

Keynote presentation on other parameterizations for Arome with a focus on turbulence

Rachel Honnert, Eric Bazile, Yves Bouteloup,
Pascal Marquet, Yann Seity (MÉTÉO-FRANCE, CNRM/GMAP)
CIC Toulouse, 26 april 2016

Turbulence Scheme in Arome

$$\overline{W'\phi'} = \frac{-K(\frac{\partial\overline{\phi}}{\partial z})}{\text{Turbulence}} + \frac{\underline{M_u}}{\rho}(\phi_u - \overline{\phi})$$

$$Shallow$$

$$Updrafts$$

- EDMF (Eddy-Diffusivity/Masse-Flux) : Hourdin et al. (2002), Soares et al. (2004)
- <u>CBR</u>: K-gradient scheme (Cuxart et al. (2000)). TKE prognostic equation.
- PM09 : mass-flux scheme (Pergaud et al. (2009)). Updraft starts at the surface ⇒ BL Thermals.

1

Shallow Convection in the Grey Zone

In the grey zone, removal of some assumptions \Longrightarrow Scale-adaptive scheme

At mesoscale (PM09):

$$\frac{\partial \textit{M}_{\textit{u}}\phi_{\textit{u}}}{\partial \textit{z}} = \textit{E}\overline{\phi} - \textit{D}\phi_{\textit{u}}$$

where

- lacktriangledown ϕ is a time-dependent variable
- \blacksquare M_u is the mass-flux
- E is the lateral entrainment
- D is the lateral detrainment
- \blacksquare α is the thermal fraction

$$M_{u} = \alpha w_{u}$$

In the grey zone:

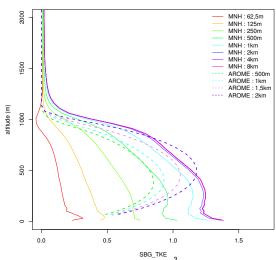
$$\frac{\partial M_u \phi_u}{\partial z} = \tilde{E} \phi_e - \tilde{D} \phi_u$$

Similar to the mesoscale equation but ...

$$M_{U} = \alpha(W_{U} - \overline{W})$$

- lacksquare α : the subgrid thermal fraction
- $\phi_e \neq \overline{\phi} \rightarrow \alpha$ not neglected
- w is taken into account
- \tilde{E} et \tilde{D} include thermal/environment exchanges and non-stationarities.

$$M_{U_{z=0}} = f(\Delta x/(h+h_c))$$



Modified Shallow Convection: Results

Subgrid TKE IHOP, 12h, HRIO-LES

Comparaison Ma Modif/LES AVG pour SBG TKE

- Idealised case in Arome
- Scale adaptive
- Bad representation of the dynamical turbulence (beyond 500 m and above the surface boundary layer)

3D turbulence scheme

Honnert and Masson (2014) suggested that a 3D turbulence scheme is needed at 500 m resolution and finer. A 3D version of CBR exists in Méso-NH. But:

- No 3D scheme in AROME ⇒ technical challenge.
- Méso-NH 3D version only works for isotropic turbulence : the grey zone is not isotropic
 Quantification of vertical and horizontal mixing length by LES :

$$\overline{u_i'\phi'}^{\Delta x} = -\frac{K(\Delta x)}{\partial x_i} \frac{\partial \overline{\phi}^{\Delta x}}{\partial x_i}$$

$$K(\Delta x) = \alpha L(\Delta x) \sqrt{e(\Delta x)}$$

Stable Boundary Layer (E. Bazile)

Implementation of EFB (Energy and Flux Budget) (E. Bazile) from Zilitinkevitch et al. (2013) section 4.2.

Motivations:

- To improve the stable case: avoid the collapse of the turbulence partly due to the negative thermal production.
- To allow anisotropy

Results:

- EFB (E. Bazile) tested on GABLS1 and GABLS4
- Increase the momentum mixing above 700hPa
- Costly if complete scheme (cf. Zilitinkevitch et al. (2013) section 4.1.)
- Only in dry atmosphere.

Perspectives:

- To study 1D cloudy cases (ARMCu and Astex)
- To add the equation for the turbulent dissipation time scale
- To study the transition stable/instable.
- To generalise (if possible) to moist atmosphere

Moist-Air Entropy (P. Marquet)

The **moist-air entropy**, θ_s , (Marquet (2011)) improvement of the Betts potential temperature, θ , to be used in moist air turbulence.

