

AEMET Ceilometer Network

• Main purpose is the aerosol detection

Use of Ceilometer Data for Cloud Validation

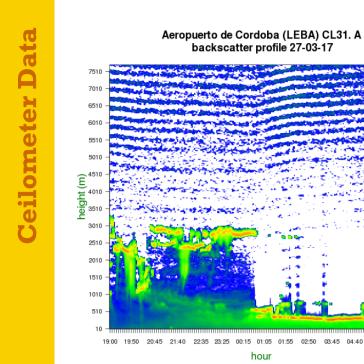
Daniel Martin & Gema Morales

Iberian Peninsula Orography Ceilometer network (01/2017)

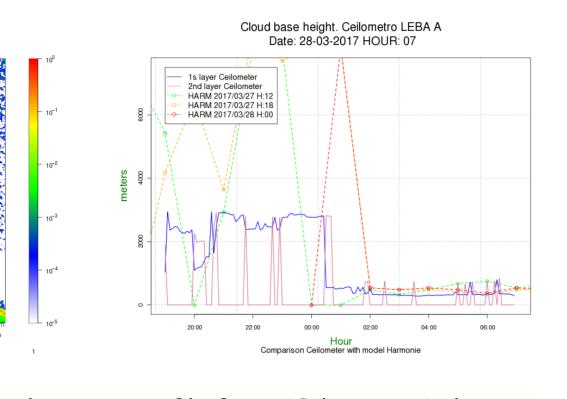
ght (m)

Cloud Base Height: The ceilometers give the instantaneous base height of up to 3 cloud layers. Maximum height: 6000 m

Vertical Visibility: In case of precipitation or fog the ceilometer reports the vertical visibility


• The ceilometers send data every 10 minutes to the AEMET headquarters

• Type of Ceilometers: Vaisala CL31 (Wavelength: 910 nm)

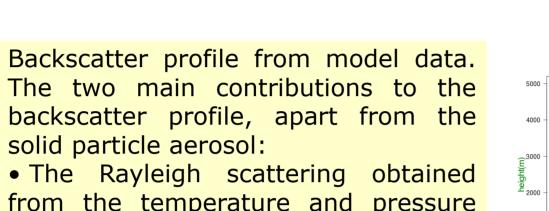

• In collaboration with EUMETNET E-PROFILE program

• Number of airports: 11 (Iberian Peninsula and Balearic Islands)

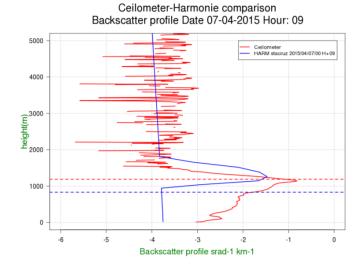
Backscatter profile: The signal returned from the atmosphere due to Rayleigh scattering or to the aerosol and cloud droplets

eilome

Left: Quick look of backscatter profile for a 12 hour period **Right:** Instantaneous height of the 2 lower cloud layers measured by the ceilometer compared with model output.


Distribution of ceilometers in the network on the *Iberian Peninsula and the Balearic Islands*

Cloud cover algorithm

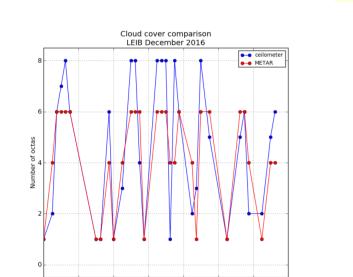

Magics 2.18.15 - noreste - pn 6 - Mon Jan 9 07:09:51 2017

In order to compare the model with the ceilometer data, it is needed to obtain the cloud cover and the cloud base height from them.

- Cloud cover calculation based on algorithm reported by Larsson and Esbjörn (1995) and Wauben
- Uses cloud base height of the three layers (C1, C2, C3) and visibility (VV) of the last **30 min**
- Give data of last 10 minutes double weight
- Parameter valid only if 75% of data is available
- The total weight of clouds of the lower cloud layer given by the ceilometer (C1) determines the total cloud cover

• The Rayleigh scattering obtained from the temperature and pressure profiles.

