

- B. Vié, CNRM, Météo-France/CNRS, Toulouse
- J.-P. Pinty, LA, University of Toulouse/CNRS, Toulouse

Complex aerosols – clouds – precipitations interactions

LIMA: Liquid Ice Multiple Aerosols

2-moment, mixed-phase microphysical scheme

Droplets	Drops	Ice	Snow	Graupel	Hail
r _c N	r N	r _i N	r _s	r g	r _h

r: mass mixing ratio (kg.kg⁻¹)

N: number conc. (#.kg⁻¹)

Prognostic evolution of a realistic aerosol population

- Multimodal (lognormal psd), 3D externally mixed aerosols
- Distinction between several types of CCN / IN / coated IN

Vié et al., 2016: LIMA (v1.0): a two-moment microphysical scheme driven by a multimodal population of cloud condensation and ice freezing nuclei, GMD, doi:10.5194/gmd-9-567-2016.

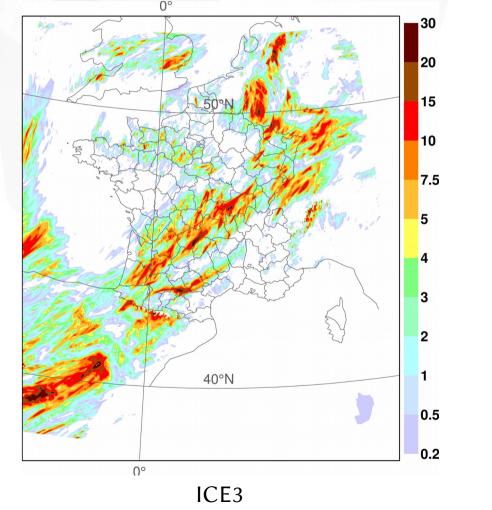
LIMA: Liquid Ice Multiple Aerosols

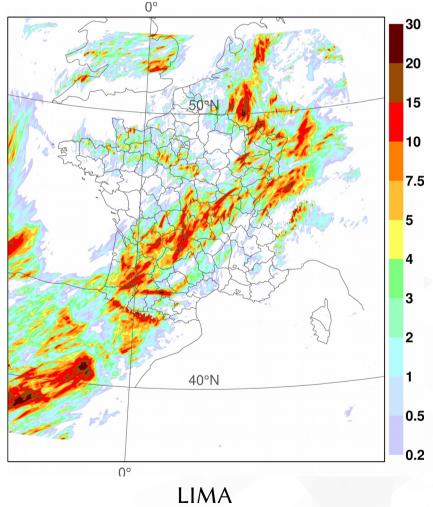
Derived from ICE3, with improved representation of some processes

- Explicit deposition of water vapour on ice crystals
- **Improved pristine ice** \rightarrow **snow conversion**

Aerosol treatment

- Transport by the resolved flow and turbulence
- **CCN** activation (Cohard and Pinty, 2000) \rightarrow cloud droplets
- IFN nucleation (Phillips *et al.* 2008, 2013) \rightarrow ice crystals
- Below-cloud aerosol washing-out by rain (Berthet et al. 2010)


Current implementation of LIMA


LIMA was integrated in AROME (cycle 42)

- New GFL variables for number concentrations
- Complete microphysical parameterization
- Homogeneous initial aerosol concentration
- First test on PROLIX supercomputer
 - AROME operational domain
 - 12-h forecast, 32 nodes (384 tasks)
 - LIMA simulation: time-splitting sedimentation, 10 additional variables
 - ~30% more time for LIMA simulation (vs. ICE3)

AROME & LIMA: First test

■ 00UTC April 13th, 2016, 12-h accumulated rainfall (mm)

LIMA: To-Do list

- Statistical sedimentation scheme
- Computation cost analysis
 - Simplify the representation of time-consuming processes if necessary
- Choice of an optimal configuration
 - Minimal number of additional variables

- Subgrid cloud fraction
- Microphysics sensitivity to the time step (S. Riette)
- Some more technical work (DDH, fullpos, radar simulator...)

Radiation parameterization

In AROME, the radiative transfer parameterization is currently unaware of the aerosols and hydrometeors number concentrations

■ In Meso-NH:

- The cloud droplets and pristine ice number concentrations are used in the computation of cloud optical properties
- The radiative effect of aerosols is accounted for using the detailed scheme by Aouizerats et al. (2010) and the prognostic aerosol population from LIMA.

Aerosols representation

LIMA accounts for aerosol-cloud interactions (nucleation, scavenging)

What precision in the representation of aerosols do we need ?

- Homogeneous initial population ?
- Realistic aerosol population ?
 - MACC analyses can be used to provide realistic 3D initial and lateral boundary conditions for aerosols (under development)
 - Including data assimilation / nudging ?
- Complete aerosol scheme, including sources, ageing... ?
 - Emission schemes for dust and sea-salt
 - Complete chemistry-aerosol module ORILAM (Tulet *et al.* 2005, Meso-NH)

LIMA: Evaluation

HyMeX: heavy precipitation

PhD thesis, Marie Taufour

Lanfex: LES of fog and impact on visibility

- PhD proposal, starting 09/2016
- Sesar: Application to aircraft icing
- Statistical evaluation of LIMA over long periods

West of Toulouse, 1745UTC, April 12th, 2016