REPORT

Improvement of surface analysis (for assimilation purpose)

Toulouse, $15^{\text {th }}$ October - $\mathbf{1 4}^{\text {th }}$ December 2001.

Stjepan Ivatek-Šahdan
Croatian Hydrometrological Service mrpm620@andante.meteo.fr ivateks@cirus.dhz.hr

Supervisor: Francois Bouyssel
Météo - France
francois.bouyssel@meteo.fr

Toulouse, $14^{\text {th }}$ December 2001.

1. Why 2 m analyses of $\mathrm{T}_{2 \mathrm{~m}}$ and $\mathrm{H}_{2 \mathrm{~m}}$?

Data Assimilation cycle in ARPEGE is defined as shown bellow.

Next diagram presents Upper-air Analysis and Surface Analysis in Assimilation cycle

Upper-air Analysis
A_{F} and G_{F} are filtered
Surface Analysis is performed with Upper-air Analysis. Analysis is performed on next Surface parameters ($\mathrm{T}_{\mathrm{S}}, \mathrm{T}_{\mathrm{P}}, \mathrm{W}_{\mathrm{S}}, \mathrm{W}_{\mathrm{P}}, \mathrm{SNS}$)

Surface Analysis is performed in 4 steps:
a) computation of Obs - Guess,
b) control of observation to the Guess,
c) 2 m analyses $\mathrm{T}_{2 \mathrm{~m}}, \mathrm{H}_{2 \mathrm{~m}}$,
d) analyses of $\mathrm{T}_{\mathrm{S}}, \mathrm{T}_{\mathrm{P}}, \mathrm{W}_{\mathrm{S}}, \mathrm{W}_{\mathrm{P}}$ and relaxation for SNS.

$$
\begin{aligned}
& \left(\mathrm{T}_{\mathrm{S}}\right)^{\mathrm{A}}-\left(\mathrm{T}_{\mathrm{S}}\right)^{\mathrm{G}}=\left(\mathrm{T}_{2 \mathrm{~m}}\right)^{\mathrm{A}}-\left(\mathrm{T}_{2 \mathrm{~m}}\right)^{\mathrm{G}}=\Delta \mathrm{T}_{2 \mathrm{~m}} \\
& \left(\mathrm{~T}_{\mathrm{P}}\right)^{A}-\left(\mathrm{T}_{\mathrm{P}}\right)^{\mathrm{G}}=1 / \tau \Delta \mathrm{T}_{2 \mathrm{~m}} \\
& \left(\mathrm{~W}_{S}\right)^{A}-\left(\mathrm{W}_{\mathrm{S}}\right)^{\mathrm{G}}=\alpha_{\mathrm{T}} \Delta \mathrm{~T}_{2 \mathrm{~m}}+\alpha_{\mathrm{H}} \Delta \mathrm{H}_{2 \mathrm{~m}} \\
& \left(\mathrm{~W}_{\mathrm{P}}\right)^{\mathrm{A}}-\left(\mathrm{W}_{\mathrm{P}}\right)^{\mathrm{G}}=\beta_{\mathrm{T}} \Delta \mathrm{~T}_{2 \mathrm{~m}}+\beta_{\mathrm{H}} \Delta \mathrm{H}_{2 \mathrm{~m}}
\end{aligned}
$$

where $\alpha_{T}, \alpha_{H}, \beta_{\mathrm{T}}$ and β_{H} are functions of soil texture, vegetation, local solar time, LAI $/ \mathrm{R}_{\text {smin }}$ (leaf area index/min. surface resistance) cloudiness and other met. fields (wind, rain, snow, ...)

2. Description of $\mathbf{T}_{2 \mathrm{~m}}$ and $\mathbf{H}_{\mathbf{2 m}}$ Analysis

Univariates Optimal Interpolation Analysis is performed in operational ARPEGE. Variables are $\mathrm{T}_{2 \mathrm{~m}}$ and $\mathrm{H}_{2 \mathrm{~m}}$ because they are input for Analysis of other surface fields.

For Surface Analysis Observation data from SYNOP, BUOY and SHIP are used.

