Local Semi-Implicit Scheme

Filip Váňa
M. Diamantakis, M. Hamrud, S. Malardel, M. Tolstykh, W. Deconinck, I. Miller profiting also from discussions with J. Mašek, P. Smolíková, J. Vivoda and P. Bénard

> filip.vana@ecmwf.int

ECMWF

Semi-Implicit scheme

- Introduced in 1969 by A. Robert.

Semi-Implicit scheme

- Introduced in 1969 by A. Robert.
- Allows typically 5 times longer time-step compared to explicit schemes.

Semi-Implicit scheme

- Introduced in 1969 by A. Robert.
- Allows typically 5 times longer time-step compared to explicit schemes.
- The idea is based on implicit treatment of selected linear terms (those giving rise to high frequency waves). The remaining part (= residual) remains explicit.

Semi-Implicit scheme

- Introduced in 1969 by A. Robert.
- Allows typically 5 times longer time-step compared to explicit schemes.
- The idea is based on implicit treatment of selected linear terms (those giving rise to high frequency waves). The remaining part (= residual) remains explicit.
- Formally it means to separate the RHS terms into two groups: $\mathcal{M}=\mathcal{L}+(\mathcal{M}-\mathcal{L})$ (assuming $\mathcal{L} \gg(\mathcal{M}-\mathcal{L})$) and solve them (in SL formalism) as:

$$
\frac{X_{F}^{+}-X_{O}^{0}}{\Delta t}=\frac{1}{2}\left[\mathcal{L}_{O}^{0}+\mathcal{L}_{F}^{+}\right]+(\mathcal{M}-\mathcal{L})_{M}^{\frac{1}{2}}
$$

Semi-Implicit scheme

- Introduced in 1969 by A. Robert.
- Allows typically 5 times longer time-step compared to explicit schemes.
- The idea is based on implicit treatment of selected linear terms (those giving rise to high frequency waves). The remaining part (= residual) remains explicit.
- Formally it means to separate the RHS terms into two groups: $\mathcal{M}=\mathcal{L}+(\mathcal{M}-\mathcal{L})$ (assuming $\mathcal{L} \gg(\mathcal{M}-\mathcal{L})$) and solve them (in SL formalism) as:

$$
\frac{X_{F}^{+}-X_{O}^{0}}{\Delta t}=\frac{1}{2}\left[\mathcal{L}_{O}^{0}+\mathcal{L}_{F}^{+}\right]+(\mathcal{M}-\mathcal{L})_{M}^{\frac{1}{2}}
$$

- This leads to Helmholtz equation problem.

Semi-Implicit scheme

- Introduced in 1969 by A. Robert.
- Allows typically 5 times longer time-step compared to explicit schemes.
- The idea is based on implicit treatment of selected linear terms (those giving rise to high frequency waves). The remaining part (= residual) remains explicit.
- Formally it means to separate the RHS terms into two groups: $\mathcal{M}=\mathcal{L}+(\mathcal{M}-\mathcal{L})$ (assuming $\mathcal{L} \gg(\mathcal{M}-\mathcal{L})$) and solve them (in SL formalism) as:

$$
\frac{X_{F}^{+}-X_{O}^{0}}{\Delta t}=\frac{1}{2}\left[\mathcal{L}_{O}^{0}+\mathcal{L}_{F}^{+}\right]+(\mathcal{M}-\mathcal{L})_{M}^{\frac{1}{2}}
$$

- This leads to Helmholtz equation problem.
- Spectral models are well suited for this method (being typically 3-4 times more efficient with respect to GP methods on a single processor system).

Semi-Implicit scheme in IFS

- Spectral formulation implies:
- Linear model assumes horizontally homogenous profiles for the whole globe (\Rightarrow no orography, no gradients)
- To have one structure equation linear model profiles are made also vertically uniform
- Atmosphere at rest $\Rightarrow u=v=0 \mathrm{~m} / \mathrm{s}, T=350 \mathrm{~K}$ and $p_{s}=1000 \mathrm{hPa}$
- Physics is naturally out of the linear model

Semi-Implicit scheme in IFS

- Spectral formulation implies:
- Linear model assumes horizontally homogenous profiles for the whole globe (\Rightarrow no orography, no gradients)
- To have one structure equation linear model profiles are made also vertically uniform
- Atmosphere at rest $\Rightarrow u=v=0 \mathrm{~m} / \mathrm{s}, T=350 \mathrm{~K}$ and $p_{s}=1000 \mathrm{hPa}$
- Physics is naturally out of the linear model
- Known problems:
- Simple SI occasionally reported unstable \Rightarrow iteration is required (near model top, steep slopes,...)
- Convergence issues from areas with stable stratification and/or adjacent to significant orography
- Resolutions higher than $\mathrm{T}_{L} 399$ ($\approx 50 \mathrm{~km}$) are prone to a noise generation in TL/AD

