Convergence on MICROPHYSICS

AROME/Meso-NH microphysics ICE3 – Main differences with ALARO microphysics APLMPHYS

GENERALITIES on ICE3: A <u>classical bulk mixed</u> microphysical scheme developped in Meso-NH with 3 ice categories by J.-P.Pinty (LA). Analogous schemes are in MM5, WRF (based on Lin et al.,1983), RAMS (Walko et al.,1995) with 5 species ...

Developped mainly upon tropical squall lines (Caniaux et al.), largely validated on Cevenol flood events (Ducrocq et al.), MAP orographic precipitation (Asencio et al., Richard et al.): A long time validation.

MAIN DIFFERENCIES WITH APLMPHYS:

- Mainly adapted to β -mesoscales (<5km): Resolved variables: grid-mean values (no account for subgrid-scale variability except for the autoconversion) and small Δt (up to 60s) due to local calculations \neq Subgrid approach in 3MT, adapted to long Δt (400s in ALARO)
- Includes pronostic graupel hydrometeor with a large number of processes (30) (without the possibility to switch off the graupel) \neq Diagnostic graupel and 8 processes (up to 11 if graupel becomes pronostic)
- Sequential treatment of the processes in a bulk mode over all levels with an indirect dependence to the order ≠ Specific treatment of the processes (according to the subgrid zone) level by level

ALARO Proposal

Objective for AROME microphysics: Give to AROME microphysics the possibility to integrate an interoperable system including 3MT

Main implications for AROME microphysics:

- Splitting of the bulk routine into individual microphysical routines
- Pushing reshaping functions upward, leading to single level subroutines
- Introduction of converters: tendencies to fluxes, reverse order of vertical levels indexing, mixing ratio to specific humidity ...

Workforce: At least 3 persons x month, not including the validation

- Huge difficulty to compare consistently the 2 schemes

Our Position

Actual tendency in the international microphysics community: Towards a
more sophisticated microphysics: Especially the 2-moment mixed
microphysical schemes (ex: WRF, LM with ...).

Plan for Meso-NH: To implement and validate the Grabowski and Morrison (2008) 2-moment mixed scheme (currently tested in WRF):

- → The ALARO proposal is not a priority of development for Meso-NH
- 2. The proposal, if developed by ALARO with the help of Meso-NH/AROME, will be evaluated in Meso-NH/AROME if:
 - The compatibility with the Meso-NH environment is preserved
 - Results are reproducible
 - The computational efficiency is not reduced
- 3. Shall we have to recode a future microphysical scheme in AROME to keep interoperability? e.g. a 2-moment scheme, with new difficulties

