ξ3

)

dξ3 (20)

Identifying the factors of dt, dξ1, dξ2 , dξ3 and ds in (15), (20) and (16), (19) provides the coordinate transfor-

mation formulae:

(

∂ψ
∂c

)

s
=

(

∂ψ
∂c

)

ξ3

+
∂ψ
∂ξ3

(

∂ξ3

∂c

)

s
(21)

(

∂ψ
∂c

)

ξ3

=

(

∂ψ
∂c

)

s
+

∂ψ
∂s

(

∂s
∂c

)

ξ3

(22)

(

∂ψ
∂ξ3

)

=

(

∂ψ
∂s

)(

∂s
∂ξ3

)

(23)

(

∂ψ
∂s

)

=

(

∂ψ
∂ξ3

)(

∂ξ3

∂s

)

(24)

where c stands for t, ξ1 or ξ2. Applying the second to ξ3 and the first to s, we have

(

∂ξ3

∂c

)

s
= −

∂ξ3

∂s

(

∂s
∂c

)

ξ3

(25)

(

∂s
∂c

)

ξ3

= −
∂s

∂ξ3

(

∂ξ3

∂c

)

s
(26)

From (15), (16) the total time-derivative writes, in the two systems

dψ
dt

=

(

∂ψ
∂t

)

ξ3

+

(

∂ψ
∂ξ1

)

ξ3

ξ̇1+

(

∂ψ
∂ξ2

)

ξ3

ξ̇2+

(

∂ψ
∂ξ3

)

ξ̇3 (27)

dψ
dt

=

(

∂ψ
∂t

)

s
+

(

∂ψ
∂ξ1

)

s
ξ̇1+

(

∂ψ
∂ξ2

)

s
ξ̇2+

(

∂ψ
∂s

)

ṡ (28)
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4 Continuity equation in mass-based coordinates (partial form)

A first form of the continuity equation in s coordinate is now derived. This first form, simpler than the second

form derived in next section, is only partial in that it may be used in practice only in the case where ξ3 is the true

geopotential itself.

The continuity equation is, in space-coordinate independent form

1
ρ

dρ
dt

+∇.V = 0. (29)

In ξ3 coordinate, the wind divergence writes, using (5) and (7)

∇.V =
1
h

[

∂
∂ξ1

(

hξ̇1

)

ξ3
+

∂
∂ξ2

(

hξ̇2

)

ξ3
+

∂
∂ξ3

(

hξ̇3

)

]

,

i.e., taking into account the axial symmetry

∇.V =

(

∂ξ̇1

∂ξ1

)

ξ3

+

(

∂ξ̇2

∂ξ2

)

ξ3

+

(

∂ξ̇3

∂ξ3

)

+
1
h

[

ξ̇2

(

∂h
∂ξ2

)

ξ3

+ ξ̇3

(

∂h
∂ξ3

)

]

(30)

The term (∂ξ̇3/∂ξ3) may be expressed in the new coordinate using the transformations rule (23) and (28) applied

to ξ3:

(

∂ξ̇3

∂ξ3

)

=
∂s

∂ξ3

∂ξ̇3

∂s

=
∂s

∂ξ3

[

∂
∂s

(

∂ξ3

∂t

)

s
+ ξ̇1

∂
∂s

(

∂ξ3

∂ξ1

)

s
+

(

∂ξ3

∂ξ1

)

s

∂ξ̇1

∂s

+ ξ̇2
∂
∂s

(

∂ξ3

∂ξ2

)

s
+

(

∂ξ3

∂ξ2

)

s

∂ξ̇2

∂s
+ ṡ

∂
∂s

(

∂ξ3

∂s

)

+

(

∂ξ3

∂s

)

∂ṡ
∂s

]

Finally:

(

∂ξ̇3

∂ξ3

)

=
∂s

∂ξ3

[

d
dt

(

∂ξ3

∂s

)

+

(

∂ξ3

∂ξ1

)

s

∂ξ̇1

∂s
+

(

∂ξ3

∂ξ2

)

s

∂ξ̇2

∂s

]

+
∂ṡ
∂s

(31)

From (22) applied to ξ̇1 , ξ̇2 and using (25), the two first terms of the divergence in (30) may be expressed by

(

∂ξ̇1

∂ξ1

)

ξ3

=

(

∂ξ̇1

∂ξ1

)

s

−
∂ξ̇1

∂s
∂s

∂ξ3

(

∂ξ3

∂ξ1

)

s
(32)

(

∂ξ̇2

∂ξ2

)

ξ3

=

(

∂ξ̇2

∂ξ2

)

s

−
∂ξ̇2

∂s
∂s

∂ξ3

(

∂ξ3

∂ξ2

)

s
. (33)

The continuity equation may then be derived in s coordinate, as shown below, starting from (29), (30):

1
ρ

dρ
dt

+

(

∂ξ̇1

∂ξ1

)

ξ3

+

(

∂ξ̇2

∂ξ2

)

ξ3

+

(

∂ξ̇3

∂ξ3

)

+
1
h

[

ξ̇2

(

∂h
∂ξ2

)

ξ3

+ ξ̇3

(

∂h
∂ξ3

)

]

= 0.

