

Exploring some alternatives to improve the robustness of mass-based SI Spectral NH system

Fabrice Voitus, Karim Yessad, Charles Colavolpe and Pierre Bénard

CNRM/GAME, Météo-France

17 April 2018

Motivations

Allow very high-resolution (steep orography) and attractive time-steps for NWP, but still in the framework of the current constant-coefficient Semi-implicit approach.

Explored Avenues

● Design of a modern Sound-proof NH approximate set of equations less stiff than fully-compressible (EE) system by exploiting Arakawa and Konor (2009) ⇒ Suppression of high-frequency vertically-propagating acoustic wave at their source ⇒ Potential benefit in term of stability.

design of a new prognostic variable for the EE system along the lines of the d₄ variable of Bénard *et al.* (2005), leading to a more stable constant-coefficient semi-implicit time scheme over steep slopes.

Motivations

Allow very high-resolution (steep orography) and attractive time-steps for NWP, but still in the framework of the current constant-coefficient Semi-implicit approach.

Explored Avenues

- Design of a modern Sound-proof NH approximate set of equations less stiff than fully-compressible (EE) system by exploiting Arakawa and Konor (2009) ⇒ Suppression of high-frequency vertically-propagating acoustic wave at their source ⇒ Potential benefit in term of stability.
- design of a new prognostic variable for the EE system along the lines of the d₄ variable of Bénard et al. (2005), leading to a more stable constant-coefficient semi-implicit time scheme over steep slopes.

Motivations

Allow very high-resolution (steep orography) and attractive time-steps for NWP, but still in the framework of the current constant-coefficient Semi-implicit approach.

Explored Avenues

● Design of a modern Sound-proof NH approximate set of equations less stiff than fully-compressible (EE) system by exploiting Arakawa and Konor (2009) ⇒ Suppression of high-frequency vertically-propagating acoustic wave at their source ⇒ Potential benefit in term of stability.

esign of a new prognostic variable for the EE system along the lines of the d₄ variable of Bénard *et al.* (2005), leading to a more stable constant-coefficient semi-implicit time scheme over steep slopes.

SWITCH TO (MODERN) SOUND-PROOF NH EQUATIONS

2 A MORE ROBUST VERTICAL MOMENTUM PROGNOSTIC VARIABLE

Definition of pseudo-hydrostatic QE reference-state : $(\pi, \widetilde{
ho}, \widetilde{T})$

$$\widetilde{\rho} = \frac{\pi}{RT} \left(\frac{p}{\pi}\right)^{R/C_p}$$

$$\frac{\partial \pi}{\partial z} = -g\widetilde{\rho}$$

$$\widetilde{T} = \frac{\pi}{\widetilde{\rho}R}$$

Determination of actual thermodynamic state: (p, ρ, T)

Defining the pressure departure as $\hat{q} = \log(p/\pi)$, it yields

$$p = \pi \exp[\hat{q}],$$

$$\rho = \widetilde{\rho} \exp\left[(C_v/C_p)\hat{q}\right],$$

$$T = \widetilde{T} \exp[(R/C_p)\hat{q}].$$

(CNRM/GAME, Météo-France)

Definition of pseudo-hydrostatic QE reference-state : $(\pi, \widetilde{\rho}, \widetilde{T})$

 $\frac{\partial}{\partial}$

$$\widetilde{\rho} = \frac{\pi}{RT} \left(\frac{p}{\pi}\right)^{R/C_p}$$
$$\frac{\pi}{z} = -g\widetilde{\rho}$$
$$\widetilde{T} = \frac{\pi}{\widetilde{\rho}R}$$

Determination of actual thermodynamic state: (p, ρ, T)

Defining the pressure departure as $\hat{q} = \log(p/\pi)$, it yields

$$p = \pi \exp[\hat{q}],$$

$$\rho = \widetilde{\rho} \exp\left[(C_v/C_p)\hat{q}\right],$$

$$T = \widetilde{T} \exp[(R/C_p)\hat{q}].$$

(CNRM/GAME, Météo-France)