Known issues in IFS

12 hours adiabatic forecast with $\mathrm{T}_{L} 511$

TL forecast of temperature

NL model forecast of wind
both from the lowermost model level

Known issues in IFS

Time evolution of temperature
T511 adiabatic [lat=68.663S, lon=164.700E], level=126

Known issues in IFS

Time evolution of (M-L)/L terms for V-wind
T511 adiabatic, ref SI [lat= $=66.663$, lon= 164.700]

Time evolution of (M-L)/L terms for temperature
T511 adiabatic, ref SI [lat $=-66.663$, lon $=164.700$]

New proposal for the SI scheme design

- Without questioning the SI method it is assumed the problem originates from:

New proposal for the SI scheme design

- Without questioning the SI method it is assumed the problem originates from:

1. Occurrence of areas where $\mathcal{M}-\mathcal{L} \nless \mathcal{L}$
\Rightarrow More realistic linear model is required.

New proposal for the SI scheme design

- Without questioning the SI method it is assumed the problem originates from:

1. Occurrence of areas where $\mathcal{M}-\mathcal{L} \nless \mathcal{L}$ \Rightarrow More realistic linear model is required.
2. As $\Delta t_{\text {expl }} \ll \Delta t$ the extrapolation technique of $\mathcal{M}-\mathcal{L}$ to the middle point doesn't necessarily ensure noise free results.
\Rightarrow Substitute extrapolation by an (iterative) averaging.

New proposal for the SI scheme design

- Without questioning the SI method it is assumed the problem originates from:

1. Occurrence of areas where $\mathcal{M}-\mathcal{L} \nless \mathcal{L}$ \Rightarrow More realistic linear model is required.
2. As $\Delta t_{\text {expl }} \ll \Delta t$ the extrapolation technique of $\mathcal{M}-\mathcal{L}$ to the middle point doesn't necessarily ensure noise free results.
\Rightarrow Substitute extrapolation by an (iterative) averaging.

- Knowing the best available linear model is the tangent-linear (TL) model a general method for \mathcal{L} construction is proposed:

$$
\mathcal{L}(X)=\mathcal{M}\left(X^{0}\right)+\mathbf{M}^{\prime}\left(X^{0}\right)\left(X-X^{0}\right)
$$

New proposal for the SI scheme design

- Without questioning the SI method it is assumed the problem originates from:

1. Occurrence of areas where $\mathcal{M}-\mathcal{L} \nless \mathcal{L}$ \Rightarrow More realistic linear model is required.
2. As $\Delta t_{\text {expl }} \ll \Delta t$ the extrapolation technique of $\mathcal{M}-\mathcal{L}$ to the middle point doesn't necessarily ensure noise free results.
\Rightarrow Substitute extrapolation by an (iterative) averaging.

- Knowing the best available linear model is the tangent-linear (TL) model a general method for \mathcal{L} construction is proposed:

$$
\mathcal{L}(X)=\mathcal{M}\left(X^{0}\right)+\mathbf{M}^{\prime}\left(X^{0}\right)\left(X-X^{0}\right)
$$

- Following the proposal of Diamantakis (2014) the SETTLS method could be replaced by a non-extrapolating 2TL scheme:

$$
\frac{X^{+}-X^{0}}{\Delta t}=\frac{1}{2}\left[(\mathcal{M})^{0}\right]_{O}+\frac{1}{2}\left[(\mathcal{M})^{0}+M^{\prime}\left(X^{*}\right)\left(X^{+}-X^{0}\right)\right]_{F}
$$

New proposal for the SI scheme design

- Without questioning the SI method it is assumed the problem originates from:

1. Occurrence of areas where $\mathcal{M}-\mathcal{L} \nless \mathcal{L}$ \Rightarrow More realistic linear model is required.
2. As $\Delta t_{\text {expl }} \ll \Delta t$ the extrapolation technique of $\mathcal{M}-\mathcal{L}$ to the middle point doesn't necessarily ensure noise free results.
\Rightarrow Substitute extrapolation by an (iterative) averaging.