=⇒
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1
ρ

dρ
dt

+

(

∂ξ̇1

∂ξ1

)

s

−
∂ξ̇1

∂s
∂s

∂ξ3

(

∂ξ3

∂ξ1

)

s
+

(

∂ξ̇2

∂ξ2

)

s

−
∂ξ̇2

∂s
∂s

∂ξ3

(

∂ξ3

∂ξ2

)

s
+

ξ̇2

h

(

∂h
∂ξ2

)

ξ3

+
∂s

∂ξ3

[

d
dt

(

∂ξ3

∂s

)

+

(

∂ξ3

∂ξ1

)

s

∂ξ̇1

∂s
+

(

∂ξ3

∂ξ2

)

s

∂ξ̇2

∂s

]

+
∂ṡ
∂s

+
ξ̇3

h

(

∂h
∂ξ3

)

= 0.

After cancellation of four term:

1
ρ

dρ
dt

+
∂s

∂ξ3

[

d
dt

(

∂ξ3

∂s

)]

+

(

∂ξ̇1

∂ξ1

)

s

+

(

∂ξ̇2

∂ξ2

)

s

+
ξ̇2

h

(

∂h
∂ξ2

)

ξ3

+
∂ṡ
∂s

+
ξ̇3

h

(

∂h
∂ξ3

)

= 0.

=⇒

d
dt

[

ln

(

ρ
∂ξ3

∂s

)]

+

(

∂ξ̇1

∂ξ1

)

s

+

(

∂ξ̇2

∂ξ2

)

s

+
∂ṡ
∂s

+
ξ̇2

h

(

∂h
∂ξ2

)

ξ3

+
ξ̇3

h

(

∂h
∂ξ3

)

= 0. (34)

The total derivative may now be expanded in s coordinate

1
ρ

∂s
∂ξ3

[

∂
∂t

(

ρ
∂ξ3

∂s

)

s
+ ξ̇1

∂
∂ξ1

(

ρ
∂ξ3

∂s

)

s
+ ξ̇2

∂
∂ξ2

(

ρ
∂ξ3

∂s

)

s
+ ṡ

∂
∂s

(

ρ
∂ξ3

∂s

)]

+

(

∂ξ̇1

∂ξ1

)

s

+

(

∂ξ̇2

∂ξ2

)

s

+
∂ṡ
∂s

+
ξ̇2

h

(

∂h
∂ξ2

)

ξ3

+
ξ̇3

h

(

∂h
∂ξ3

)

= 0. (35)

=⇒

∂
∂t

(

ρ
∂ξ3

∂s

)

s
+ ξ̇1

∂
∂ξ1

(

ρ
∂ξ3

∂s

)

s
+ρ

∂ξ3

∂s

(

∂ξ̇1

∂ξ1

)

s

+ ξ̇2
∂

∂ξ2

(

ρ
∂ξ3

∂s

)

s
+ρ

∂ξ3

∂s

(

∂ξ̇2

∂ξ2

)

s

+ ṡ
∂
∂s

(

ρ
∂ξ3

∂s

)

+ρ
∂ξ3

∂s

(

∂ṡ
∂s

)

+ρ
∂ξ3

∂s

[

ξ̇2

h

(

∂h
∂ξ2

)

ξ3

+
ξ̇3

h

(

∂h
∂ξ3

)

]

= 0. (36)

=⇒

∂
∂t

(

ρ
∂ξ3

∂s

)

s
+

∂
∂ξ1

(

ρ
∂ξ3

∂s
ξ̇1

)

s
+

∂
∂ξ2

(

ρ
∂ξ3

∂s
ξ̇2

)

s
+

∂
∂s

(

ρ
∂ξ3

∂s
ṡ

)

+ρ
∂ξ3

∂s

[

ξ̇2

h

(

∂h
∂ξ2

)

ξ3

+
ξ̇3

h

(

∂h
∂ξ3

)

]

= 0.

