

HIRLAM All Staff Meeting/ALADIN Workshop 3–6 April 2017, Helsinki

The Atlas library and LAM features therein

Daan Degrauwe, RMI Belgium

with much help from Willem Deconinck, ECMWF

- Background Atlas generalit
- EAW reactives
- Future plans

- Background
- Generalities of the Atlas library
- LAM features in Atlas
- Future plans

Content

Background

Atlas generalities

LAM features

- In Greek mythology, Atlas is the titan that supports the sky.
- Atlas is a software library developed at ECMWF for parallel data structures

Background

Atlas generalities

LAM features

- In Greek mythology, Atlas is the titan that supports the sky.
- Atlas is a software library developed at ECMWF for parallel data structures
- We would like Atlas to also support limited area models!

Background

Atlas generalities

LAM features

- In Greek mythology, Atlas is the titan that supports the sky.
- Atlas is a software library developed at ECMWF for parallel data structures
- We would like Atlas to also support limited area models!
- Make sure to do this at an early stage in the development!

D				
кас	ĸσ	m	uп	n

Atlas generalities

LAM features

Future plans

Triggers for Atlas development:

- Need for a common framework for EULAG model (finite volume-based, possibly unstructured grids) and IFS
- Modernization of IFS in view of scalability challenges
- platform for NWP dwarfs of the ESCAPE project. This project focuses on energy-efficiency and heterogeneous hardware.

ECMWF decided to take an evolutionary approach, rather than a disruptive one:

"Atlas is a flexible parallel framework for unstructured hybrid meshes and structured grids".

Atlas generalities

LAM features

Future plans

- Object-Oriented design enabling runtime flexibility and abstraction from implementation
- Mostly written in C++, but with complete Fortran interface!
- Modern coding, e.g. including unit testing

Atlas generalities

Atlas generalities

LAM features

Future plans

- Object-Oriented design enabling runtime flexibility and abstraction from implementation
- Mostly written in C++, but with complete Fortran interface!
- Modern coding, e.g. including unit testing
- Tasks of Atlas:
 - Mesh generation
 - Parallelization
 - Data structures
 - Interpolation algorithms
 - I/O support
 - Logging
 - ... and provide canonical test cases for these features

Atlas generalities

Atlas generalities

LAM features

Future plans

- Object-Oriented design enabling runtime flexibility and abstraction from implementation
- Mostly written in C++, but with complete Fortran interface!
- Modern coding, e.g. including unit testing
- Tasks of Atlas:
 - Mesh generation
 - Parallelization
 - Data structures
 - Interpolation algorithms
 - I/O support
 - Logging
 - ... and provide canonical test cases for these features
- Atlas is not OOPS!
 - OOPS is blind to LAM, Atlas is not
 - OOPS provides an entire DA and forecasting system, Atlas provides a supporting framework

Atlas generalities

Atlas generalities: design

Atlas generalities

LAM features

Atlas generalities: grid object

Background

Atlas generalities

LAM features

Future plans

 In Atlas, a Grid object is just a collection of gridpoints (structured or unstructured)

Atlas generalities

LAM features

Future plans

 In Atlas, a Grid object is just a collection of gridpoints (structured or unstructured)

Atlas generalities: grid object

Hierarchy of grid interpretations:

Atlas generalities: mesh object

Background Atlas generalities

.

- ·

A Mesh is distributed by a Partitioner, and describes the connectivity between gridpoints by defining triangular and quadrangular cells.

Atlas generalities

LAM features

Future plans

- A Mesh is distributed by a Partitioner, and describes the connectivity between gridpoints by defining triangular and quadrangular cells.
- The mesh includes halo's for communications with neighboring processors

Atlas generalities: mesh object

Atlas generalities

LAM features

Future plans

Atlas generalities: field and functionspace object

- A Field can be represented in several ways: spectral coefficients, grid point values, cell-center values, edge-center values, finite-element integration points, ...
- To cope with these different representations, the concept of a FunctionSpace is introduced.

Atlas generalities

LAM features

Future plans

Atlas generalities: field and functionspace object

- A Field can be represented in several ways: spectral coefficients, grid point values, cell-center values, edge-center values, finite-element integration points, ...
- To cope with these different representations, the concept of a FunctionSpace is introduced.
- Numerical operators (e.g. nabla-operator) are defined within a FunctionSpace
- The actual storage (memory layout) of a Field is abstracted in such a way that it can be (and is!) optimized for accelerators such as GPU's.

LAM features: grids and projections

Background Atlas generaliti

- LAM features
- Future plans

- LAM's require the concept of a geographic Projection, to distinguish between grid coordinates (x, y) and geographic coordinates (λ, ϕ) .
- Following projections were introduced in Atlas:
 - (rotated) longitude-latitude
 - conformal Lambert
 - (rotated) Schmidt (ARPEGE stretching)
 - (rotated) Mercator

Background Atlas generaliti

LAM features

Future plans

- LAM's require a dedicated partitioner to distribute a grid/mesh on a parallel machine.
- The Checkerboard partitioner (quite close to the one used in ALADIN/HIRLAM) was introduced in Atlas

Equal-regions partitioner for global grid

LAM features: partitioner

Checkerboard partitioner for LAM grid

Background Atlas generaliti

- LAM features
- Future plans

- In principle, LAM meshes do not differ substantially from global meshes.
- One exception: our spectral LAM is bi-periodic, so extra cells are required to connect opposite sides. This is now also supported in Atlas.

LAM features: mesh

non-periodic LAM grid in Atlas

periodic LAM grid in Atlas

Background Atlas generali

LAM features

Future plans

Introduction of Atlas in IFS: not immediately; probably only after OOPS

Still, it's reassuring that LAM requirements are already part of Atlas from the beginning!

Conclusions and future plans

(although some issues still need to be addressed, e.g. an interface to etrans) $% \left({{\left[{{{\rm{s}}_{\rm{m}}} \right]}_{\rm{m}}}} \right)$

Background Atlas generali

LAM features

Future plans

- Introduction of Atlas in IFS: not immediately; probably only after OOPS
- Still, it's reassuring that LAM requirements are already part of Atlas from the beginning!

Conclusions and future plans

(although some issues still need to be addressed, e.g. an interface to etrans) $% \left({{\left[{{{\rm{s}}_{\rm{m}}} \right]}_{\rm{m}}}} \right)$

- Future features in Atlas:
 - (advanced) interpolation schemes for multigrid systems and semi-Lagrangian advection; close integration with MIR (ECMWF's interpolation library).
 - more function spaces (finite elements, spectral elements) and numerical operators.

Background Atlas generali

- LAM features
- Future plans

- Introduction of Atlas in IFS: not immediately; probably only after OOPS
- Still, it's reassuring that LAM requirements are already part of Atlas from the beginning!

(although some issues still need to be addressed, e.g. an interface to etrans) $% \left({{\left[{{{\rm{s}}_{\rm{m}}} \right]}_{\rm{m}}}} \right)$

- Future features in Atlas:
 - (advanced) interpolation schemes for multigrid systems and semi-Lagrangian advection; close integration with MIR (ECMWF's interpolation library).
 - more function spaces (finite elements, spectral elements) and numerical operators.
- What will the future look like? Maybe it's a model with
 - spectral transforms on optical processors;
 - the radiation scheme on GPU's;
 - turbulence on quantum processors;
 - ???

... but at least the Atlas library seems a development that may allow such a future.

LAM features

Future plans

Thank you

D. Degrauwe: The Atlas library and LAM features therein

HIRLAM ASM - ALADIN Workshop, 2017 - 14/14