Local Semi-Implicit Scheme

Filip Váňa

M. Diamantakis, M. Hamrud, S. Malardel, M. Tolstykh, W. Deconinck, I. Miller profiting also from discussions with J. Mašek, P. Smolíková, J. Vivoda and P. Bénard

filip.vana@ecmwf.int

ECMWF

Aladin WS - Hirlam ASM, Helsinki, 3 April, 2017 – p. 1/16

Introduced in 1969 by A. Robert.

- Introduced in 1969 by A. Robert.
- Allows typically 5 times longer time-step compared to explicit schemes.

- Introduced in 1969 by A. Robert.
- Allows typically 5 times longer time-step compared to explicit schemes.
- The idea is based on implicit treatment of selected linear terms (those giving rise to high frequency waves). The remaining part (= residual) remains explicit.

- Introduced in 1969 by A. Robert.
- Allows typically 5 times longer time-step compared to explicit schemes.
- The idea is based on implicit treatment of selected linear terms (those giving rise to high frequency waves). The remaining part (= residual) remains explicit.
- Formally it means to separate the RHS terms into two groups:
 M = L + (M − L) (assuming L >> (M − L)) and solve them (in SL formalism) as:

$$\frac{X_F^+ - X_O^0}{\Delta t} = \frac{1}{2} \left[\mathcal{L}_O^0 + \mathcal{L}_F^+ \right] + \left(\mathcal{M} - \mathcal{L} \right)_M^{\frac{1}{2}}$$

- Introduced in 1969 by A. Robert.
- Allows typically 5 times longer time-step compared to explicit schemes.
- The idea is based on implicit treatment of selected linear terms (those giving rise to high frequency waves). The remaining part (= residual) remains explicit.
- Formally it means to separate the RHS terms into two groups:
 M = L + (M − L) (assuming L >> (M − L)) and solve them (in SL formalism) as:

$$\frac{X_F^+ - X_O^0}{\Delta t} = \frac{1}{2} \left[\mathcal{L}_O^0 + \mathcal{L}_F^+ \right] + (\mathcal{M} - \mathcal{L})_M^{\frac{1}{2}}$$

This leads to Helmholtz equation problem.

- Introduced in 1969 by A. Robert.
- Allows typically 5 times longer time-step compared to explicit schemes.
- The idea is based on implicit treatment of selected linear terms (those giving rise to high frequency waves). The remaining part (= residual) remains explicit.
- Formally it means to separate the RHS terms into two groups:
 M = L + (M − L) (assuming L >> (M − L)) and solve them (in SL formalism) as:

$$\frac{X_F^+ - X_O^0}{\Delta t} = \frac{1}{2} \left[\mathcal{L}_O^0 + \mathcal{L}_F^+ \right] + (\mathcal{M} - \mathcal{L})_M^{\frac{1}{2}}$$

- This leads to Helmholtz equation problem.
- Spectral models are well suited for this method (being typically 3-4 times more efficient with respect to GP methods on a single processor system).

Semi-Implicit scheme in IFS

- Spectral formulation implies:
 - Linear model assumes horizontally homogenous profiles for the whole globe (\Rightarrow no orography, no gradients)
 - To have one structure equation linear model profiles are made also vertically uniform
 - Atmosphere at rest \Rightarrow u = v = 0 m/s, T = 350 K and $p_s = 1000$ hPa
 - Physics is naturally out of the linear model

Semi-Implicit scheme in IFS

- Spectral formulation implies:
 - Linear model assumes horizontally homogenous profiles for the whole globe (\Rightarrow no orography, no gradients)
 - To have one structure equation linear model profiles are made also vertically uniform
 - Atmosphere at rest \Rightarrow u = v = 0 m/s, T = 350 K and $p_s = 1000$ hPa
 - Physics is naturally out of the linear model
- Known problems:
 - Simple SI occasionally reported unstable ⇒ iteration is required (near model top, steep slopes,...)
 - Convergence issues from areas with stable stratification and/or adjacent to significant orography
 - Resolutions higher than T_2399 (\approx 50 km) are prone to a noise generation in TL/AD

Known issues in IFS

12 hours adiabatic forecast with T_L 511

NL model forecast of wind

both from the lowermost model level

Known issues in IFS

Known issues in IFS

Without questioning the SI method it is assumed the problem originates from:

- Without questioning the SI method it is assumed the problem originates from:
 - 1. Occurrence of areas where $\mathcal{M}-\mathcal{L} \not\ll \mathcal{L}$
 - \Rightarrow More realistic linear model is required.