• The scattering by the cloud droplets. The liquid water content is used for it.


Comparison of backscatter profiles, in red the one of the ceilometer and in blue the one obtained from model data. Difference in BL are due to aerosol.

CLOUD COVER. (Ceilometer vs. METAR)

Comparison of the calculated cloud cover from ceilometer data with cloud cover from METAR.

METAR cloud cover For messages only report:

- FEW: 1 to 2 octas
- SCT: 3 to 4 octas
- BKN: 5 to 7 octas
- OVC: 8 octas

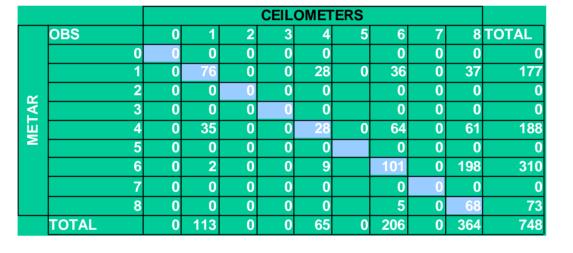
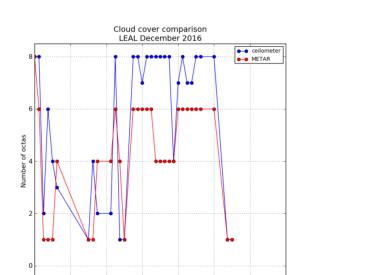
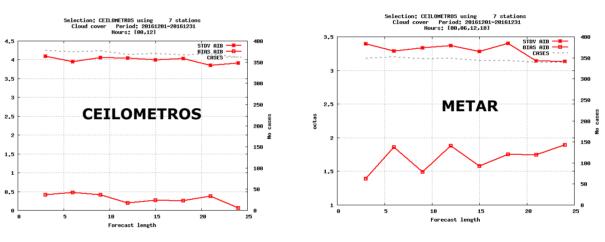



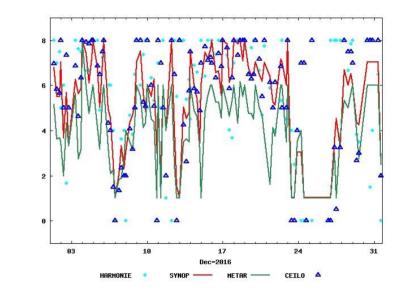
Table showing the comparison of cloud cover observed by METAR and Ceilometer for Dec 2016 and 9 airports.

Cloud base height

The model and the METAR consider the cloud base height as that of the lower layer covering more than 4 octas of the sky. The algorithm characteristics are:


- Up to 4 layers can be obtained
- In order to distinguish between two layers, the distance between them is fixed to be 250 m or 20 percent of the cloud base height.
- The cloud base will be the one of the lower layer with more than 4 octas coverage.

Biblio: Wauben, W.M.F., KNMI, Automatation of visual observations at KNMI


Larsson, B. and Esbjörn, E., 1995, SMHI, Cloud Cover Algorithm.

CLOUD COVER

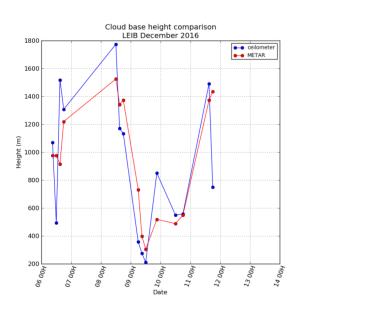
- Model verification of the cloud cover against the ceilometer and the METAR observations.
- Period: 1 month. Dec 2016.
- Model Cycle 40h11.
- Number of stations:7
- Monitor software

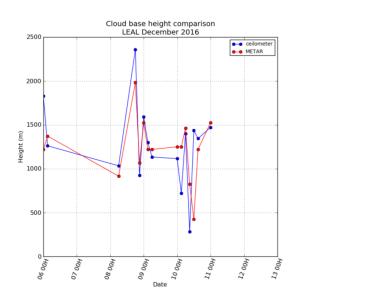
Despite the lower bias for the ceilometer observations, the stdv is higher than the stdv for the METAR.

