Recent progress on the ACRANEB2* dwarf from the ESCAPE project, part II

Jacob Weismann Poulsen and Per Berg DMI

*1) Single interval shortwave radiation scheme with parameterized optical saturation and spectral overlaps by J. Masek et al, Q. J. R.
Meteorol. Soc. (2015) DOI:10.1002/qj. 2653
*2) Single interval longwave radiation scheme based on the net exchanged rate decomposition with bracketing by J.F. Geleyn et al, Q. J.
R. Meteorol. Soc. (2017) DOI:10.1002/qj. 3006

Acknowledgement:
Bent Hansen Sass and Kristian Pagh Nielsen (DMI)
Peter Messmer and Stan Posey (NVIDIA)
Mike Greenfield and Karthik Raman (Intel)

Refactor your code - do it now or do it later!

Kirk M. Bresniker, Sharad Singhal, R. Stanley Williams, "Adapting to Thrive in a New Economy of Memory Abundance", Computer, vol. 48, no. , pp. 44-53, Dec. 2015, doi:10.1109/MC.2015.368

Minimal problem: Memory operations

Operation	Energy [pJ] Time [nsec]	
64 bit FMA	200	1
Read 64 bits from cache	800	3
Read 64 bits from DRAM	12000	70

\checkmark ESCAPE focus: multi-core processors (proper baseline), many-core processors and many-core accelerators.
\checkmark Two-step approach:
v 1) Reduce implementation overhead to establish a baseline
マ 2) Expose parallelism at all levels (threads/SIMD/SIMT)

Memory - approach minimal problem

Performance target is to reach the infimum

Portable performance is Silicon target 1 a contradiction in terms but the code tuning follow a common path that ends at different terminations points.

Silicon target 2

Legacy model \rightarrow dwarf \rightarrow kernel (PATTERNS!)

Investment in software vs hardware

Largest ACRANEB2 testcase (400x400x80) that the original code could fit into the 64Gb of RAM available on one node:

	Time-to-solution		Memory	
Code	E5-2680v1@2.7	E5-2697v4@2.3	KNL 7250@1.4	E5-2697v4@2.3
Baseline	375%			
Version 0	144%	100%		100%
Refactored	2.58%	0.92%	0.52%	17.4%

Conclusion

\checkmark This experiment has shown that one can improve the common multicore performance of current physics (same pattern) in IFS/Harmonie by following these general steps:
\checkmark Reduce implementation overhead (primarily memory operations)
\checkmark Thread parallelize entire computation using a SPMD approach
\checkmark re-SIMD vectorize all column loops by proper split of computations
V This refactoring of the code lead to even more efficient (both in time2solution and in Watt2solution) code on the high-end many-core architectures (Xeon Phi and GPUs).
\checkmark Important observations:
\checkmark A (or parts of A) may not always have perfect fit on a given piece of silicon