For $\mathrm{T}_{2 \mathrm{~m}}$ Analysis just $\mathrm{T}_{2 \mathrm{~m}}$ data are used

$$
\begin{aligned}
& \mathbf{T}_{2 \mathrm{~m}}^{\mathrm{A}}=\mathbf{T}_{2 \mathrm{~m}}^{\mathrm{G}}+\sum_{\mathrm{i}=1}^{15} \alpha_{\mathrm{i}}\left(\left(\mathbf{T}_{2 \mathrm{~m}}^{\mathrm{O}}\right)_{\mathrm{i}}-\left(\mathbf{T}_{2 \mathrm{~m}}^{\mathrm{G}}\right)_{\mathrm{i}}\right) \\
& \mathbf{H}_{2 \mathrm{~m}}^{\mathrm{A}}=\mathbf{H}_{2 \mathrm{~m}}^{\mathrm{G}}+\sum_{\mathrm{i}=1}^{15} \alpha_{\mathrm{i}}\left(\left(\mathbf{H}_{2 \mathrm{~m}}^{\mathrm{o}}\right)_{\mathrm{i}}-\left(\mathbf{H}_{2 \mathrm{~m}}^{\mathrm{G}}\right)_{\mathrm{i}}\right)
\end{aligned}
$$

Control of Observations in operational suite is performed just with Control to the Guess like it is shown below.

Control to the Guess if $\frac{|\mathbf{O}-\mathbf{G}|}{\sqrt{\sigma_{0}^{2}+\sigma_{\mathbf{G}}^{2}}}>\mathbf{k}$ then observation is rejected.
No Quality Control $\frac{|\mathbf{O}-\mathbf{A}|}{\sqrt{\sigma_{0}^{2}+\sigma_{\mathbf{A}}^{2}}}>\mathbf{k}^{\prime}$. In case of local storm data are rejected with control of the Guess, but with Quality Control that information about storm will be in the Analysis.

Correlation function is supposed to be isotropic and homogenous. No vertical correlation for the Surface fields. Correlation function is defined with next function:
$\rho_{12}=\exp \left(-\frac{\mathbf{1}}{\mathbf{2}} \frac{\mathbf{r}^{2}}{\mathbf{a}^{\mathbf{2}}}\right)$, where r is the distance between two points.
Closest 15 points are used to compute Analysis in model point with next equation:

$$
\mathbf{T}_{2 \mathrm{~m}}^{\mathrm{A}}=\mathbf{T}_{2 \mathrm{~m}}^{\mathrm{G}}+\sum_{\mathrm{i}=1}^{15} \alpha_{i}\left(\left(\mathbf{T}_{2 \mathrm{~m}}^{\mathrm{O}}\right)_{\mathrm{i}}-\left(\mathbf{T}_{2 \mathrm{~m}}^{\mathbf{G}}\right)_{\mathrm{i}}\right)
$$

α are optimal known background and observation point statistics and is computed from next matrix equation.
$\overline{\overline{\mathbf{B}}}=\left[\rho_{\mathrm{i}}^{\mathrm{G}}\right]$ - background covariance matrix $1 \leq \mathrm{i} \leq 15,1 \leq \mathrm{j} \leq 15$
$(\overline{\overline{\mathbf{B}}}+\overline{\overline{\mathbf{O}}}) \bar{\alpha}_{\mathbf{i}}=\overline{\mathbf{C}}_{\mathbf{i}} \quad \overline{\overline{\mathbf{O}}}=\left[\rho_{\mathrm{o}}^{\mathrm{o}}\right] \quad$ - Obs covariance matrix $1 \leq \mathrm{i} \leq 15,1 \leq \mathrm{j} \leq 15$
$\overline{\mathbf{C}_{i}}=\left[\rho_{j}^{G}\right] \quad$ - background error covariance between grid points and observation points $1 \leq \mathrm{j} \leq 15$

3. Statistical model

Canari is OI Analysis, and it changes the Guess value of the variable in model grid points. How much it will change the value depends on the standard deviation of the Observations and the standard deviation of the Guess and of course on correlation coefficient.

Operational values in ARPEGE namelist are:

$$
\begin{array}{lll}
\sigma_{\mathrm{T} 2 \mathrm{~m}}^{\mathrm{G}}=2.3^{\circ} \mathrm{C} & \sigma_{\mathrm{H} 2 \mathrm{~m}}^{\mathrm{G}}=0.17=17 \% & \sigma^{\mathrm{G}}=\sigma_{\text {namelist }}^{\mathrm{G}} * \exp \left[-\alpha\left(\mathbf{m}-\frac{\mathbf{1}}{\mathbf{m}}\right)\right]^{2} \\
\mathrm{a}_{\mathrm{T} 2 \mathrm{~m}}=350 \mathrm{~km} & \mathrm{a}_{\mathrm{H} 2 \mathrm{~m}}=300 \mathrm{~km} & \mathbf{a}^{\mathrm{G}}=\mathbf{a}_{\text {namelist }}^{\mathrm{G}} * \exp \left[-\alpha\left(\mathbf{m}-\frac{\mathbf{1}}{\mathbf{m}}\right)\right]
\end{array}
$$

$\alpha=0.02$ is coefficient that defines how much namelist values will be changed dependency of stretching factor $\mathrm{m}, 1 / 3.5<\mathrm{m}<3.5$.