- Without questioning the SI method it is assumed the problem originates from:
 - 1. Occurrence of areas where $\mathcal{M}-\mathcal{L} \not\ll \mathcal{L}$
 - \Rightarrow More realistic linear model is required.
 - 2. As $\Delta t_{expl} \ll \Delta t$ the extrapolation technique of $\mathcal{M} \mathcal{L}$ to the middle point doesn't necessarily ensure noise free results.

 \Rightarrow Substitute extrapolation by an (iterative) averaging.

- Without questioning the SI method it is assumed the problem originates from:
 - 1. Occurrence of areas where $\mathcal{M} \mathcal{L} \not\ll \mathcal{L}$
 - \Rightarrow More realistic linear model is required.
 - 2. As $\Delta t_{expl} \ll \Delta t$ the extrapolation technique of $\mathcal{M} \mathcal{L}$ to the middle point doesn't necessarily ensure noise free results.
 - \Rightarrow Substitute extrapolation by an (iterative) averaging.
- Knowing the best available linear model is the tangent-linear (TL) model a general method for L construction is proposed:

$$\mathcal{L}(X) = \mathcal{M}(X^0) + \mathbf{M}'(X^0)(X - X^0)$$

- Without questioning the SI method it is assumed the problem originates from:
 - 1. Occurrence of areas where $\mathcal{M} \mathcal{L} \not\ll \mathcal{L}$
 - \Rightarrow More realistic linear model is required.
 - 2. As $\Delta t_{expl} \ll \Delta t$ the extrapolation technique of $\mathcal{M} \mathcal{L}$ to the middle point doesn't necessarily ensure noise free results.
 - \Rightarrow Substitute extrapolation by an (iterative) averaging.
- Knowing the best available linear model is the tangent-linear (TL) model a general method for L construction is proposed:

$$\mathcal{L}(X) = \mathcal{M}(X^0) + \mathbf{M}'(X^0)(X - X^0)$$

Following the proposal of Diamantakis (2014) the SETTLS method could be replaced by a non-extrapolating 2TL scheme:

$$\frac{X^{+} - X^{0}}{\Delta t} = \frac{1}{2} \left[(\mathcal{M})^{0} \right]_{O} + \frac{1}{2} \left[(\mathcal{M})^{0} + M'(X^{*})(X^{+} - X^{0}) \right]_{F}$$

- Without questioning the SI method it is assumed the problem originates from:
 - 1. Occurrence of areas where $\mathcal{M} \mathcal{L} \ll \mathcal{L}$
 - \Rightarrow More realistic linear model is required.
 - 2. As $\Delta t_{expl} \ll \Delta t$ the extrapolation technique of $\mathcal{M} \mathcal{L}$ to the middle point doesn't necessarily ensure noise free results.
 - \Rightarrow Substitute extrapolation by an (iterative) averaging.
- Knowing the best available linear model is the tangent-linear (TL) model a general method for L construction is proposed:

$$\mathcal{L}(X) = \mathcal{M}(X^0) + \mathbf{M}'(X^0)(X - X^0)$$

Following the proposal of Diamantakis (2014) the SETTLS method could be replaced by a non-extrapolating 2TL scheme:

$$\frac{X^{+} - X^{0}}{\Delta t} = \frac{1}{2} \left[(\mathcal{M})^{0} \right]_{O} + \frac{1}{2} \left[(\mathcal{M})^{0} + M'(X^{*})(X^{+} - X^{0}) \right]_{F}$$

Can't be easily inverted: requires an iterative procedure for the implicit term

Shallow water implementation

Governing equations:

 $\begin{aligned} \frac{dh}{dt} &= -h\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = \left[-\bar{H}\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)\right] + (\bar{H} - h)\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right),\\ \frac{du}{dt} &= \left[-g\frac{\partial h}{\partial x}\right] + fv - g\frac{\partial H_s}{\partial x} - \nu u,\\ \frac{dv}{dt} &= \left[-g\frac{\partial h}{\partial y}\right] - fu - g\frac{\partial H_s}{\partial y} - \nu v,\end{aligned}$

implying then:

$$\mathbf{M}'(X^*)(X-X^0) = \begin{pmatrix} -\left(\frac{\partial u^*}{\partial x} + \frac{\partial v^*}{\partial y}\right)(h-h^0) - h^*\left(\frac{\partial u}{\partial x} - \frac{\partial u^0}{\partial x} + \frac{\partial v}{\partial y} - \frac{\partial v^0}{\partial y}\right) \\ f(v-v^0) - g\left(\frac{\partial h}{\partial x} - \frac{\partial h^0}{\partial x}\right) - \nu(u-u^0) \\ -f(u-u^0) - g\left(\frac{\partial h}{\partial y} - \frac{\partial h^0}{\partial y}\right) - \nu(v-v^0) \end{pmatrix}$$