ALADIN-HIRLAM meeting 2018

QE approximation : Basic underlying idea

• Mass-continuity Eq. for $\widetilde{\rho}$:

$$\frac{\mathrm{D}\widetilde{\rho}}{\mathrm{D}t} = \underbrace{\left(\frac{\partial\widetilde{\rho}}{\partial\pi}\right)_{\theta,\hat{q}}}_{\mathbf{H}-\mathrm{compressibility}} \underbrace{\frac{\mathrm{D}\pi}{\mathrm{D}t}}_{\mathbf{N}\mathbf{H}-\mathrm{compressibility}} + \underbrace{\left(\frac{\partial\widetilde{\rho}}{\partial\hat{q}}\right)_{\theta,\pi}}_{\mathbf{N}\mathbf{H}-\mathrm{compressibility}} \underbrace{\frac{\mathrm{D}\widehat{\rho}}{\mathrm{D}t}}_{\mathbf{N}\mathbf{H}-\mathrm{compressibility}} = -\widetilde{\rho}\,\mathbb{D}_{3}$$

NH compressibility of the fluid is neglected in mass continuity Eq.
 ⇒ Minimal condition for filtering vertically propagating acoustic waves,

Hydrostatic compressibility is maintained for good accuracy at large-scales.

$$\left(\frac{\partial\widetilde{\rho}}{\partial\hat{q}}\right)_{\theta,\pi}\frac{\mathrm{D}\hat{q}}{\mathrm{D}t} = \mathbb{D}_3 + \frac{C_v}{C_\rho}\left(\frac{\star}{\pi}\right) = 0$$

q̂ becomes a diagnostic variable.

QE approximation : Basic underlying idea

• Mass-continuity Eq. for $\widetilde{\rho}$:

$$\frac{\mathrm{D}\widetilde{\rho}}{\mathrm{D}t} = \underbrace{\left(\frac{\partial\widetilde{\rho}}{\partial\pi}\right)_{\theta,\hat{q}}}_{\mathbf{H}-\mathrm{compressibility}} \underbrace{\frac{\mathrm{D}\pi}{\mathrm{D}t}}_{\mathbf{N}\mathbf{H}-\mathrm{compressibility}} + \underbrace{\left(\frac{\partial\widetilde{\rho}}{\partial\hat{q}}\right)_{\theta,\pi}}_{\mathbf{N}\mathbf{H}-\mathrm{compressibility}} \underbrace{\frac{\mathrm{D}\widetilde{\rho}}{\mathrm{D}t}}_{\mathbf{N}\mathbf{H}-\mathrm{compressibility}} = -\widetilde{\rho}\,\mathbb{D}_{3}$$

NH compressibility of the fluid is neglected in mass continuity Eq.

 \Rightarrow Minimal condition for filtering vertically propagating acoustic waves,

Wydrostatic compressibility is maintained for good accuracy at large-scales.

$$\left(\frac{\partial \widetilde{\rho}}{\partial \hat{q}}\right)_{\theta,\pi} \frac{\mathrm{D} \hat{q}}{\mathrm{D} t} = \mathbb{D}_3 + \frac{C_v}{C_\rho} \left(\frac{\dot{\pi}}{\pi}\right) = 0$$

QE approximation : Basic underlying idea

• Mass-continuity Eq. for $\widetilde{\rho}$:

$$\frac{\mathrm{D}\widetilde{\rho}}{\mathrm{D}t} = \underbrace{\left(\frac{\partial\widetilde{\rho}}{\partial\pi}\right)_{\theta,\hat{q}}}_{\mathbf{H}-\mathrm{compressibility}} \underbrace{\frac{\mathrm{D}\pi}{\mathrm{D}t}}_{\mathbf{N}\mathbf{H}-\mathrm{compressibility}} + \underbrace{\left(\frac{\partial\widetilde{\rho}}{\partial\hat{q}}\right)_{\theta,\pi}}_{\mathbf{N}\mathbf{H}-\mathrm{compressibility}} \underbrace{\frac{\mathrm{D}\widetilde{\rho}}{\mathrm{D}t}}_{\mathbf{N}\mathbf{H}-\mathrm{compressibility}} = -\widetilde{\rho}\,\mathbb{D}_{3}$$

• NH compressibility of the fluid is neglected in mass continuity Eq.