- Knowing the best available linear model is the tangent-linear (TL) model a general method for \mathcal{L} construction is proposed:

$$
\mathcal{L}(X)=\mathcal{M}\left(X^{0}\right)+\mathbf{M}^{\prime}\left(X^{0}\right)\left(X-X^{0}\right)
$$

- Following the proposal of Diamantakis (2014) the SETTLS method could be replaced by a non-extrapolating 2TL scheme:

$$
\frac{X^{+}-X^{0}}{\Delta t}=\frac{1}{2}\left[(\mathcal{M})^{0}\right]_{O}+\frac{1}{2}\left[(\mathcal{M})^{0}+M^{\prime}\left(X^{*}\right)\left(X^{+}-X^{0}\right)\right]_{F}
$$

- Can't be easily inverted: requires an iterative procedure for the implicit term

Shallow water implementation

Governing equations:

$$
\begin{aligned}
\frac{d h}{d t} & =-h\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=-\bar{H}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+(\bar{H}-h)\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) \\
\frac{d u}{d t} & =-g \frac{\partial h}{\partial x}+f v-g \frac{\partial H_{s}}{\partial x}-\nu u \\
\frac{d v}{d t} & =-g \frac{\partial h}{\partial y}-f u-g \frac{\partial H_{s}}{\partial y}-\nu v
\end{aligned}
$$

implying then:
$\mathbf{M}^{\prime}\left(X^{*}\right)\left(X-X^{0}\right)=\left(\begin{array}{c}-\left(\frac{\partial u^{*}}{\partial x}+\frac{\partial v^{*}}{\partial y}\right)\left(h-h^{0}\right)-h^{*}\left(\frac{\partial u}{\partial x}-\frac{\partial u^{0}}{\partial x}+\frac{\partial v}{\partial y}-\frac{\partial v^{0}}{\partial y}\right) \\ f\left(v-v^{0}\right)-g\left(\frac{\partial h}{\partial x}-\frac{\partial h^{0}}{\partial x}\right)-\nu\left(u-u^{0}\right) \\ -f\left(u-u^{0}\right)-g\left(\frac{\partial h}{\partial y}-\frac{\partial h^{0}}{\partial y}\right)-\nu\left(v-v^{0}\right)\end{array}\right)$

Shallow water experiment setup

- SISL shallow water model with the IFS timestep organization (GP space only)
- Barotropic instability case
- Domain 254×50 points.
- $\Delta x=\Delta y=100 \mathrm{~km}$.
- $f=f_{0}+\beta\left(y-y_{0}\right)$,
with $f_{0}=0.0001 s^{-1}$ and $\beta=1.6 \times 10^{-11} \mathrm{~m}^{-1} s^{-1}$
- $\nu=0$
. Initial condition: zonal jet with geostrophic ballance + noise.
- Formation of cyclones and anticyclones on each side of a zonal jet.
. Forecast range 210000s.

Shallow water results

Height h

Explicit scheme with $\Delta t=30$ s (left) and $\Delta t=70$ s (right).

Shallow water results

Height h

Semi-Implicit scheme with $\Delta t=70 \mathrm{~s}$ (left) and $\Delta t=300 \mathrm{~s}$ (right).

Shallow water results

Height h

New scheme with $\Delta t=70 \mathrm{~s}$ (left) and $\Delta t=300 \mathrm{~s}$ (right).

Shallow water results

Height h

Explicit scheme with $\Delta t=30$ s (left) and the new scheme with $\Delta t=300 \mathrm{~s}$ (right).

Shallow water results - II.

Longitudinal cross-section from the central area ($\Delta t=400 \mathrm{~s}$)

eight east est cross section

Placing there some orography...

Height evolution

Methods to speed-up the iterative process

- Second order accuracy to define \mathcal{L} :

$$
\mathcal{L}(X)=\mathcal{M}\left(X^{0}\right)+\mathbf{M}^{\prime}\left(X^{0}\right)\left(X-X^{0}\right)+\frac{1}{2} \mathbf{M}^{\prime \prime}\left(X^{0}\right)\left(X-X^{0}\right)^{2}
$$

\Rightarrow Speedup around 8\%, not very practical for the full 3D model.

Methods to speed-up the iterative process

- Second order accuracy to define \mathcal{L} :

$$
\mathcal{L}(X)=\mathcal{M}\left(X^{0}\right)+\mathbf{M}^{\prime}\left(X^{0}\right)\left(X-X^{0}\right)+\frac{1}{2} \mathbf{M}^{\prime \prime}\left(X^{0}\right)\left(X-X^{0}\right)^{2}
$$

\Rightarrow Speedup around 8\%, not very practical for the full 3D model.