Shallow water experiment setup

- SISL shallow water model with the IFS timestep organization (GP space only)
- Barotropic instability case
 - Domain 254 x 50 points.
 - $\Delta x = \Delta y = 100$ km.
 - $f = f_0 + \beta(y y_0)$, with $f_0 = 0.0001s^{-1}$ and $\beta = 1.6 \times 10^{-11}m^{-1}s^{-1}$
 - $\nu = 0$
 - Initial condition: zonal jet with geostrophic ballance + noise.
 - Formation of cyclones and anticyclones on each side of a zonal jet.
 - Forecast range 210000s.

Height *h*

Explicit scheme with $\Delta t = 30s$ (left) and $\Delta t = 70s$ (right).

Semi-Implicit scheme with $\Delta t = 70s$ (left) and $\Delta t = 300s$ (right).

Height *h*

New scheme with $\Delta t = 70s$ (left) and $\Delta t = 300s$ (right).

Height *h*

Explicit scheme with $\Delta t = 30s$ (left) and the new scheme with $\Delta t = 300s$ (right).

Shallow water results - II.

Longitudinal cross-section from the central area ($\Delta t = 400 \text{ s}$)

eight east est cross section

height m

x points Red = 4th order Green = 2nd order Blue = refSI

Placing there some orography...

Second order accuracy to define \mathcal{L} :

$$\mathcal{L}(X) = \mathcal{M}(X^0) + \mathbf{M}'(X^0)(X - X^0) + \frac{1}{2}\mathbf{M}''(X^0)(X - X^0)^2$$

 \Rightarrow Speedup around 8%, not very practical for the full 3D model.

Second order accuracy to define \mathcal{L} :

$$\mathcal{L}(X) = \mathcal{M}(X^0) + \mathbf{M}'(X^0)(X - X^0) + \frac{1}{2}\mathbf{M}''(X^0)(X - X^0)^2$$

 \Rightarrow Speedup around 8%, not very practical for the full 3D model.

Applying the re-linearization technique (Stappers and Barkmeijer (2012)) the M' could be evaluated at X* = ¹/₂ (X⁰ + X⁽ⁱ⁾⁺) rather than at X⁰.
 ⇒ Speedup around 8%, allows no timestep extension → gain in accuracy is compensated by a loss in stability.

Second order accuracy to define \mathcal{L} :

$$\mathcal{L}(X) = \mathcal{M}(X^0) + \mathbf{M}'(X^0)(X - X^0) + \frac{1}{2}\mathbf{M}''(X^0)(X - X^0)^2$$

 \Rightarrow Speedup around 8%, not very practical for the full 3D model.

- Applying the re-linearization technique (Stappers and Barkmeijer (2012)) the M' could be evaluated at X* = ¹/₂ (X⁰ + X⁽ⁱ⁾⁺) rather than at X⁰.
 ⇒ Speedup around 8%, allows no timestep extension → gain in accuracy is compensated by a loss in stability.
- Adopt a successive over-relaxation similar to those of Wood et al. (2014):

$$\mathbf{M}'(X^{(i)^+} - X^0) \quad \mapsto \quad \alpha \mathbf{M}'(\mathbf{X}^*)(X^{(i)^+} - X^0) + (1 - \alpha)\mathbf{M}'(\mathbf{X}^*)(X^{(i-1)^+} - X^0)$$

 \Rightarrow Essential for having the scheme converging.

Second order accuracy to define \mathcal{L} :

$$\mathcal{L}(X) = \mathcal{M}(X^0) + \mathbf{M}'(X^0)(X - X^0) + \frac{1}{2}\mathbf{M}''(X^0)(X - X^0)^2$$

 \Rightarrow Speedup around 8%, not very practical for the full 3D model.

- Applying the re-linearization technique (Stappers and Barkmeijer (2012)) the M' could be evaluated at X* = ¹/₂ (X⁰ + X⁽ⁱ⁾⁺) rather than at X⁰.
 ⇒ Speedup around 8%, allows no timestep extension → gain in accuracy is compensated by a loss in stability.
- Adopt a successive over-relaxation similar to those of Wood et al. (2014):

$$\mathbf{M}'(X^{(i)^+} - X^0) \quad \mapsto \quad \alpha \mathbf{M}'(\mathbf{X}^*)(X^{(i)^+} - X^0) + (1 - \alpha)\mathbf{M}'(\mathbf{X}^*)(X^{(i-1)^+} - X^0)$$

 \Rightarrow Essential for having the scheme converging.