 \Rightarrow Minimal condition for filtering vertically propagating acoustic waves,

Wydrostatic compressibility is maintained for good accuracy at large-scales.

$$\left(\frac{\partial \widetilde{\rho}}{\partial \hat{q}}\right)_{\theta,\pi} \frac{\mathrm{D} \hat{q}}{\mathrm{D} t} = \mathbb{D}_3 + \frac{C_{\nu}}{C_{\rho}} \left(\frac{\dot{\pi}}{\pi}\right) = 0$$

• *q̂* becomes a diagnostic variable.

QE divergence constraint :

$$D - \frac{C_{\nu}}{C_{\rho}} \frac{1}{\pi} \int_{0}^{\pi} D \, \mathrm{d}\pi' + d_{4} = 0$$

QE divergence constraint :

$$D - \frac{C_v}{C_p} \frac{1}{\pi} \int_0^{\pi} D \, \mathrm{d}\pi' + d_4 = 0$$

where $D = \nabla \cdot V$, and

$$d_{4} = \underbrace{-\frac{g}{R\widetilde{T}}\frac{\pi}{m}\frac{\partial w}{\partial \eta}}_{d_{3}} + \underbrace{\frac{\pi}{R\widetilde{T}m}\frac{\partial V}{\partial \eta}\cdot\nabla\Phi}_{K} + \frac{C_{v}}{C_{\rho}}\left[V\cdot\frac{\nabla\pi}{\pi} - \frac{1}{\pi}\int_{0}^{\eta}\left(V\cdot\nabla m\right)\mathrm{d}\eta'\right]}_{K}$$

QE divergence constraint :

$$D - \frac{C_{\nu}}{C_{\rho}} \frac{1}{\pi} \int_{0}^{\pi} D \, \mathrm{d}\pi' + d_{4} = 0$$

where $D = \nabla \cdot V$, and

$$d_{4} = \underbrace{-\frac{g}{R\widetilde{T}}\frac{\pi}{m}\frac{\partial w}{\partial \eta}}_{d_{3}} + \underbrace{\underbrace{\frac{\pi}{R\widetilde{T}m}\frac{\partial V}{\partial \eta}\cdot\nabla\Phi}_{R\widetilde{T}m} + \frac{C_{v}}{C_{p}}\left[V\cdot\frac{\nabla\pi}{\pi} - \frac{1}{\pi}\int_{0}^{\eta}\left(V\cdot\nabla m\right)d\eta'\right]}_{X}$$
$$\frac{D}{Dt} = -\frac{g}{R\widetilde{T}}\frac{\pi}{m}\left[\frac{\partial}{\partial\eta}\left(\frac{dw}{dt}\right) - \frac{\partial V}{\partial\eta}\cdot\nabla w\right]$$
$$+ (X - d_{4})(d_{4} - X + X_{5}) + \dot{X}$$

Symbolical description of QE adiabatic system

- Let us denote the state-vector $Z = (X, \hat{q})$. $X = (V, d_4, \tilde{T}, \text{Log}\pi_s)$ is the vector of prognostic variables.
- Prognostic Eqs. :

$$\frac{\partial x}{\partial t} = \mathcal{A}(x) + \mathcal{M}(z)$$
 (Eulerian form)
$$\frac{\partial x}{\partial t} = \mathcal{M}(z),$$
 (Lagrangian form)

QE constraint:

$$\mathcal{D}(X) = 0$$

• $(\mathcal{L}^*, \mathcal{C}^*)$ respectively denote the linear counterpart operators of $(\mathcal{M}, \mathcal{D})$ around a constant-coefficient SI-background \mathcal{Z}^* .