Time plot comparing model (AIB) against METAR, SYNOP and Ceilometer observations.

The time plot shows that the model seems to follow the cloud cover given by the ceilometers closer than the one obtained from METAR messages.

Cloud cover. Time plot comparison for the airports of Ibiza (LEIB) and Alicante (LEAL) for a 7 days period.


The algorithm seems to overestimate the cloud cover mainly for high coverage.


CLOUD BASE HEIGHT. (Ceilometer vs. METAR)

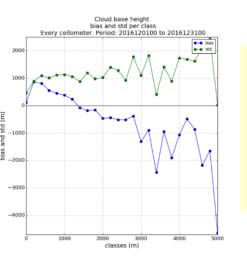
TOTAL

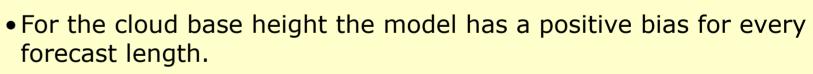
Cloud base height. Similar results are obtained (METAR messages often take the height from ceilometer observation).

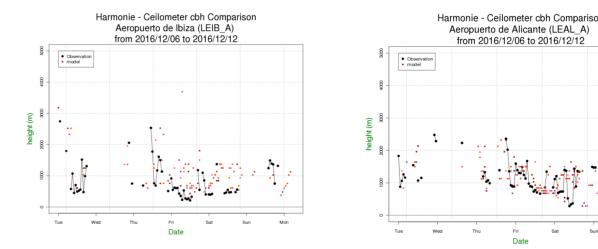
The table on the right and the plots bellow show this agreement.

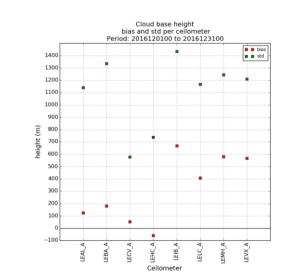


Cloud base height. Time plot comparison (Ceilometer vs. METAR) for the airports of Ibiza (LEIB) and Alicante (LEAL) for a 7 days period.

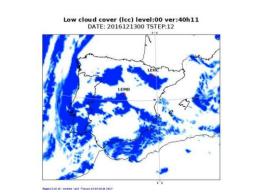

The vertical visibility given by the ceilometers has been compared with the visibility given by the model and the one of the METAR for a single case.


Fog at the airport of Huesca from Dec 10th until Dec 14th.

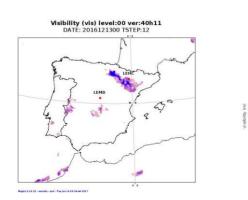

CLOUD BASE HEIGHT


- The cloud base height calculated from the ceilometers has been used for model verification
- Number of ceilometers considered:8
- Model cycle: 40h11b5
- Period of time: Dec 2016

- For heights over 1200 m. the bias becomes negative.
- There is little dependence of the stdv with height.



In general, the coastal locations have higher stdv and bias than the interior locations.


Cloud base height. Time plot Model-Ceilometer comparison for the airports of Ibiza (LEIB) and Alicante (LEAL) for a 7 days period.

- The ceilometers are valid instruments for cloud verification due to the continuous operation, the distribution of the instruments and reliability of the measurements.
- The basic ideas of the cloud cover algorithm applied to the ceilometer data seems to be appropriate, although some study is needed in order to correct the cases of overestimation.
- The cloud base height verification of the model shows a positive bias in most of the cases, mainly on islands and coastal areas

Low clouds

Vertical V

Visibility

The time plot shows: •Vertical visibility from ceilometer is comparable with the METAR visibility

Date

•The visibility given by the model seems to be lower in most cases.

• The vertical visibility given by the ceilometers seems to be comparable to the one obtained with other instrumentation.

• The visibility given by the model seems to be lower in most cases.

• It must be taken into account that only one month verification has been done.

Use of ceilometer data for cloud validation

27th ALADIN Workshop & HIRLAM All-Staff Meeting 2017