Extreme values for operational run are in the table bellow.

	France $(\mathrm{m}=3.5)$	Antipode $(\mathrm{m}=1 / 3.5)$
$\sigma^{\mathrm{G}} \mathrm{T} 2 \mathrm{~m}{ }^{\circ}$	$2.02^{\circ} \mathrm{C}$	$2.61^{\circ} \mathrm{C}$
$\sigma^{\mathrm{H}} 2 \mathrm{~m}$	14.9%	19.3%
$\mathrm{a}_{\mathrm{T} 2 \mathrm{~m}}$	328 km	376 km
$\mathrm{a}_{\mathrm{H} 2 \mathrm{~m}}$	281 km	320 km

These values were similar to the values when CANARI was used operationally in Assimilation cycles and for Upper-air Analyses and for Surface Analyses, because at that time it was possible to have common statistical model. That is the reason why the new statistics are calculated.

4. Calculation of correlation and stand. deviations of Obs and Guess errors

Using a comparison between Obs and 6 hours forecast it is possible to calculate coefficient of correlation and standard deviation of Obs and Guess.

Mean difference between Obs and Guess is defined with the following formula:

$$
\overline{(\mathbf{O}-\mathbf{G})^{2}}=\overline{(\mathbf{O}-\mathbf{T}+\mathbf{T}-\mathbf{G})^{2}}=\overline{(\mathbf{O}-\mathbf{T})^{2}+\mathbf{2 (O - T) (T - G) + (T - G) ^ { 2 }}}=\sigma_{0}^{2}+\sigma_{G}^{2}
$$

where O is value of Observation, G is value of the Guess and T is True value which is not known. It is supposed that correlation between error of Guess and error of Obs is $=0$.

Mean difference between Obs and Guess at two points is:

$$
\begin{aligned}
& \overline{\left(\mathbf{O}_{1}-\mathbf{G}_{1}\right)\left(\mathbf{O}_{2}-\mathbf{G}_{2}\right)}=\overline{\left[\left(\mathbf{O}_{1}-\mathbf{T}_{1}\right)+\left(\mathbf{T}_{1}-\mathbf{G}_{1}\right)\right]\left[\left(\mathbf{O}_{2}-\mathbf{T}_{2}\right)+\left(\mathbf{T}_{2}-\mathbf{G}_{2}\right)\right.}=\mid \text { all Guess Obs correlation }=0 \mid= \\
& =\overline{\left(\mathbf{O}_{1}-\mathbf{T}_{1}\right)\left(\mathbf{O}_{2}-\mathbf{T}_{2}\right)+\left(\mathbf{T}_{1}-\mathbf{G}_{1}\right)\left(\mathbf{T}_{2}-\mathbf{G}_{2}\right)}=\overline{\left(\mathbf{T}_{1}-\mathbf{G}_{1}\right)\left(\mathbf{T}_{2}-\mathbf{G}_{2}\right)}=\rho_{12}^{G} \sigma_{\mathbf{G}_{1}} \sigma_{\mathbf{G}_{2}}=\rho_{\mathbf{G}}^{G} \sigma_{\mathbf{G}}^{2}
\end{aligned}
$$

It is supposed that correlation between Observation errors in two points is $=0$.
Because correlation coefficient is a function of the distance between two points, mean difference between Obs and Guess ($\overline{\left(\mathbf{O}_{1}-\mathbf{G}_{1}\right)\left(\mathbf{O}_{2}-\mathbf{G}_{\mathbf{2}}\right)}$) is divided in 14 equidistance classes (40 km) in calculations.

5. Results of statistical calculations

Correlation coefficients are calculated separately for different domains. Calculations are made for every $3^{\text {rd }}$ day in December 2000 and June 2001 for 00 run for 4 domains. For Europe domain calculations are made for December 2000 January, February, Jun, July and August 2001.

