

Status of Météo-France convection-permitting EPS

Laure RAYNAUD

Météo-France - CNRM/GMAP/RECYF

 2^{nd} ALADIN Forecasters meeting 21 October 2015 - Lisbon

- Predictability of the atmospheric flow at convection-permitting scales is intrinsically low
 ⇒ there is a need for probabilistic prediction at an early range
- Convective-scale EPSs are under development in a number of NWP centers, based on high-resolution limited-area models
- Examples of advanced convective-scale EPSs : COSMO-DE EPS (2.8km), MOGREPS-UK (2.2km), WRF-based ensembles
- In this context, Météo-France is currently developing a convective-scale EPS, based on the AROME-France model.

- AROME is a **non-hydrostatic limited-area convection-permitting model**, operational at Météo-France since December 2008
- The current configuration uses a **1.3km horizontal resolution** and **90 vertical levels**
- The analysis is provided by a **hourly 3D-Var scheme**
- In the near future an **AROME ensemble prediction system** will complement this deterministic version of AROME.

- Provide **high-resolution probabilistic forecasts** for the prediction of small-scale **high-impact phenomena**, e.g. heavy precipitating events, fog, strong winds etc.
- In addition to existing lower-resolution EPSs (e.g. Météo-France, ECMWF)
- Provide probabilistic atmospheric forcings to downstream systems (e.g. hydrology, flood, air traffic control)
- In operational use by the end of 2016.

- Same configuration as the AROME-France model except the horizontal resolution :
 2.5km (instead of 1.3km)
- 12 members
- 2 productions/day (at 9h and 21h UTC), up to a 45h lead time
- Lateral boundary conditions provided by PEARP (Météo-France global EPS, 35 members - 10km resolution over France)

1 - Ensemble design

Each member of the AROME-EPS is built by perturbing a standard AROME forecast in order to represent the main sources of uncertainty regarding :

- initial conditions
- lateral boundary conditions
- surface conditions
- the model.

1 - Perturbation strategies

▷ Initial conditions : downscaled PEARP perturbations are added to the AROME-France analysis following

 $x_i = x_a + \alpha (z_i - \overline{z_i}),$

 x_i initial condition of member i x_a AROME-France deterministic analysis z_i initial PEARP perturbation of member i α vertical amplitude modulation.

▷ Lateral boundary conditions : "clever" selection of PEARP members based on a **clustering algorithm** (Nuissier et al., 2012).

▷ Surface conditions : auto-correlated random perturbations are applied to various aspects of the SURFEX surface model (Bouttier et al., 2015) for some *physiographic* - vegetation index, vegetation heat coefficient, leaf area index, land albedo, land roughness length - and *prognostic variables* - SST, soil temperature and humidity, snow depth.

▷ Model errors are represented with the **SPPT scheme** (Stochastic Perturbation of Physics Tendencies, Bouttier et al. (2012)).

 \triangleright The AROME-EPS performance has been extensively evaluated, in particular :

- as part of several **research experiments** over long periods
- during the **HyMeX campaign**, with one real-time AROME-EPS production per day during ~ 2 months.

2 - Objective evaluation : AROME-EPS vs PEARP

2 - Objective evaluation : AROME-EPS vs PEARP

\Rightarrow AROME-EPS outperforms PEARP for surface variables.

3 - Introducing AROME-EPS to forecasters

 \triangleright Forecasters have been involved quite early in the development of the AROME-EPS with :

- discussions about the ensemble setting (number of productions per day, size of the ensemble *etc.*)
- \bullet the organization of $\mathbf{forecasting\ exercises}$:
 - 2 forecasting exercises have been organized so far.
 - Around 10 (volunteered) forecasters from the different forecast centers participated to each session.
 - The goal of these exercises is to discover and utilize the AROME-EPS on a set of past events (chosen by the forecasters), in addition to the existing models (deterministic global and convection-permitting, global ensembles).
 - Forecasters were asked to evaluate the ensemble guidance, gradually develop a methodology to use the EPS, and give a feeback regarding their preferred ensemble outputs.
 - Develop exchanges between forecasters and scientists.

- \triangleright A **two-stage** forecast process :
 - after having looked at the weather situation/observations, the examination of the deterministic models remain a first necessary step for most forecasters
 ⇒ a first scenario arises from this multi-model analysis.
 - ensemble model outputs are examined in a second step to see if they add confidence to this forecast or not.
 ⇒ the initial scenario is potentially revised according to the ensemble guidance.

$\boldsymbol{3}$ - About ensemble outputs

- The analysis of the coupling PEARP members is essential for most forecasters, in order to evaluate the synoptic uncertainty.
- The examination of the AROME-EPS often makes use of :
 - the "stamps" : since the AROME-EPS is relatively small forecasters are interested in looking at the scenario proposed by each member
 - neighborhood probabilities at different thresholds
 - quantiles
 - diagnostics for, e.g., convective activity, fog
 - time-lagged visualization
- A number of forecasters reported the lack of a **3D vizualization** of ensemble outputs to understand and describe phenomena such as convection, fog, snow.

 \Rightarrow This is an important and complicated aspect that will be further examined.

 \triangleright These training sessions are now followed by weekly for ecasting exercises :

- Started on 1st October 2015
- The AROME-EPS is run in near real-time once per day
- 2 days a week forecasters can work on a recent-past situation
- At the end of each session forecasters are asked to fill out a feedback questionnaire.

4 - Case 1 : Heavy precipitation on 12 september 2015

RR24 valid on 13/09/15 03TU.

 \Rightarrow AROME-EPS provides a better localization of heavy rainfall than AROME.

4 - Case 2 : Heavy precipitation on 3 september 2015

RR6 valid on 03/10/15 12TU.

 \Rightarrow AROME-EPS indicates the possibility of rain occuring in the highlighted area.

 \Rightarrow The strong signal in AROME-EPS probabilities of precipitation at different high thresholds confirms the risk of heavy rainfall in this area.

- The first operational version of the AROME-EPS has been defined and evaluated.
- This system provides satisfactory results, on average and for particular case studies.
- Forecasters started getting familiar with this new ensemble system with the organisation of forecasting exercises.
- This is now followed by weekly training sessions, which started on 1st october, to gradually integrate the AROME-EPS in the future operational production.

5 - Future works

- Draw some conclusions from the weekly training sessions, to better understand the expectations of forecasters about the system itself and its utilization
- Experiments will be performed to evaluate improvements provided by an **increase of horizontal resolution and/or ensemble size**, in order to define later versions of the EPS
- Initial conditions of the AROME-EPS will be improved in the next few years by using perturbed analyses from an **AROME** ensemble data assimilation

 \Rightarrow this helps improve scores up to 9-12h range on average (Raynaud and Bouttier, 2015; Bouttier *et al.*, 2015).

- Ensemble calibration
- Work will be done regarding the development of appropriate **visualization tools** to help forecasters utilize the (huge) ensemble information.