(CNRM/GAME, Météo-France)

3-TL SI Eulerian time discretization

For $\nu \in [0, N_{\text{iterhelm}} - 1]$ (inner-loop)

• Time-discrete prognostic Eqs. :

$$\frac{\chi^{+(\nu)} - \chi^{-}}{2\Delta t} = \mathcal{A}\left(\chi^{0}\right) + \mathcal{M}\left(\mathcal{Z}^{0}\right) - \mathcal{L}^{*}\mathcal{Z}^{0} + \frac{\mathcal{L}^{*}\mathcal{Z}^{+(\nu)} + \mathcal{L}^{*}\mathcal{Z}^{-}}{2}$$

• Newton-like iterative treatment of QE constraint :

$$\mathcal{C}^* \mathcal{X}^{+(\nu)} = \mathcal{C}^* \mathcal{X}^{+(\nu-1)} - \mathcal{D}\left[\mathcal{X}^{+(\nu-1)}\right]$$

Extension to 2-TL ICI SL time-discretization

For
$$i \in [1, N_{\text{siter}}]$$
 (outer-loop)
For $\nu \in [0, N_{\text{iterhelm}} - 1]$ (inner-loop)

• Time-discrete prognostic Eqs. :

$$\frac{X_{F}^{+(i,\nu)} - X_{\mathcal{O}_{(i-1)}}^{0}}{\Delta t} = \frac{\mathcal{M}\left[Z^{+(i-1)}\right]_{F} + \mathcal{M}\left[Z^{0}\right]_{\mathcal{O}_{(i-1)}}}{2} + \frac{\mathcal{L}^{*}.Z_{F}^{+(i,\nu)} - \mathcal{L}^{*}.Z_{F}^{+(i-1)}}{2}$$

• QE constraint iterative treatment:

$$\mathcal{C}^* \mathcal{X}_{\mathsf{F}}^{+(i,\nu)} = \mathcal{C}^* \mathcal{X}_{\mathsf{F}}^{+(i,\nu-1)} - \mathcal{D}\left[\mathcal{X}^{+(i,\nu-1)}\right]_{\mathcal{D}}$$

(CNRM/GAME, Météo-France)

Extension to 2-TL ICI SL time-discretization

For
$$i \in [1, N_{\text{siter}}]$$
 (outer-loop)
For $\nu \in [0, N_{\text{iterhelm}} - 1]$ (inner-loop)

• Time-discrete prognostic Eqs. :

$$\frac{X_{F}^{+(i,\nu)} - X_{\mathcal{O}_{(i-1)}}^{0}}{\Delta t} = \frac{\mathcal{M}\left[Z^{+(i-1)}\right]_{F} + \mathcal{M}\left[Z^{0}\right]_{\mathcal{O}_{(i-1)}}}{2} + \frac{\mathcal{L}^{*}.Z_{F}^{+(i,\nu)} - \mathcal{L}^{*}.Z_{F}^{+(i-1)}}{2}$$

• QE constraint iterative treatment:

$$\mathcal{C}^{*}\mathcal{X}_{F}^{+(i,\nu)} = \mathcal{C}^{*}\mathcal{X}_{F}^{+(i,\nu-1)} - \mathcal{D}\left[\chi^{+(i,\nu-1)}\right]_{F} + \left[\mathcal{D}\left(\chi^{0}\right)\right]_{\mathcal{O}_{(i-1)}}$$

• Time-discrete space-continuous linear stability analysis of 3-TL SI scheme with a uniform sloped orography (without advection). Settings: $\Delta x = 2000 \text{ m}$, $\Delta t = 200 \text{ s}$.

• Amplification factor as function of the slope, and the non-linear thermal residual factor :

$$\alpha = (T - T^*)/T^*$$

(CNRM/GAME, Météo-France)

Idealized 2D test-cases: 3-TL SI Eulerian scheme

• Potential flow 2D test-case : Basic-state is defined by: U = 15 m/s, $N = 0.02 \text{ s}^{-1}$, maximum height and half-width of the agnesi-mountain are both equal to $100 \text{ m} \Rightarrow \text{maximum slope of } 33^{\circ}$. Settings : $\Delta x = 10 \text{ m}$, and $\Delta \eta$ is chosen in such a way that $\Delta z \approx 15 \text{ m}$, $\Delta t = 0.25 \text{ s}$, SITR=350 K, SITRA = 35 K, and $N_{\text{iterhelm}} = 1$.