Picture 1. Coefficient of correlation dependency to distance between points for different domains, black line represents operational coefficient of correlation, and yellow the new definition

Because the correlation function $\rho_{12}=\exp \left(-\frac{1}{\mathbf{2}} \frac{\mathbf{r}^{2}}{\mathbf{a}^{2}}\right.$) does not fit the empirical correlation coefficient, the new function $\rho_{12}=\exp \left(-\frac{\mathbf{1}}{\mathbf{2}} \frac{\mathbf{r}}{\mathbf{a}}\right)$ is tested.

Namelist values for tested function are:

$$
\begin{array}{ll}
\sigma^{\mathrm{G}} \mathrm{~T} 2 \mathrm{~m}=1.7{ }^{\circ} \mathrm{C} & \sigma^{\mathrm{G}} \mathrm{H} 2 \mathrm{~m}=0.13=13 \% \\
\mathrm{a}_{\mathrm{T} 2 \mathrm{~m}}=105 \mathrm{~km} & \mathrm{a}_{\mathrm{H} 2 \mathrm{~m}}=101 \mathrm{~km} \\
\alpha=0.05 . &
\end{array}
$$

Extreme values for the test run are in the table bellow.

	France $(\mathrm{m}=3.5)$	Antipode $(\mathrm{m}=1 / 3.5)$
$\sigma^{\mathrm{G}}{ }_{\mathrm{T} 2 \mathrm{~m}}$	$1.23{ }^{\circ} \mathrm{C}$	$2.34{ }^{\circ} \mathrm{C}$
$\sigma^{\mathrm{G}} \mathrm{H} 2 \mathrm{~m}$	17.9%	
$\mathrm{a}_{\mathrm{T} 2 \mathrm{~m}}$	9.4%	123 km
$\mathrm{a}_{\mathrm{H} 2 \mathrm{~m}}$	89 km	119 km

Dependency on the domain

Correlation coefficient multiplied with square of standard deviation of Guess dependency to distance between points for different domains for December 2000 and June 2001, and with dashed line results with the first assumption for standard deviation of Guess and radius for new function are shown on the following picture. On the next two pictures it is obvious that there is not enough data in Australian and African domain, curves from those are not smooth like it is case for Europe.

Picture 2. Correlation coefficient multiplied with square of standard deviation of Guess dependency to distance between points for different domains for December 2000 and June 2001, with dashed line results with the first assumption for standard deviation of Guess and radius for new function

Dependency to time of the year

For Europe statistical calculations are made for 6 months, variation is not that big like it is for the other domains. Red and dark blue line are minimum and maximum of multiplied coefficient of correlation and squared standard deviation of Guess. If the value for temperature is higher then the value for humidity is lower when we compare them with mean values for all 6 months.

Picture 3. Coefficient of correlation multiplied with square of standard deviation of Guess dependency to distance between points for Europe for 6 months

6. Definition of new and old function and namelists parameters

Next pictures will present the difference between new and old definition of parameters. Operational definition is presented with full lines and in legends with letter O , new definition is presented with dashed lines and with letter T .

Picture 4. Coefficient of correlation dependency to distance between points for old (O-operational) and new (T-test) for stretching coefficient ($1 / 3.5,1 \& 3.5$)

Picture 5. Coefficient of correlation dependency to stretching coefficient for different distance between points for old (O-operational) and new (T-test) function

Picture 6. Standard deviation of 2 m Temperature dependency to stretching coefficient for old (Ooperational) and new (T-test) function

Picture 7. Standard deviation of Relative Humidity on 2 m dependency to stretching coefficient for old (O-operational) and new (T-test) function

7. One point tests

Impact on $2 \mathbf{m}$ Temperature

In one grid point 2 m Temperature Obs value is different from the Guess value for $+2{ }^{\circ} \mathrm{C}$. Impacts over Europe and Australia are shown on the following pictures. Amplitude and radius for one point impact is smaller with the new function and the new standard deviation of Guess.

Picture 8. Impact of $2{ }^{\circ} \mathrm{C}$ difference between Guess and Observation in a single point over Europe and Australia for 2 m Temperature for old (OPER-operational) and new (TEST-test) function

Impact on 2 m Relative Humidity

In one grid point 2 m Relative Humidity Obs value is different from the Guess value for -0.2 . Impacts over Europe and Australia are shown on the following pictures. Like it is for 2 m Temperature, amplitude and radius for one point impact is smaller with the new function and the new standard deviation of Guess.