The impact on turbulent fluxes might be specially important if the turbulent Lewis number Let would be different from unity.

$$\textit{Le}_t = rac{\textit{K}_{ heta_s}}{\textit{K}_{q_t}}$$

- Investigation of the **hypothesis** "Le_t \neq 1" by using observations ¹ and LES ².
- Need a "back to basic" analysis of CBR scheme

Daily measurements of eddy-correlation flux of moist entropy with CNRM-FLUXNET devices

Surface (Y. Seity) and Gusts (R. Honnert/E. Bazile)

Future plans for surface :

- Use Multiple Energy Balance (MEB) and Explicit Snow (ISBA-ES)
- Replace Force-Restore Isba 3L by Isba-Diff
- Develop surface assimilation for Isba-Diff

Wind gust diagnostics:

- G(t) = max(G(t-1), U + f(TKE)) calculated at each time step over one hour
- At Météo-France : under-estimations at fronts and over-estimation under thunderstorms
- Development of test-beds on observation sites (near Paris site Sirta and maybe Cabauw)

Radiation (Y. Bouteloup)

High-Tune submitted ANR:

- Tests of SRTM and McIca
- Cloud covering depending on the zenithal angles
- Tests of different cloud overlap assumptions with and without McIca

Other:

Monitoring of the ECMWF work on radiation schemes and the emergence of a new scalable scheme.

Perspectives

Météo-France short-term priorities :

- Wind gust forecasts
- Improve stable layers, low-level clouds and fog forecasts
- Likely increase in number and diversity of diagnostic outputs from forecasts
- Build-on existing SURFEX options to improve surface forcasts

Other long-term perspectives:

- Open to cooperation on stable-layer turbulence
- Towards a unified turbulence code.
 - · New common framework emerges from work on moist thermodynamics
 - Invites rebuilding a scheme by revisiting the foundation of CBR
 - · Likely it should include 3D aspect
- Radiation : How to deal with the increasing gap with ECMWF?

THANK YOU FOR YOUR ATTENTION

Horizontal mixing lengths in CBR

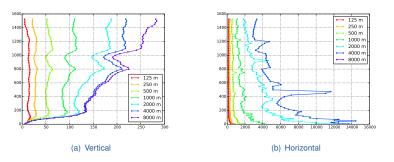


FIGURE : (a) Vertical and (b) horizontal mixing lengths computed at resolutions from 12.5 m to 800 m. CASES-99 (neutral BL)

- Only valid in the BL ⇒ inadequate for too small gradients
- Vertical : consistency with existing Lengths : BL89 and DEAR ⇒ method valid.
- Horizontal : much largeur than vertical at meso-scale.
- In LES, same order of magnitude ⇒ Isotropy.

AROME-500 m

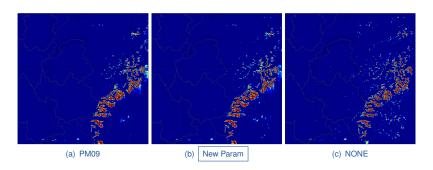
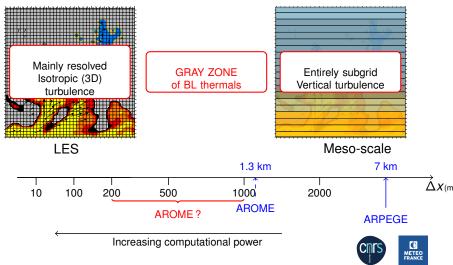


FIGURE: Low-level cloud cover on 07/06/2014 with AROME-500 m over the Alpes.


Perspectives:

- Test on a IOP of HyMeX in the ANR MUSIC (Multiscale process studies of intense convective precipitation events in Mediterranean)
- Implementation of downdraughts

Sub-km scales and grey zone of turbulence

References

- Cuxart C, Bougeault P, Redelsperger JL (2000). A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart. J. Roy. Meteor. Soc., 126: 1–30.
- Honnert R., Masson V., 2014: What is the smallest physically acceptable scale for 1D turbulence schemes? Front. Earth Sci. 2:27
- F. Hourdin and F. Couvreux and L. Menut (2002) Parameterization of the Dry Convective Boundary Layer Based on a Mass Flux Representation of Thermals. J. Atmos Sci.59:1105–1122
- Marquet P (2011) Definition of a Moist-air Entropy Potential Temperature. Application to FIRE-I data flights. Quarterly Journal of the Royal Meteorological Society. 656:768–791
- J. Pergaud and V. Masson and S. Malardel and F. Couvreux(2009)A parametrisation of dry thermals and shallow cumuli for mesoscale numerical weather prediction. Boundary-Layer Meteorol. 132:83-106
- P. M. M. Soares and P. M. A.Miranda and A. P. Siebesma and J. Teixeira (2004) An eddy-diffusivity/mass-flux parametrization for dry and shallow cumulus convection, Q. J. B. Meteorol. Soc. 130 : 33365–3383.