(CNRM/GAME, Météo-France)

April 2018 11 / 22

Status

- QE code in available in cycle 46 (95% of QE code).
- Validation using "mitraillette-test" are now in progress.

• Obviously, there is still some bugs to deal with !!!

SWITCH TO (MODERN) SOUND-PROOF NH EQUATIONS

A MORE ROBUST VERTICAL MOMENTUM PROGNOSTIC VARIABLE

 Non-homogeneous rigid BBC specification ⇒ a distinct BBC treatment between the explicit grid-point part and the implicit spectral part.

Rigid BBC in NL model
$$\mathcal{M}$$
:
 $w_{\rm S} = \frac{1}{g} (V_{\rm S} \cdot \nabla \Phi_{\rm S}),$
 $\dot{w}_{\rm S} = \frac{1}{g} [\dot{V}_{\rm S} \cdot \nabla \Phi_{\rm S} + V_{\rm S} \cdot \nabla (V_{\rm S} \cdot \nabla \Phi_{\rm S})]$

	Ws			
	Ŵs			

 Non-homogeneous rigid BBC specification ⇒ a distinct BBC treatment between the explicit grid-point part and the implicit spectral part.

Rigid	BBC	in NL model \mathcal{M} :
Ws	=	$\frac{1}{2}(V_{S}\cdot\nabla\Phi_{S}),$
₩s	=	$\frac{g}{g} \left[\dot{V}_{\rm S} \cdot \nabla \Phi_{\rm S} + V_{\rm S} \cdot \nabla \left(V_{\rm S} \cdot \nabla \Phi_{\rm S} \right) \right]$

	Ws	
	Ŵs	

 Non-homogeneous rigid BBC specification ⇒ a distinct BBC treatment between the explicit grid-point part and the implicit spectral part.

Rigid	BBC	in NL model \mathcal{M} :
		1
Ws	=	$\frac{1}{g} \left(V_{S} \cdot \nabla \Phi_{S} \right),$
Ŵs	=	$\frac{1}{g} \left[\dot{V}_{S} \cdot \nabla \Phi_{S} + V_{S} \cdot \nabla \left(V_{S} \cdot \nabla \Phi_{S} \right) \right]$

	Ws			
	Ŵs			

 Non-homogeneous rigid BBC specification ⇒ a distinct BBC treatment between the explicit grid-point part and the implicit spectral part.

Rigid	BBC	in NL model $\mathcal M$:
		1
Ws	=	$\frac{1}{g}(V_{S}\cdot\nabla\Phi_{S}),$
Ŵs	=	$\frac{1}{g} \left[\dot{V}_{S} \cdot \nabla \Phi_{S} + V_{S} \cdot \nabla \left(V_{S} \cdot \nabla \Phi_{S} \right) \right]$

Rigid BBC lin	iear	moc	lel \mathcal{L}^*	:	
И	Vs	=	0		
й	Vs	=	0		

Imposing homogeneous rigid BBC

Let us consider the following variable :

$$\mathbb{W} = rac{(\partial_\eta \Phi)}{g} \left[\dot{\eta} + rac{(\partial_t \Phi)}{(\partial_\eta \Phi)}
ight] = w - rac{1}{g} \left(V \cdot
abla \Phi
ight)$$

 \Rightarrow Rigid BBC becomes :

$$W_S = 0$$

 $\dot{W}_S = 0$

 \Rightarrow At the top, material condition leads to

$$\mathbb{W}_{\mathsf{T}} = \frac{\partial_t \Phi_T}{g}$$

Use of a new vertical divergence variable

Let us define

$$d_{5} = -\frac{g\rho}{m} \left(\partial_{\eta} \mathbb{W}\right) \underbrace{-\frac{\rho}{m} V \cdot \nabla \left(\partial_{\eta} \Phi\right)}_{\mathsf{X}}$$

$$\Rightarrow$$

$$\mathbb{D}_3 = D + d_5$$

• Prognostic Eq. for d_5 :

$$\frac{\mathrm{D}\,d_{5}}{\mathrm{D}\,t} = -\frac{g\rho}{m} \left[\frac{\partial}{\partial\eta} \left(\frac{\mathrm{D}\mathbb{W}}{\mathrm{D}\,t} \right) - \frac{\partial V}{\partial\eta} \cdot \nabla\mathbb{W} \right]$$