Incremental approach starting with fractional timestep $\Delta t_0 < \Delta t_1 < ... < \Delta t$. Easy to be done with TL model knowing: $\mathbf{M}'(X^0, \Delta t)({X^{(i)}}^+ - X^0) = \frac{\Delta t}{\Delta t'}\mathbf{M}'(X^0, \Delta t')({X^{(i)}}^+ - X^0)$ ⇒ Allows time-step extension by 50-100%.

Second order accuracy to define \mathcal{L} :

$$\mathcal{L}(X) = \mathcal{M}(X^0) + \mathbf{M}'(X^0)(X - X^0) + \frac{1}{2}\mathbf{M}''(X^0)(X - X^0)^2$$

 \Rightarrow Speedup around 8%, not very practical for the full 3D model.

- Applying the re-linearization technique (Stappers and Barkmeijer (2012)) the M' could be evaluated at X* = ¹/₂ (X⁰ + X⁽ⁱ⁾⁺) rather than at X⁰.
 ⇒ Speedup around 8%, allows no timestep extension → gain in accuracy is compensated by a loss in stability.
- Adopt a successive over-relaxation similar to those of Wood et al. (2014):

$$\mathbf{M}'(X^{(i)^+} - X^0) \quad \mapsto \quad \alpha \mathbf{M}'(\mathbf{X}^*)(X^{(i)^+} - X^0) + (1 - \alpha)\mathbf{M}'(\mathbf{X}^*)(X^{(i-1)^+} - X^0)$$

 \Rightarrow Essential for having the scheme converging.

Incremental approach starting with fractional timestep $\Delta t_0 < \Delta t_1 < ... < \Delta t$. Easy to be done with TL model knowing: M'(X⁰, Δt)(X^{(i)⁺} − X⁰) = $\frac{\Delta t}{\Delta t'}$ M'(X⁰, $\Delta t'$)(X^{(i)⁺} − X⁰) ⇒ Allows time-step extension by 50-100%.

2TL method vs SETTLS

 \Rightarrow Minimum speedup (around 6%), still 2TL is used as the new default.

New SI scheme implemented to IFS (profiting from the existing TL code)

- New SI scheme implemented to IFS (profiting from the existing TL code)
- The need for derivatives update during the iterative process makes the scheme very expensive for spectral model (multiple transforms per single timestep)

- New SI scheme implemented to IFS (profiting from the existing TL code)
- The need for derivatives update during the iterative process makes the scheme very expensive for spectral model (multiple transforms per single timestep)
- Atlas library offers 2^{nd} order accuracy grid-point derivatives \rightarrow SI scheme adapted to evaluate derivatives with Atlas

- New SI scheme implemented to IFS (profiting from the existing TL code)
- The need for derivatives update during the iterative process makes the scheme very expensive for spectral model (multiple transforms per single timestep)
- Atlas library offers 2^{nd} order accuracy grid-point derivatives \rightarrow SI scheme adapted to evaluate derivatives with Atlas
- Derivatives must be consistent \Rightarrow all derivatives have to be computed with Atlas

- New SI scheme implemented to IFS (profiting from the existing TL code)
- The need for derivatives update during the iterative process makes the scheme very expensive for spectral model (multiple transforms per single timestep)
- Atlas library offers 2^{nd} order accuracy grid-point derivatives → SI scheme adapted to evaluate derivatives with Atlas
- Derivatives must be consistent \Rightarrow all derivatives have to be computed with Atlas
- Having the SI and derivatives computed in grid-point space there is only little point to keep spectral space computation (I/O, filtering)

- New SI scheme implemented to IFS (profiting from the existing TL code)
- The need for derivatives update during the iterative process makes the scheme very expensive for spectral model (multiple transforms per single timestep)
- Atlas library offers 2^{nd} order accuracy grid-point derivatives \rightarrow SI scheme adapted to evaluate derivatives with Atlas
- Derivatives must be consistent \Rightarrow all derivatives have to be computed with Atlas
- Having the SI and derivatives computed in grid-point space there is only little point to keep spectral space computation (I/O, filtering)
- Exclusively grid-pont version of IFS was designed with local communications only (SL comms and Atlas).
 - Fairly general linear model (extensible to any set of prognostic variables)
 - Iterative procedure is inexpensive provided the scheme is converging
 - Quality and stability strongly depends on derivatives computation (with 2^{nd} derivatives it allows \approx 50-70% of the original timestep)

Some fundamental understanding of this method's convergence is still missing.