Picture 8. Impact of 0.2 difference between Guess and Observation in a single point over Europe and Australia for 2 m Relative Humidity for old (OPER-operational) and new (TEST-test) function

8. Difference between Operational and Test experiment

Analysis in Observation points is calculated as mean value of Analysis values in 4 nearest model points. That mean values were compared with Observation values.

2 m Temperature

Experiment was performed for $15^{\text {th }}$ August 2001 for 12 UTC.

Picture 9. Difference between Analysis and Guess with operational (OPER) and test (TEST) function and namelist for 2 m Temperature

Amplitude and radius of changes are smaller with the new function and new values in namelist.

Picture 10. Difference between Analysis and Guess with operational (OPER) and test (TEST) function and namelist for 2 m Temperature over Europe

Picture 11. Difference between two Analyses, test (TEST) and operational (OPER) for 2 m Temperature

Picture 12. Absolute value of Observation and Analysis differences of 2 m Temperature difference between new (TEST) and operational (OPER) analysis

Highest changes between two analyses are over the sea, especially on the western coasts of Americas, Africa and Australia, high mountains and in Polar Regions. In Europe the largest impact is in Alps and Pyrenees region.

It looks like that better scores are over land for Test analysis and over sea, especially Pacific Ocean. Over Europe it is very hard to distinguish which analysis is better.

CLSTEMPERATURE

Picture 13. Difference between two Analyses, test (TEST) and operational (OPER) for 2 m Temperature over Europe

Picture 14. Absolute value of Observation and Analysis differences of 2 m Temperature difference between new (TEST) and operational (OPER) analysis over Europe

2 m Relative Humidity

Experiment was performed for $15^{\text {th }}$ August 2001 for 12 UTC.

CLSHUMI.RELATIVE
ANALYSE-GUESS OPER ARPEGE

CLSHUMI.RELATIVE
ANALYSE-GUESS TEST ARPEGE

Picture 15. Difference between Analysis and Guess with operational (OPER) and test (TEST) function and namelist for 2 m Relative Humidity

Amplitude and radius of changes are smaller with the new function and new values in namelist, same like for 2 m Temperature.

On next page zoom area over Europe is shown.

CLSHUMI.RELATIVE

Picture 16. Difference between Analysis and Guess with operational (OPER) and test (TEST) function and namelist for 2 m Relative Humidity over Europe

Picture 17. Difference between two Analyses, test (TEST) and operational (OPER) for 2 m Relative Humidity

CLSHUMI.RELATIVE

Picture 18. Absolute value of Observation and Analysis differences of 2 m Relative Humidity difference between new (TEST) and operational (OPER) analysis

For difference between two Analyses largest impact is near the western coasts of Americas, Africa and Australia. Over the Europe the largest impact is in France (may bee storm), north Italy and eastern Spain.

From the picture it looks like that the scores are better over sea for Operational, and over land for Test analysis. Over the Europe it looks like that the tested analysis is better.

Picture 19. Difference between two Analyses, test (TEST) and operational (OPER) for 2 m Relative Humidity over Europe

CLSHUMI.RELATIVE

Picture 20. Absolute value of Observation and Analysis differences of 2 m Relative Humidity difference between new (TEST) and operational (OPER) analysis over Europe

9. Bias and RMS statistics for different Domain

In next tables, results of statistics for different Domains for 2 runs on $15^{\text {th }}$ August 200012 and 18 UTC for 2 m Temperature and 2 m Relative Humidity are shown. Operational is with \mathbf{O} and the new with \mathbf{T}.

Table 1. Domains for statistics computation

DOMAIN	LAT_NORTH	LAT_SOUTH	LON_EAST	LON_WEST
FRANCE	51.00	43.00	8.00	-5.00
EUROPE	60.00	35.00	20.00	-10.00
ALA_FR	57.00	33.00	25.00	-12.00
N_AM_N	70.00	40.00	-60.00	-130.00
N_AM_S	40.00	10.00	-70.00	-120.00
S_AM_N	10.00	-20.00	-30.00	-80.00
S_AM_S	-20.00	-50.00	-40.00	-80.00
N_ATLA	70.00	10.00	-20.00	-60.00
AUSTRA	-10.00	-40.00	160.00	110.00
AFRI_N	35.00	0.00	50.00	-20.00
AFRI_S	0.00	-35.00	50.00	10.00
EUAS_E	70.00	40.00	80.00	25.00
EUAS_W	70.00	20.00	150.00	80.00
PACI_N	50.00	10.00	-120.00	-180.00
PACI_S	10.00	-60.00	-85.00	-180.00
NOR_PO	90.00	70.00	180.00	-180.00
SOU_PO	-60.00	-90.00	180.00	-180.00
S_ATLA	0.00	-60.00	10.00	-40.00
PACI_W	50.00	0.00	180.00	140.00
IND_OC	10.00	-60.00	100.00	50.00

