Regional Cooperation for Limited Area Modeling in Central Europe

Operational LBCs used in LACE

Martina Tudor

Outline

Overview of operational LBCs used in LACE Options for LBCs from IFS Issues, problems, questions ...

Overview of operational LBCs for LACE

Limited area models (LAMs) need lateral boundary conditions (LBCs) Operational NWP LAM needs prognostic LBCs, taken from a global NWP model Available options are several, but here we focus on LBCs from ARPEGE and IFS.

ARPEGE: 8 km resolution, 105 levels IFS: 15.4 km resolution, 60 levels LBCs are on a quadratic grid

We get LBC files from IFS dissemination

We can experiment using IFS data from MARS archive

These are not identical (but should not be very different)

ARSO METE Slovenia

What could I get from MARS

Options that work with some meaningful grid values for HRES (and for EPS too): current oper octa grid O1280 (O640) Reduced GG for GP fields N640 Reduced GG for SP fields T1279 Latlon 0.07/0.07 (0.15/0.15) Full GG F1280 ...

901 works with N grids Use MIR (mars -m) for SST (Ulf Andrae)

Procedure from ARPEGE

ALADIN Lambert grid

ARSO METEO Slovenia

Procedure from IFS IFS grid (octahedral → gaussian)

ALADIN Lambert grid

Procedure from IFS (option gl)

IFS grid (octahedral → latlon)

ALADIN Lambert grid

Overview of operational LBCs for LACE

File sizes:

Operational from IFS **9.8M** From ARPEGE **54M**

Quad 137 lev **67M** (gl: 93M) Quad 60 lev **36M** (gl: 49M) Cubic 60 lev **26M** (gl: 34M) Cubic 137 lev **43M** (gl: 59M)

Note: files from gl are larger (Taille)!

ARSO METE Slovenia

Evolution of scores with forecast range

3.0

2.5

2.0

1.5

1.0

0.5

2.0

1.5

1.0

0.5

0.0

70

60

50

40

30

20

10

0 0 6

21

18

15

12

9

6

12

0 6

0 6

ARSO METEO

Slovenia

Quad and cubic grid 8km res Evolution of scores with forecast range

3.0

2.5

2.0

1.5

1.0

0.5

2.0

1.5

1.0

0.5

0.0

70

60 50

40

30

20

10

0

21

18

15

12

9

0

HUMIDITY [%]

8-8:3

12

0 6

0 6

hr@noa.gric.dhz.hr Mon Apr 16 22:43:39 UTC 201

oa.gric.dhz.hr Mon Apr 16 22:53:52 UTC 2018

ARSO METEO Slovenia

 $^{-}\mathsf{F}$

Quad grid 8km res 137 lev Evolution of scores with forecast range

METEC

ARSO METEO Slovenia

22.

Cubic grid 8km res 137 lev Evolution of scores with forecast range

Period: 20180201...20180227 Network: 0UTC RELATIVE_HUMIDITY (RMSE) Evolution of scores with forecast range Period: 20180201...20180227 Network: 0UTC WIND_DIRECTION (RMSE)

LACE

O1280 ATLAS? LAM (Lamb, Merc, ..)

Is using gl reducing the number of interpolations?

The FA file headers contain information on A and B coefficients and data on model levels. There is more than one way to compute model levels.

Use hourly LBCs if you can afford it!