- Applying the re-linearization technique (Stappers and Barkmeijer (2012)) the \mathbf{M}^{\prime} could be evaluated at $X^{*}=\frac{1}{2}\left(X^{0}+X^{(i)^{+}}\right)$rather than at X^{0}.
\Rightarrow Speedup around 8%, allows no timestep extension \rightarrow gain in accuracy is compensated by a loss in stability.

Methods to speed-up the iterative process

- Second order accuracy to define \mathcal{L} :

$$
\mathcal{L}(X)=\mathcal{M}\left(X^{0}\right)+\mathbf{M}^{\prime}\left(X^{0}\right)\left(X-X^{0}\right)+\frac{1}{2} \mathbf{M}^{\prime \prime}\left(X^{0}\right)\left(X-X^{0}\right)^{2}
$$

\Rightarrow Speedup around 8\%, not very practical for the full 3D model.

- Applying the re-linearization technique (Stappers and Barkmeijer (2012)) the \mathbf{M}^{\prime} could be evaluated at $X^{*}=\frac{1}{2}\left(X^{0}+X^{(i)^{+}}\right)$rather than at X^{0}.
\Rightarrow Speedup around 8%, allows no timestep extension \rightarrow gain in accuracy is compensated by a loss in stability.
- Adopt a successive over-relaxation similar to those of Wood et al. (2014):

$$
\mathbf{M}^{\prime}\left(X^{(i)^{+}}-X^{0}\right) \quad \mapsto \quad \alpha \mathbf{M}^{\prime}\left(\mathbf{X}^{*}\right)\left(X^{(i)^{+}}-X^{0}\right)+(1-\alpha) \mathbf{M}^{\prime}\left(\mathbf{X}^{*}\right)\left(X^{(i-1)^{+}}-X^{0}\right)
$$

\Rightarrow Essential for having the scheme converging.

Methods to speed-up the iterative process

- Second order accuracy to define \mathcal{L} :

$$
\mathcal{L}(X)=\mathcal{M}\left(X^{0}\right)+\mathbf{M}^{\prime}\left(X^{0}\right)\left(X-X^{0}\right)+\frac{1}{2} \mathbf{M}^{\prime \prime}\left(X^{0}\right)\left(X-X^{0}\right)^{2}
$$

\Rightarrow Speedup around 8\%, not very practical for the full 3D model.

- Applying the re-linearization technique (Stappers and Barkmeijer (2012)) the \mathbf{M}^{\prime} could be evaluated at $X^{*}=\frac{1}{2}\left(X^{0}+X^{(i)^{+}}\right)$rather than at X^{0}.
\Rightarrow Speedup around 8%, allows no timestep extension \rightarrow gain in accuracy is compensated by a loss in stability.
- Adopt a successive over-relaxation similar to those of Wood et al. (2014):

$$
\mathbf{M}^{\prime}\left(X^{(i)^{+}}-X^{0}\right) \quad \mapsto \quad \alpha \mathbf{M}^{\prime}\left(\mathbf{X}^{*}\right)\left(X^{(i)+}-X^{0}\right)+(1-\alpha) \mathbf{M}^{\prime}\left(\mathbf{X}^{*}\right)\left(X^{(i-1)^{+}}-X^{0}\right)
$$

\Rightarrow Essential for having the scheme converging.

- Incremental approach starting with fractional timestep $\Delta t_{0}<\Delta t_{1}<\ldots<\Delta t$. Easy to be done with TL model knowing: $\mathbf{M}^{\prime}\left(X^{0}, \Delta t\right)\left(X^{(i)}{ }^{+}-X^{0}\right)=\frac{\Delta t}{\Delta t^{\prime}} \mathbf{M}^{\prime}\left(X^{0}, \Delta t^{\prime}\right)\left(X^{(i)^{+}}-X^{0}\right)$ \Rightarrow Allows time-step extension by $50-100 \%$.

Methods to speed-up the iterative process

- Second order accuracy to define \mathcal{L} :

$$
\mathcal{L}(X)=\mathcal{M}\left(X^{0}\right)+\mathbf{M}^{\prime}\left(X^{0}\right)\left(X-X^{0}\right)+\frac{1}{2} \mathbf{M}^{\prime \prime}\left(X^{0}\right)\left(X-X^{0}\right)^{2}
$$

\Rightarrow Speedup around 8\%, not very practical for the full 3D model.