Table 2. Bias and RMS for 2 m Temperature on different Domains for 12 UTC and 18 UTC runs

20010815 r 12				20010815 r 18				
obs_ana_T2M_T.dta_obs_ana_T2M_O.dta				obs_ana_T2M_T.dta obs_ana_T2M_O.dta				
WORLD Nb. Points $=60006000$				WORLD Nb. Points= 56985698				
bias=	0.915642	bias=	0.939620	bias=	0.860416	bias=	0.859919	
rms=	2.406641	rms=	2.499656	rms=	2.350288	rms=	2.426732	
FRANCE Nb. Points= 691697				FRANCE Nb. Points=			637643	
bias=	0.834399	bias=	0.803027	bias=	0.731397	bias=	0.694977	
rms=	2.488198	rms=	2.558691	rms=	2.275484	rms=	2.330768	
EUROPE Nb. Points= 16911694				EUROPE Nb. Points= 16191622				
bias=	0.753542	bias=	0.744191	bias=	0.628851	bias=	0.597916	
rms=	2.393936	rms=	2.520186	rms=	2.332144	rms=	2.442965	
ALA_FR Nb. Points= 16851690				ALA_FR Nb. Points $=16271632$				
bias=	0.806030	bias=	0.787077	bias=	0.689047	bias=	0.641912	
rms=	2.431005	rms=	2.553799	rms=	2.398921	rms=	2.509262	
N AM N Nb. Points= 562565				N_AM_N Nb. Points=			556559	
bias=	1.014057	bias=	1.088708	bias=	0.980396	bias=	0.998050	
rms=	2.581394	rms=	2.756255	rms=	2.450257	rms=	2.592718	
N_AM_S Nb. Points $=210211$				N_AM S Nb. Points=			213214	
bias=	0.689762	bias=	0.831185	bias=	1.013803	bias=	0.904019	
rms=	2.122716	rms=	2.217592	rms=	2.205433	rms=	2.254005	

Table 2. Bias and RMS for 2 m Temperature on different Domains for 12 UTC and 18 UTC runs

Table 3. Bias and RMS for 2 m Relative Humidity on different Domains for 12 UTC and 18 UTC runs