The last two terms may be expressed in invariant form since

[

ξ̇2

h

(

∂h
∂ξ2

)

ξ3

+
ξ̇3

h

(

∂h
∂ξ3

)

]

=
1
h

(

dh
dt

)

=
ḣ
h

(37)

We finally obtain a first form of the continuity equation is s coordinate

∂
∂t

(

ρ
∂ξ3

∂s

)

s
+

∂
∂ξ1

(

ρ
∂ξ3

∂s
ξ̇1

)

s
+

∂
∂ξ2

(

ρ
∂ξ3

∂s
ξ̇2

)

s
+

∂
∂s

(

ρ
∂ξ3

∂s
ṡ

)

+ρ
∂ξ3

∂s
ḣ
h
= 0. (38)

Setting ξ3 = φ, the continuity equation becomes:

∂
∂t

(

ρ
∂φ
∂s

)

s
+

∂
∂ξ1

(

ρ
∂φ
∂s

ξ̇1

)

s
+

∂
∂ξ2

(

ρ
∂φ
∂s

ξ̇2

)

s
+

∂
∂s

(

ρ
∂φ
∂s

ṡ

)

+ρ
∂φ
∂s

ḣ
h
= 0. (39)
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5 Continuity equation in the new vertical coordinate (complete form)

N.B.: In this section, we want to derive a more general form than (38), in which the evolutive quantity is

gh3ρ(∂ξ3/∂s). The purpose of this section is only for completeness of algebraic derivations. All results pre-

sented in this section have no practical consequences for the remainder of the paper, because all practical

results presented in subsequent sections may be derived from (39). This section may therefore be skipped

without any problem.

We have

∂
∂t

(

gh3ρ
∂ξ3

∂s

)

s
= gh3

∂
∂t

(

ρ
∂ξ3

∂s

)

s
+

(

ρ
∂ξ3

∂s

)(

∂gh3

∂t

)

s
(40)

The first rhs term may be readily expressed from (38). The time derivative in the second rhs term may be

expressed by

(

∂gh3

∂t

)

s
=

(

∂gh3

∂t

)

ξ3

+
d gh3

dξ3

(

∂ξ3

∂t

)

s

=
dgh3

dξ3

[

ξ̇3− ṡ

(

∂ξ3

∂s

)

− ξ̇1

(

∂ξ3

∂ξ1

)

s
− ξ̇2

(

∂ξ3

∂ξ2

)

s

]

, (41)

where (28) has been used to express (∂ξ3/∂t)s. Hence we have

∂
∂t

(

gh3ρ
∂ξ3

∂s

)

s
= −gh3

[

+
∂

∂ξ1

(

ρ
∂ξ3

∂s
ξ̇1

)

s
+

∂
∂ξ2

(

ρ
∂ξ3

∂s
ξ̇2

)

s
+

∂
∂s

(

ρ
∂ξ3

∂s
ṡ

)

+ρ
∂ξ3

∂s
ḣ
h

]

+

(

ρ
∂ξ3

∂s

)

d gh3

dξ3

[

ξ̇3− ṡ

(

∂ξ3

∂s

)

− ξ̇1

(

∂ξ3

∂ξ1

)

s
− ξ̇2

(

∂ξ3

∂ξ2

)

s

]

. (42)

Grouping terms involving ξ̇1, ξ̇2 and ṡ leads, after some simple algebra, to

∂
∂t

(

gh3ρ
∂ξ3

∂s

)

s
+

∂
∂ξ1

(

gh3ρ
∂ξ3

∂s
ξ̇1

)

s
+

∂
∂ξ2

(

gh3ρ
∂ξ3

∂s
ξ̇2

)

s
+

∂
∂s

(

gh3ρ
∂ξ3

∂s
ṡ

)

+gh3ρ
∂ξ3

∂s







ḣ
h
−

·

gh3

gh3






= 0.

(43)

where it has also been made use of the fact that gh3 = gh3(ξ3) and h = h(ξ2,ξ3), which implies

ḣ = ξ̇2

(

∂h
∂ξ2

)

ξ3

+ ξ̇3
∂h
∂ξ3

(44)

·

gh3 = ξ̇3
d gh3

dξ3
. (45)

It is seen that in the particular case ξ3 = φ, where gh3 = 1, the complete and partial forms are identical.