- Some fundamental understanding of this method's convergence is still missing.
- Smoother fields implies the better convergence.

- Some fundamental understanding of this method's convergence is still missing.
- Smoother fields implies the better convergence.
- To further speed up the convergence the derivatives of increments are computed from smoothed (using multiplicative Laplace operator filtering) quantities. However this could lead to an instability if over-used. (Smoothing of δDIV only seems to be generally harmless.)

- Some fundamental understanding of this method's convergence is still missing.
- Smoother fields implies the better convergence.
- To further speed up the convergence the derivatives of increments are computed from smoothed (using multiplicative Laplace operator filtering) quantities. However this could lead to an instability if over-used. (Smoothing of δDIV only seems to be generally harmless.)
- The use of multiplicative filtering indicates a stencil for 4-6th order accurate derivatives might be better suited for faster convergence.

- Some fundamental understanding of this method's convergence is still missing.
- Smoother fields implies the better convergence.
- To further speed up the convergence the derivatives of increments are computed from smoothed (using multiplicative Laplace operator filtering) quantities. However this could lead to an instability if over-used. (Smoothing of δDIV only seems to be generally harmless.)
- The use of multiplicative filtering indicates a stencil for 4-6th order accurate derivatives might be better suited for faster convergence.
- Using derivatives of δT results in systematic cooling (better results obtained with derivatives of $\delta \Theta$ or $\delta(T \alpha \log p_s)$

 \rightarrow indicates there are probably better alternatives for the temperature related prognostic variable.

Baroclinic wave test

IFS_ref Tco159/L139 $\Delta t =$ 1800s

newSI Tco159/L139 $\Delta t =$ 900s

Jablonowski and Williamson(2006) DCMIP

Baroclinic wave test

IFS_ref Tco159/L139 $\Delta t =$ 1800s

newSI_SLHD Tco159/L139 $\Delta t =$ 900s

Jablonowski and Williamson(2006) DCMIP

Grid-point IFS with 2nd order derivatives

New SI scheme, no spectral space

Annual climate of temperature at 925 hPa (T_L 255/L137)

Aladin WS - Hirlam ASM, Helsinki, 3 April, 2017 - p. 15/16

Alternative SI method was proposed and is being implemented to IFS (CY42R1).

- Alternative SI method was proposed and is being implemented to IFS (CY42R1).
- Global Helmholtz solver is replaced by local iterative computation in grid-point space requiring horizontal derivatives.

- Alternative SI method was proposed and is being implemented to IFS (CY42R1).
- Global Helmholtz solver is replaced by local iterative computation in grid-point space requiring horizontal derivatives.
- Offers more flexibility to phys-dyn coupling.

- Alternative SI method was proposed and is being implemented to IFS (CY42R1).
- Global Helmholtz solver is replaced by local iterative computation in grid-point space requiring horizontal derivatives.
- Offers more flexibility to phys-dyn coupling.
- Linear model is fairly general:
 - Implies no special restriction for a choice of prognostic variables or model coordinates.
 - Is extensible by physics (or subset of physical processes) accepting the $\mathcal{M}^0 \neq \mathcal{L}^0$

- Alternative SI method was proposed and is being implemented to IFS (CY42R1).
- Global Helmholtz solver is replaced by local iterative computation in grid-point space requiring horizontal derivatives.
- Offers more flexibility to phys-dyn coupling.
- Linear model is fairly general:
 - Implies no special restriction for a choice of prognostic variables or model coordinates.
 - Is extensible by physics (or subset of physical processes) accepting the $\mathcal{M}^0 \neq \mathcal{L}^0$
- Adopting a grid-point filter to control $2\Delta x$ noise, this method combined with grid-point derivatives allows to drop spectral space and maintain only local communications.

- Alternative SI method was proposed and is being implemented to IFS (CY42R1).
- Global Helmholtz solver is replaced by local iterative computation in grid-point space requiring horizontal derivatives.
- Offers more flexibility to phys-dyn coupling.
- Linear model is fairly general:
 - Implies no special restriction for a choice of prognostic variables or model coordinates.
 - Is extensible by physics (or subset of physical processes) accepting the $\mathcal{M}^0 \neq \mathcal{L}^0$
- Adopting a grid-point filter to control $2\Delta x$ noise, this method combined with grid-point derivatives allows to drop spectral space and maintain only local communications.
- TL/AD extension challenging but perfectly doable.