$$+ \left(\mathbf{X} - d_{5} \right) d_{5} + \dot{\mathbf{X}}$$

A more robust prognostic variable over steep slopes

 \bullet Governing equation of $\mathbb W$:

$$\frac{\mathrm{DW}}{\mathrm{D}t} = \frac{\mathrm{D}w}{\mathrm{D}t} - \frac{1}{g} \frac{\mathrm{D}[V \cdot \nabla \Phi]}{\mathrm{D}t}$$

Eulerian explicit approach

$$\frac{\mathrm{D}\mathbb{W}}{\mathrm{D}t} = \mathcal{M}_{\mathsf{w}}\left(x\right) - \left[\dot{V} - (V \cdot \nabla)V - \dot{\eta}\left(\partial_{\eta}V\right)\right] \cdot \frac{\nabla\Phi}{g}$$
$$-V \cdot \nabla\left[w - \dot{\eta}\frac{(\partial_{\eta}\Phi)}{g}\right] - \dot{\eta}\partial_{\eta}\left[V \cdot \frac{\nabla\Phi}{g}\right]$$

* Require extra spectral transforms to compute $\nabla[V \cdot \nabla \Phi]$ and $\nabla[\dot{\eta}(\partial_{\eta} \Phi)]$

(CNRM/GAME, Météo-France)

A more robust prognostic variable over steep slopes

 \bullet Governing equation of $\mathbb W$:

$$\frac{\mathrm{DW}}{\mathrm{D}t} = \frac{\mathrm{D}w}{\mathrm{D}t} - \frac{1}{g} \frac{\mathrm{D}[V \cdot \nabla \Phi]}{\mathrm{D}t}$$

ICI Semi-Lagrangian approach (in the spirit of LGWADV option)

$$\frac{\mathrm{DW}}{\mathrm{D}t} = \frac{1}{2} \left\{ \mathcal{M}_{w}\left(x\right) - \frac{2[V \cdot \nabla\Phi]}{g\Delta t} \right\}_{F}^{+(i-1)} + \frac{1}{2} \left\{ \mathcal{M}_{w}\left(x\right) + \frac{2[V \cdot \nabla\Phi]}{g\Delta t} \right\}_{O_{(i-1)}}^{0}$$

* May require some extra SL interpolations for $[V \cdot \nabla \Phi]$.

(CNRM/GAME, Météo-France)

A more robust prognostic variable over step slopes

• Fully-discrete linear stability analysis of 2-TL ICI ($N_{siter} = 1$) with a prescribed sinusoidal orography (without advection).

• Amplification factor as function of horizontal wave Courant number for three different slopes : 15° , 25° , and 45° . For current d_4 (left panel)

A more robust prognostic variable over step slopes

• Fully-discrete linear stability analysis of 2-TL ICI ($N_{siter} = 1$) with a prescribed sinusoidal orography (without advection).

• Amplification factor as function of horizontal wave Courant number for three different slopes : 15° , 25° , and 45° . For current d_4 (left panel)

A more robust prognostic variable over step slopes

- Fully-discrete linear stability analysis of 2-TL ICI ($N_{siter} = 1$) with a prescribed sinusoidal orography (without advection).
- Amplification factor as function of horizontal wave Courant number for three different slopes : 15° , 25° , and 45° . For current d_4 (left panel), with new d_5 (right panel).

Idealized 2D test-cases: 3-TL SI Eulerian scheme with d₅

• Potential flow 2D test-case : re-run for EE system with d₅

Summary

- Can we still improve the stability of the constant-coefficient SI spectral NH system ? \Rightarrow Yes, we can !
- Switch to QE system may provide a substantial gain in stability.
- New variable d₅ is very promising for EE system, and can also be extended to QE system.
- There is always a price to pay, nothing is given for free : extra spectral transforms, extra SL interpolations.

Perspectives

- Validation of QE code will be pursued.
- Coding of this new variable d_5 should be envisaged.

Thanks for your attention !!!