Since h/(gh3) = h1h2/g, the last term inside brackets in (43) may be rewritten in a form which do not depend

any longer on the original vertical coordinate:







ḣ
h
−

·

gh3

gh3






=

·
(

h1h2

g

)

g
h1h2

(46)

Another equivalent form of the continuity equation is therefore

7



∂
∂t

(

gh3ρ
∂ξ3

∂s

)

s
+

∂
∂ξ1

(

gh3ρ
∂ξ3

∂s
ξ̇1

)

s
+

∂
∂ξ2

(

gh3ρ
∂ξ3

∂s
ξ̇2

)

s
+

∂
∂s

(

gh3ρ
∂ξ3

∂s
ṡ

)

+gh3ρ
∂ξ3

∂s







·
(

h1h2

g

)

g
h1h2






= 0.

(47)

6 Mass-based coordinates for deep-atmosphere systems

6.1 Hydrostatic-pressure coordinate π

The true hydrostatic pressure π may be deduced from (A.15) of WW12, as the pressure in the quasi-hydrostatic

case when all winds vanish, which therefore yields

(

∂π
∂ξ3

)

=−ρgh3. (48)

In non-hydrostatic systems, p is not equal to π. We see that additionally, in the deep-atmosphere quasi-

hydrostatic system the quasi-hydrostatic pressure p is also not equal to the hydrostatic pressure π, due to terms

involving the horizontal wind in WW12’s (A.15).

The fact that ρ, g and h3 do not vanish in the domain ensures that π may be chosen as a vertical coordinate.

Doing so, the continuity equation in π coordinate may be derived by simply substituting s → π in (47). Then, we

have

ρgh3

(

∂ξ3

∂π

)

=−1. (49)

and the continuity equation becomes

(

∂ξ̇1

∂ξ1

)

π

+

(

∂ξ̇2

∂ξ2

)

π

+

(

∂π̇
∂π

)

+







·
(

h1h2

g

)

g
h1h2






= 0. (50)

The way the last term may be diagnosed is not examined further since π is not a coordinate that is used in

practice, because the fixed-in-space bottom boundary is not easy to represent in this coordinate.

The continuity equation (50) might also have been directly derived from (38), with the additional particular choice

ξ3 = φ, for which h3 = 1/g, hence h = h1h2/g.

6.2 Terrain-following Hydrostatic-pressure coordinate σ

We set s = σ = π/πs, where πs is the hydrostatic surface pressure (i.e. the value of π at the rigid bottom surface).

Hence we have

(

∂s
∂ξ3

)

=

(

∂σ
∂ξ3

)

=
1
πs

∂π
∂ξ3

=−
ρgh3

πs
. (51)

The continuity equation in σ coordinate then writes

∂πs

∂t
+

∂
∂ξ1

(

πsξ̇1

)

σ
+

∂
∂ξ2

(

πsξ̇2

)

σ
+

∂σ̇
∂σ

+πs







·
(

h1h2

g

)

g
h1h2






= 0. (52)

The vertical integration of the geopotential depth element gives

φ = φs +πs

∫ 1

σ

1
ρ

dσ = φs +πs

∫ 1

σ

RT
p

dσ. (53)
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It is noteworthy that in the deep-atmosphere quasi-hydrostatic context, ρRT equals p, not π, and p 6= π. Hence

the problem of the formulation of a quasi-hydrostatic deep-atmosphere model in mass-based terrain-following

coordinate is not as simple as in the shallow-atmosphere framework, examined in next section.

6.3 Hybrid hydrostatic-pressure terrain-following coordinate η

This coordinate s = η is implicitly defined by π = A(η)+πsB(η) which implies the following definition and ex-

pression for m :

m :=
∂π
∂η

=
dA
dη

+πs
dB
dη

. (54)

We have

(

∂ξ3

∂s

)

=

(

∂ξ3

∂π

)(

∂π
∂η

)

=−
m

ρgh3
, (55)

consequently the quantity appearing in (47) is

(

ρgh3
∂ξ3

∂s

)

=−m, (56)

and the continuity equation writes

∂m
∂t

+
∂

∂ξ1

(

mξ̇1

)

η
+

∂
∂ξ2

(

mξ̇2

)

η
+

∂
∂η

(mη̇)+m







·
(

h1h2

g

)

g
h1h2






= 0. (57)

The vertical derivative of the geopotential is given by

dφ
dξ3

= gh3, (58)

hence

∂φ
∂η

=
dφ
dξ3

∂ξ3

∂η
= (gh3)

(

m
ρgh3

)

=
m
ρ
. (59)

The vertical integration of the geopotential depth element yields

φ = φs +

∫ 1

η

m
ρ

dη = φs +

∫ 1

η

RT
p

dη. (60)

Here also, in the deep-atmosphere quasi-hydrostatic case, the governing equation system is no easy to close,

because p 6= π.