20010815 r 12	$20010815 \mathrm{r18}$
obs_ana_H2M_T.dta obs ana H2M O.dta	obs_ana H2M_T.dta obs ana H2M O.dta
WORLD Nb. Points= 56025602	WORLD Nb. Points= 53595359
bias $=0.013183$ bias $=0.014468$	bias $=0.011493$ bias $=0.014462$
$\mathrm{rms}=0.082589 \mathrm{rms}=0.090244$	rms $=0.089975$ rms $=0.095807$
FRANCE Nb. Points= 626631	FRANCE Nb. Points= 589595
bias $=0.005128$ bias $=0.003883$	bias $=-0.003005 \quad$ bias $=0.004420$
rms $=0.076243 \mathrm{rms}=0.084762$	rms $=0.093106$ rms= 0.099433
EUROPE Nb. Points= 15941597	EUROPE Nb. Points= 15491552
bias $=0.008908$ bias $=0.008817$	bias $=0.007063$ bias $=0.012545$
rms= 0.086769 rms $=0.098813$	rms= $0.107332 \mathrm{rms}=0.116684$
ALA_FR Nb. Points= 15871591	ALA_FR Nb. Points $=15541559$
bias $=0.007139$ bias $=0.007813$	bias $=0.003166$ bias $=0.010616$
rms= 0.087003 rms= 0.099363	rms= 0.108494 rms= 0.117694
N_AM_N Nb. Points= 475477	N_AM_N Nb. Points= 473475
bias $=0.020063$ bias $=0.015849$	bias $=0.015645$ bias $=0.020274$
rms= 0.082581 rms $=0.087638$	rms= 0.084601 rms= 0.092090
N_AM_S Nb. Points= 201202	N_AM_S Nb. Points= 204205
bias $=0.025821$ bias $=0.020891$	bias $=0.013529$ bias $=0.021366$
rms= 0.077937 rms= 0.075982	rms= 0.082462 rms $=0.087156$
S_AM_N Nb. Points= 205205	S_AM_N Nb. Points= 194194
bias $=0.009805$ bias $=0.006585$	bias $=0.006443$ bias $=0.011907$
rms $=0.064328$ rms= 0.069229	rms $=0.085461$ rms= 0.088600
S_AM_S Nb. Points= 152152	S_AM_S Nb. Points= 147147
bias $=0.023750$ bias $=0.018618$	bias $=0.012925$ bias $=0.015918$
rms $=0.102216$ rms $=0.100003$	rms $=0.097861$ rms= 0.095789
N_ATLA Nb. Points= 107108	N_ATLA Nb. Points $=8888$
bias $=0.012056$ bias $=0.017778$	bias $=0.012955$ bias $=0.019659$
rms= 0.069679 rms $=0.075314$	rms $=0.068788$ rms $=0.077158$
AUSTRA Nb. Points $=9696$	AUSTRA Nb. Points $=9091$
bias $=0.049062$ bias $=0.040937$	bias $=0.040667$ bias $=0.030000$
rms $=0.119491$ rms $=0.111966$	rms $=0.107176$ rms $=0.092801$
AFRI_N Nb. Points= 265266	AFRI_N Nb. Points= 247248
bias $=0.012340$ bias $=0.010977$	bias $=0.019595$ bias $=0.019476$
$\mathrm{rms}=0.077657 \mathrm{rms}=0.077736$	$\mathrm{rms}=0.093661$ rms= 0.095379
AFRI_S Nb. Points= 190191	AFRI_S Nb. Points= 155155
bias $=0.035474$ bias $=0.034503$	bias $=0.045290$ bias $=0.029355$
rms= 0.090309 rms= 0.096556	rms= 0.109474 rms= 0.102784
EUAS_E Nb. Points= 393393	EUAS_E Nb. Points= 402403
bias $=0.000178$ bias $=0.012290$	bias $=0.006667$ bias $=0.006352$
rms= 0.079689 rms= 0.097906	rms= 0.076050 rms $=0.088922$
EUAS_W Nb. Points= 713713	EUAS_W Nb. Points= 687687
bias $=0.010884$ bias $=0.015316$	bias $=0.010102$ bias $=0.010393$
rms= 0.076918 rms= 0.085592	rms $=0.058960$ rms $=0.066615$
PACI_N Nb. Points= 7475	PACI_N Nb. Points= 7778
bias $=0.039459$ bias $=0.038267$	bias $=0.047143$ bias $=0.044872$
rms= 0.120113 rms $=0.115349$	rms $=0.114750$ rms $=0.107429$

Table 3. Bias and RMS for 2 m Relative Humidity on different Domains for 12 UTC and 18 UTC runs

The bias of 2 m Temperature for European Domains are better for the operational then for the test run. On other Domains sometimes is better for the test run.
The RMS of 2 m Temperature is better for test run for most of the domains for.
For 2 m Relative Humidity bias is better for the operational run for more then 60% of the domains. The RMS of 2 m Relative Humidity is same for operational and the test run, but is better for all domains in Europe.

10. Conclusion

Because the calculated values of the correlation coefficients were not similar to the operational Gauss correlation function $\rho_{12}=\exp \left(-\frac{1}{\mathbf{2}} \frac{\mathbf{r}^{2}}{\mathbf{a}^{2}}\right)$ it was proposed that new function is tested $\rho_{12}=\exp \left(-\frac{\mathbf{1}}{\mathbf{2}} \frac{\mathbf{r}}{\mathbf{a}}\right)$.
Namelist values for tested function are: $\sigma^{G}{ }_{\mathrm{T} 2 \mathrm{~m}}=1.7^{\circ} \mathrm{C}, \sigma^{\mathrm{G}}{ }_{\mathrm{H} 2 \mathrm{~m}}=0.13=13 \%, \mathrm{a}_{\mathrm{T} 2 \mathrm{~m}}=105 \mathrm{~km}, \mathrm{a}_{\mathrm{H} 2 \mathrm{~m}}=101 \mathrm{~km}$ and $\alpha=0.05$.

It is not possible to conclude are the results of new analyses better or worst, and more experiments are needed.

