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Quasi-Lagrangian measurements of polar stratospheric cloud particle 
development from long-duration balloon platforms OPP proposal 
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• Goals
– Capture the processes of particle growth during formation and 

dissolution of polar stratospheric clouds (PSCs)  as instruments pass 
into and out of temperature regimes favorable for PSC development. 

– Particle and Temperature measurements provide observations of 
threshold temperatures for PSC particle condensation forming:

• liquid cloud particles, including some estimates of their growth rate
• solid nitric acid trihydrate (NAT) particles, including estimates of their 

nucleation threshold. 
– The question of solid PSC (NAT) nucleation is one of the major 

unanswered questions concerning PSC particle development. 



2Weisser et al. Atmos. Chem. Phys., 
6, 689–696, 2006
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Importance
• Nucleation thresholds for solid PSC hydrates are necessary for 

incorporation of more realistic PSC models into current ozone 
loss models. At what temperature should models form PSCs?
– T (PSCsolid) ~ T (PSCliquid) + 3 K ~ T (PSCice) + 7 K

• Laboratory nucleation thresholds (~Tice-2K) appear too cold 
based on limited field observations. 

• New (2006) JPL laboratory measurements of the photolysis 
cross section of ClOOCl are a factor 6 below previous values  
– Previous agreement of models and ozone loss measurements will be

called into question
– Resolution will require among other things better estimates of ClOx, 

BrOx concentrations
– These concentrations depend on the surface area and persistence of 

PSCs.
– Denitrification is also controlled by the nucleation of solid PSCs
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Conclusions
• Profile PSC measurements coupled with back 

trajectory models suggest that nucleation 
temperatures for NAT are warmer than laboratory 
estimates.

• Field estimates, however, are not definitive. There 
are:
– uncertainties in the back trajectory temperature histories 
– in the accuracy of model temperatures
– no estimates of particle growth rate along air parcel tracks.

• Lagrangian in situ microphysical and profile 
measurements would help resolve this question by 
reducing uncertainties in:
– air parcel history
– temperature accuracy
– particle type and growth
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WOPC = Wyoming Optical Particle Counter
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Conclusions on UWOPC
• Some success with one instrument, but three 

failures.
• The points of potential (and actual) failure due to 

temperature dependence are many:
– Photomultiplier tubes
– Pulse height analyzer board
– Power supply
– Microprocessor

• Parts and replacements electronics extremely 
limited and not available.

• The mechanical integration would be difficult.
• Not confidant that 4 working instruments could 

be built with existing parts.
• Engineering resources unavailable to develop 

more than one instrument for deployment.
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LOPC = Laser Optical Particle Counter (Jupiter)
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Results of cold temperature tests on Jupiter

• Problems
– Extensive potting required to prevent arcing at 

low pressures.
– From a warm start unit operates to -40 C.
– Cold starts are limited to temperatures > -25C
– Laser –

• The metal used for the glass to metal weld on the 
laser tube was selected for expansion properties 
similar to glass during warming

• The metal has different characteristics during 
cooling. 

• This is possibly the source of the laser failure of 
the instrument used for cold testing
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Conclusions on Jupiter
• Advantages

– Commercially available
– Simpler design – mechanically and electronically
– Chance of sampling lower density, larger PSC particles

• Issues
– Mounting cannot be vertical due to possibility of debris from laser 

settling onto one of the lenses. Thus the angled mounting
– Only preliminary cold testing completed 

• Focused on testing of temperature limits for operability
• No systematic particle testing done
• Tests of the survivability of the laser to a cold soak have yet to be completed

• Future
– Four new instruments have been ordered from PMI. Delivery in January
– PMI has supplied several lasers for cold soak tests as part of this order
– Processors have been ordered to manage the communication between

Jupiter and ISBA. The software for these will be in development soon.
– Plan for manual operation of the instrument in flight to avoid building 

complicated  software to manage instrument turn on. This requires:
• Position
• Temperature – exterior and interior
• Battery capacity

– Plan to initially be quite stringent on temperature limits for operation
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