- Applying the re-linearization technique (Stappers and Barkmeijer (2012)) the \mathbf{M}^{\prime} could be evaluated at $X^{*}=\frac{1}{2}\left(X^{0}+X^{(i)^{+}}\right)$rather than at X^{0}.
\Rightarrow Speedup around 8%, allows no timestep extension \rightarrow gain in accuracy is compensated by a loss in stability.
- Adopt a successive over-relaxation similar to those of Wood et al. (2014):

$$
\mathbf{M}^{\prime}\left(X^{(i)^{+}}-X^{0}\right) \quad \mapsto \quad \alpha \mathbf{M}^{\prime}\left(\mathbf{X}^{*}\right)\left(X^{(i)+}-X^{0}\right)+(1-\alpha) \mathbf{M}^{\prime}\left(\mathbf{X}^{*}\right)\left(X^{(i-1)^{+}}-X^{0}\right)
$$

\Rightarrow Essential for having the scheme converging.

- Incremental approach starting with fractional timestep $\Delta t_{0}<\Delta t_{1}<\ldots<\Delta t$. Easy to be done with TL model knowing: $\mathbf{M}^{\prime}\left(X^{0}, \Delta t\right)\left(X^{(i)}{ }^{+}-X^{0}\right)=\frac{\Delta t}{\Delta t^{\prime}} \mathbf{M}^{\prime}\left(X^{0}, \Delta t^{\prime}\right)\left(X^{(i)^{+}}-X^{0}\right)$ \Rightarrow Allows time-step extension by 50-100\%.
- 2TL method vs SETTLS
\Rightarrow Minimum speedup (around 6%), still 2 TL is used as the new default.

IFS implementation

- New SI scheme implemented to IFS (profiting from the existing TL code)

T_P925 gfma-gfm9 200106 nmon=3 nens=4 Diff: 0.01724 Stdev: 0.5093

IFS implementation

- New SI scheme implemented to IFS (profiting from the existing TL code)
- The need for derivatives update during the iterative process makes the scheme very expensive for spectral model (multiple transforms per single timestep)

IFS implementation

- New SI scheme implemented to IFS (profiting from the existing TL code)
- The need for derivatives update during the iterative process makes the scheme very expensive for spectral model (multiple transforms per single timestep)
- Atlas library offers $2^{\text {nd }}$ order accuracy grid-point derivatives \rightarrow SI scheme adapted to evaluate derivatives with Atlas

IFS implementation

- New SI scheme implemented to IFS (profiting from the existing TL code)
- The need for derivatives update during the iterative process makes the scheme very expensive for spectral model (multiple transforms per single timestep)
- Atlas library offers $2^{\text {nd }}$ order accuracy grid-point derivatives \rightarrow SI scheme adapted to evaluate derivatives with Atlas
- Derivatives must be consistent \Rightarrow all derivatives have to be computed with Atlas

IFS implementation

- New SI scheme implemented to IFS (profiting from the existing TL code)
- The need for derivatives update during the iterative process makes the scheme very expensive for spectral model (multiple transforms per single timestep)
- Atlas library offers $2^{\text {nd }}$ order accuracy grid-point derivatives \rightarrow SI scheme adapted to evaluate derivatives with Atlas
- Derivatives must be consistent \Rightarrow all derivatives have to be computed with Atlas
- Having the SI and derivatives computed in grid-point space there is only little point to keep spectral space computation (I/O, filtering)

IFS implementation

- New SI scheme implemented to IFS (profiting from the existing TL code)
- The need for derivatives update during the iterative process makes the scheme very expensive for spectral model (multiple transforms per single timestep)
- Atlas library offers $2^{\text {nd }}$ order accuracy grid-point derivatives \rightarrow SI scheme adapted to evaluate derivatives with Atlas
- Derivatives must be consistent \Rightarrow all derivatives have to be computed with Atlas
- Having the SI and derivatives computed in grid-point space there is only little point to keep spectral space computation (I/O, filtering)
- Exclusively grid-pont version of IFS was designed with local communications only (SL comms and Atlas).
- Fairly general linear model (extensible to any set of prognostic variables)
- Iterative procedure is inexpensive provided the scheme is converging
- Quality and stability strongly depends on derivatives computation (with $2^{\text {nd }}$ derivatives it allows $\approx 50-70 \%$ of the original timestep)

Convergence issues

- Some fundamental understanding of this method's convergence is still missing.

Convergence issues

- Some fundamental understanding of this method's convergence is still missing.
- Smoother fields implies the better convergence.