7 Shallow atmosphere approximation

In the case of the Shallow-Atmosphere (SA) approximation, the metric factors have no vertical dependence.

Their value is chosen at some reference level, generally at the mean surface geopotential of the planet, or any

other horizontal surface. Hence, we have

(

∂h1

∂ξ3

)

=

(

∂h2

∂ξ3

)

=

(

∂h3

∂ξ3

)

= 0, (61)

that is, in other terms

h1 = h1(ξ2), h2 = h2(ξ2), h3 = h3(ξ2). (62)
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Additionally, for dynamical consistency, the gravity is independent of height in the shallow-atmosphere context:

(

∂g
∂ξ3

)

= 0, i.e. g = g(ξ2). (63)

As a consequence d(gh3)/dξ3 = 0, and gh3 is therefore a true constant

·

gh3

gh3
= 0. (64)

We also may write

(

1
h3

dh3

dξ2

)

=−

(

1
g

dg
dξ2

)

. (65)

Moreover (ḣ/h) reduces to

(

ḣ
h

)

=
ξ̇2

h

(

dh
dξ2

)

. (66)

Finally, the continuity equation writes

∂
∂t

(

ρ
∂ξ3

∂s

)

s
+

∂
∂ξ1

(

ρ
∂ξ3

∂s
ξ̇1

)

s
+

∂
∂ξ2

(

ρ
∂ξ3

∂s
ξ̇2

)

s
+

∂
∂s

(

ρ
∂ξ3

∂s
ṡ

)

+ρ
∂ξ3

∂s
ξ̇2

h

(

dh
dξ2

)

= 0. (67)

which is identical to (38), except that the last rhs term is more simple.

7.1 Terrain-following Hydrostatic-pressure coordinate σ

In Shallow-Atmosphere approximation, when the σ coordinate is used, the continuity equation writes

∂πs

∂t
+

∂
∂ξ1

(

πsξ̇1

)

σ
+

∂
∂ξ2

(

πsξ̇2

)

σ
+

∂σ̇
∂σ

+πs
ξ̇2

h

(

dh
dξ2

)

= 0. (68)

7.2 Hybrid hydrostatic-pressure terrain-following coordinate η

When s = η coordinate is used, the continuity equation writes

∂m
∂t

+
∂

∂ξ1

(

mξ̇1

)

η
+

∂
∂ξ2

(

mξ̇2

)

η
+

∂
∂η

(mη̇)+m
ξ̇2

h

(

dh
dξ2

)

= 0. (69)

8 Shallow atmosphere approximation with “case (ii)" of B14a, B14b

The "case (ii)" of B14a, B14b is a special case of non-spherical geometry which consists in a spheroidal geometry

(geopotential surfaces are assumed to be spheroids) but with a spherical planet (the gravity then still may have

a varying meridional profile). When this case is combined with the shallow-atmosphere approximation and the

reference level for the metric is the planet’s surface one, the horizontal metric is the spherical one. One may

choose the longitude λ, latitude ϕ and geopotential φ as the (ξ1,ξ2,ξ3) system.

In this case, we have

h1 = acosϕ

h2 = a

h3 = h3(ϕ) = 1/g(ϕ) (70)

h = a2h3(ϕ)cosϕ = (a2cosϕ)/g(ϕ),
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and we have

ḣ
h
=

ϕ̇
h

dh
dϕ

=−ϕ̇
(

tanϕ+
1
g

dg
dϕ

)

. (71)

The physical wind components are

u = (acosϕ) λ̇

v = aϕ̇

Since the aim of this section is the use of this case in ARPEGE, we only present the η coordinate case below.

8.1 Hybrid hydrostatic-pressure terrain-following coordinate η

In this coordinate, the continuity equation (69) writes

∂m
∂t

+
∂

∂λ

(

mλ̇
)

η
+

∂
∂ϕ

(mϕ̇)η+
∂

∂η
(mη̇)+m

ϕ̇
h

(

dh
dϕ

)

= 0. (72)

=⇒

∂m
∂t

+
1

acosϕ
∂

∂λ
(mu)η+

1
a

∂
∂ϕ

(mv)η+
∂

∂η
(mη̇)−m

v
a

(

tanϕ+
1
g

dg
dϕ

)

= 0. (73)

The way to practically modify ARPEGE to allow this case is examined in a separate memo (file ‘EGA_Case2.tex’).
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