Satellite Data Assimilation over Antarctica : The Concordiasi Field Experiment

A. Bouchard, F. Rabier, V. Guidard, F. Karbou, N. Fourrié, T. Pangaud

Météo-France/CNRS

aurelie.bouchard@cnrm.meteo.fr

The Concordiasi Project

- Austral Spring 2008/ 2009
- Increase in the number of observations over Antarctica (Fig. 1):
- Radiosoundings (Concordia at Dome C, Dumont d'Urville) :
- Stratospheric Balloons (12 balloons with 50 sondes + 4 balloons for chemical studies)

Objectives : Improve the assimilation of infrared and microwave satellite observations over high latitudes by comparison with in-situ observations (see above)

http://www.cnrm.meteo.fr/concordiasi

An international project: Météo-France, CNES, IPEV, PNRA, CNRS/INSU, NSF, NCAR, Concordia consortium, University of Wyoming, Purdue University. Support from ECMWF.

Meteorological model of Météo France /ECMWF: ARPEGE (Courtier et al, 1994; Rabier et al., 2000)

The assimilation of microwave sensors: AMSUA/AMSUB on NOAA, MetOp

• Dynamical approach for the estimation of the emissivity (Fig. 2) in ARPEGE from satellite observations (Karbou et al. 2006)

-> Emissivities derived from AMSU-A ch 3 and AMSU-B ch 1 are assigned to the temperature & humidity sounding channels respectively. • This approach will be compared to the operational emissivity scheme (Grody, 1998 or Weng, 2001 depending on the frequency).

Results are presented for the fg-departures (observations – first guess), with no bias correction applied.

• Study over land (Fig. 3, 4, 5 & 6)

Results for AMSU-A ch5: Fig. 3 (with the operational emissivity scheme) and Fig. 4. (with the so-called dynamical approach)

 \rightarrow A better fit to the observations \rightarrow More observations assimilated \rightarrow In this case, up to +41%

• Fig 5 and 6: fg-departure (K) histograms for AMSU-A and AMSU-B over land.

• Study over sea ice (Fig. 7 & 8)

Use of the retrieved satellite emissivities over sea-ice rather than the operational emissivity algorithm: Results are shown for AMSU-A (fig. 7) and AMSU-B (fig. 8)

(fg-departures with no bias correction applied)

ver Antarctica

Fig. 8: AMSU-B, ch. 2 & 5, 2

The assimilation of infrared sensor: AIRS/IASI

One major aim of the campaign : assimilation of IASI radiances For cloud detection: use of Cloud Detect (McNally and Watts, 2003). At high latitudes

 \rightarrow Investigate detection of Polar Stratospheric Clouds (McCormick, 2002) Cloud Detection algorithms not so accurate for low clouds (Dahoui, 2006)

Case study 1: along the track of AIRS (fig. 9) the 10/01/2008

or the infrared

Case study 2: 9/01/2008 between 3 and 4 UTC

weeks, over sea ice

Comparison between Modis/Aqua (Fig. 10) and IASI/Met0p (Fig. 11) Comparison between Modis/Aqua (Fig. 10) and AIRS/NOAA (Fig. 13) Fig. 11 & 13 : Cloud Fraction (orange : cloud/ pink : clear)

Future Work

- → Test with a lambertian or semi-lambertian surface rather than specular surface for the emissivity computation
- →Improve the assimilation over Antarctica :Modification of thresholds for data use (Orography, TS, estimation of emissivity over sea ice)
- http://www.lmd.polytechnique.fr/VORCORE/McMurdoE.html

Statistical study and tuning of cloud detection over Antarctica → Study in 1D-VAR/ comparison with Radiosounding for cloud detection at Concordia station

METEO FRANCE Toujours un temps d'avance