Convergence issues

- Some fundamental understanding of this method's convergence is still missing.
- Smoother fields implies the better convergence.
- To further speed up the convergence the derivatives of increments are computed from smoothed (using multiplicative Laplace operator filtering) quantities. However this could lead to an instability if over-used. (Smoothing of $\delta D I V$ only seems to be generally harmless.)

Convergence issues

- Some fundamental understanding of this method's convergence is still missing.
- Smoother fields implies the better convergence.
- To further speed up the convergence the derivatives of increments are computed from smoothed (using multiplicative Laplace operator filtering) quantities. However this could lead to an instability if over-used. (Smoothing of $\delta D I V$ only seems to be generally harmless.)
- The use of multiplicative filtering indicates a stencil for 4-6 ${ }^{\text {th }}$ order accurate derivatives might be better suited for faster convergence.

Convergence issues

- Some fundamental understanding of this method's convergence is still missing.
- Smoother fields implies the better convergence.
- To further speed up the convergence the derivatives of increments are computed from smoothed (using multiplicative Laplace operator filtering) quantities. However this could lead to an instability if over-used. (Smoothing of $\delta D I V$ only seems to be generally harmless.)
- The use of multiplicative filtering indicates a stencil for 4-6th order accurate derivatives might be better suited for faster convergence.
- Using derivatives of δT results in systematic cooling (better results obtained with derivatives of $\delta \Theta$ or $\delta\left(T-\alpha \log p_{s}\right)$
\rightarrow indicates there are probably better alternatives for the temperature related prognostic variable.

Baroclinic wave test

IFS_ref Tco159/L139 $\Delta t=1800 \mathrm{~s}$

newSI Tco159/L139 $\Delta t=900 \mathrm{~s}$

Jablonowski and Williamson(2006) DCMIP

Baroclinic wave test

IFS_ref Tco159/L139 $\Delta t=1800 \mathrm{~s}$

newSI_SLHD Tco159/L139 $\Delta t=900$ s

Jablonowski and Williamson(2006) DCMIP

Grid-point IFS with $2^{\text {nd }}$ order derivatives

Annual climate of temperature at $925 \mathrm{hPa}\left(\mathrm{T}_{L} 255 / \mathrm{L} 137\right)$

- Alternative SI method was proposed and is being implemented to IFS (CY42R1).
- Alternative SI method was proposed and is being implemented to IFS (CY42R1).
- Global Helmholtz solver is replaced by local iterative computation in grid-point space requiring horizontal derivatives.
- Alternative SI method was proposed and is being implemented to IFS (CY42R1).
- Global Helmholtz solver is replaced by local iterative computation in grid-point space requiring horizontal derivatives.
- Offers more flexibility to phys-dyn coupling.

Summary

- Alternative SI method was proposed and is being implemented to IFS (CY42R1).
- Global Helmholtz solver is replaced by local iterative computation in grid-point space requiring horizontal derivatives.
- Offers more flexibility to phys-dyn coupling.
- Linear model is fairly general:
- Implies no special restriction for a choice of prognostic variables or model coordinates.
- Is extensible by physics (or subset of physical processes) accepting the

$$
\mathcal{M}^{0} \neq \mathcal{L}^{0}
$$

Summary

- Alternative SI method was proposed and is being implemented to IFS (CY42R1).
- Global Helmholtz solver is replaced by local iterative computation in grid-point space requiring horizontal derivatives.
- Offers more flexibility to phys-dyn coupling.
- Linear model is fairly general:
- Implies no special restriction for a choice of prognostic variables or model coordinates.
- Is extensible by physics (or subset of physical processes) accepting the

$$
\mathcal{M}^{0} \neq \mathcal{L}^{0}
$$

- Adopting a grid-point filter to control $2 \Delta x$ noise, this method combined with grid-point derivatives allows to drop spectral space and maintain only local communications.

ummary

- Alternative SI method was proposed and is being implemented to IFS (CY42R1).
- Global Helmholtz solver is replaced by local iterative computation in grid-point space requiring horizontal derivatives.
- Offers more flexibility to phys-dyn coupling.
- Linear model is fairly general:
- Implies no special restriction for a choice of prognostic variables or model coordinates.
- Is extensible by physics (or subset of physical processes) accepting the

$$
\mathcal{M}^{0} \neq \mathcal{L}^{0}
$$

- Adopting a grid-point filter to control $2 \Delta x$ noise, this method combined with grid-point derivatives allows to drop spectral space and maintain only local communications.
- TL/AD extension challenging but perfectly doable.

