

Recent updates in AROME physics

Y. Seity, S. Riette, R. Honnert, C. Zecchin, D. Ricard (Météo-France CNRM)

ASM Meeting Toulouse, April 2018

Outline

- Microphysics
- Turbulence/Shallow convection
- Surface
- Diagnostics
- AROME@500m

Outline

- Microphysics (ICE3/ICE4, LIMA (in CY45T1), Cloud scheme)
- Turbulence/Shallow convection
- Surface
- Diagnostics
- AROME@500m

Modified version of ICE3 (S. Riette):

- A lot of changes in ICE3 :
 - Complete rewriting of rain_ice in order to reduce time step length sensitivity
 - bugfixes
 - Code optimisation
- Less graupel inside clouds (because modified choice of wet/dry growth)
 - → thresholds of hail diagnostic have to be changed
- +6 % CPU

Modified ICE3: 0D tests ex: heat budget

- Heat budget in order to stop processes when impact on T should stop it.
- Example : melting when latent heat release \rightarrow T < 0°C
- ~ 10 processes concerned
- → in CY45T1 and 43T2_op

Evaluation ICE3-new (scores RR6 summer):

Contrôle probabiliste des précipitations 6h : Comparaison des modèles Réseau de 0 heure Seuil 5mm Grille FRANGP0025 BSS_NO en fonction du voisinage / Période 20160504 - 20160731 / Référence BDCLIMH

ICE4: Ex 11 May 2017
(tests to reduce strong hail accumulations over orography)

Scores of ICE4/ICE3 ...

- Neutral scores (T2m/Hu2m, V10m, Pmer, RR6, RR24, profiles...)

Précipitations RR6 - réseau de 0 heure Période 20170501 - 20170731 grille de contrôle FRANGP0025 Echéance+Réseau 24h Référence BDCLIMH

- ICE4 has been improved compared to previous versions.
- May be still an over-estimation of hail over orography.
- Not better than ICE3 hail diagnostic (with +6 % CPU time) → not in oper

OD tool for microphysics

- What is it?
 - python tool that call fortran routines of microphysics
 - same initial condition for all schemes
 - no transport (horizontal, sedimentation)
- Status
 - includes LIMA and ICE3/ICE4
 - now includes Thompson (2-moment bulk) and SBM (bin) from WRF
- Technical outlooks
 - improve initialisation to allow a fair comparison
 - maybe include other schemes from WRF, ARPEGE and/or LMD
- Scientific outlooks
 - characterise time-step dependency in the different schemes
 - compare schemes with given initial state

Work on PDF used in the microphysics (S. Riette)

- Goal : harmonise the different PDF used
 - cloud and ice content (adjustment)
 - cloud fraction (adjustment) + surface vs volume fraction
 - covariance s'r'c (adjustment)
 - autoconversion + subgrid precipitation (microphysics)
 - radiation ? assimilation ?

Outline

- Microphysics
- Turbulence/shallow convection
- Surface
- Diagnostics
- AROME@500m

Turbulence parameterization: impact on deep convection

Evaluation on idealized simulations : LES ($\Delta x = 50$ m) and 1-km grid spacing runs

Vertical profiles inside convective system t= 180 min

- → better representation of vertical turbulent fluxes with Hgrad
- → more subgrid TKE (more turbulent mixing)
 → less intense vertical velocity in updraft cores
- → more details on the poster ...

Verrelle A., Ricard D. et Lac C., MWR, 2017

GRAY-ZONE OF shallow convection (R. Honnert, D. Lancz)

• Test the mitigation of the mass flux scheme initialization (XCMF parameter).

- 500m resolution AROME over the South of France during 1-15. July 2015
- As expected, the decrease in the turbulence is compensated by the vertical advection, nevertheless the final effect is small.
- Not enough alone to treat the shallow convection gray zone problem, but a part of a final solution, which includes further developments like 3D turbulence and a more suitable set of mass flux equations for high resolution.

-776

-873

Fig. 1: Profile of 24 h water budget differences (made by DDH) between the reference and modified. Red –vertical advection, Yellow - vertical turbulence.

Modification of shallow convection parametrization in the gray zone in a mesoscale model, Dávid Lancz, Balázs Szintai, Rachel Honnert (submitted, Boundary-Layer Meteorology)

Outline

- Microphysique
- Turbulence/shallow convection
- Surface
- Diagnostics
- AROME@500m

Problems in the snow melting in plains (ex February 2018)

Surface Snow:

Problems in the snow melting in plains (ex February 2018)

Surface Snow:

Problems in the snow melting in plains (ex February 2018)

Surface Snow:

Test of alternative snow option in SURFEX (EBA)

Surface snow 12-02-2018:

EBA modified snow fraction calculation and snow melt formulation:

- More realistic snow fractions over vegetation, faster snow melt - T2M + where snow removed

- T2M − during daytime where snow Still present (albédo).

More advanced versions of Surfex

ECOCLIMAP-SG (in Surfex v8.1)

- → New definition of surface characteristics. Derived from ESA-CCI satellites products @ 300m
- → covers removed, directly LAI, ALBEDO ...
- \rightarrow Ongoing tests in AROME : OK on T2m/Hu2m after some tuning but problems on V10m over forests linked with higher trees than in Ecoclimap \rightarrow need to work on the z0/drag parametrisation

ISBA-DIFF

→ Plan to start some tests with data assimilation by the end of 2018 ...

Plan

- Microphysique
- Turbulence/shallow convection
- Surface
- Diagnostics (for our 43t2_op AROME/ARPEGEs)
- AROME@500m

Visibility

- Kunkel type formulations with separate Clouds and precipitations (as in Niemelä 2014)
- Calculated every dt → in output files : min over a period
- Ongoing calibration/tuning

Sept. to Nov. 2017 Bias compared with 138 obs over France:

Surface precipitation type

- To be created by the end of 2018
- Based on IFS method ?

Outline

- Microphysics
- Turbulence/shallow convection
- Surface
- Diagnostics
- AROME@500m

AROME_500m for field experiments

AROME_500m 6 months climatology

AROME_500m 6 months climatology

→ ongoing work...

HIGH-TUNE PROJECT

To develop a strategy for tuning at the process scale
To improve the representation of low clouds and
Better understand and represent the cloud radiative effect

- off-line radiative code based on a 3D Monte Carlo algorithm (PhD : N.Villefranque)
 - comparisons LES/SCM : 12 cases shallow convection
- A statistical tool:
- history matching (D. Williamson)
 metric definitions & selection of ensemble of parameters
- determine the range of possible values of free parameters

Thank you for your attention...

Just to remind you for this evening Sport Side Meeting (if not already done):

Please give 10 € to Yann Seity or Eric Bazile for the PWB before Tuesday 12am

Recent updates in AROME physics

Y. Seity, S. Riette, R. Honnert, C. Zecchin, D. Ricard (Météo-France CNRM)

ASM Meeting Toulouse, April 2018